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Abstract 

Methods are presented to increase resiliency to server 
failures by migrating long running, secure TCP-based 
connections to backup servers, thus mitigating damage 
from servers disabled by attacks or accidental failures. 
The failover mechanism described is completely 
transparent to the client. Using these techniques, simple, 
practical systems can be built that can be retrofitted into 
the existing infrastructure, i.e. without requiring changes 
either to the TCP/IP protocol, or to the client system. The 
end result is a drop-in method of adding significant 
robustness to secure network connections such as those 
using the secure shell protocol (SSH). As there is a large 
installed universe of TCP-based user agent software, it 
will be some time before widespread adoption takes place 
of other approaches designed to withstand these kind of 
service failures; our methods provide an immediate way to 
enhance reliability, and thus resistance to attack, without 
having to wait for clients to upgrade software at their end. 
The practical viability of our approach is demonstrated by 
providing details of a system we have built that satisfies 
these requirements. 

1.  Introduction 

TCP is neither secure nor can withstand server failures 
due to malevolent intrusion, system crashes, or network 
card failures. Nonetheless, today’s information assurance 
requirements demand building software, networks and 
servers that are resistant to attacks and failures.  While 
individual connections can be made secure from 
eavesdropping or alteration by such protocols as the 
Secure Shell protocol (SSH), the server that provides these 
services continues to be a single point of failure.  This is 
an artifact of TCP’s original design, which assumed 
connections should be aborted if either endpoint is lost.  
That TCP also lacks any means of migrating connections 
implies that there is no inherent way to relocate 
connections to a backup server.  Thus any secure software 
built on top of TCP inherits the vulnerability of the single 
server as a point of failure.Combining TCP with a mix of 
public key and symmetric key encryption such as SSH or 

SSL addresses the protocol’s general security deficiency. 
In this paper we extend these methods to increase the 
resiliency of secure connections to tackle server failures. 
Specifically, we show practical ways to migrate active 
SSH connections to backup servers that do not require any 
alterations to client-side software, including their client 
application software, operating systems, or network stacks, 
thus making this solution immediately deployable.  These 
techniques are general and can be employed for other 
forms of secure connections, such as SSL, which is our 
next research goal. 

Recently, the authors [4] presented techniques to 
migrate open TCP connections in a client-transparent way 
using a system called Jeebs (Jeebs, from the film Men in 
Black, being the alien masquerading as a human who, 
when his head is blown off, grows a new head). Using this 
system, it is possible to make a range of TCP-based 
network services such as HTTP, SMTP, FTP, and Telnet 
fault tolerant. Jeebs has been demonstrated to recover TCP 
sessions from all combinations of Linux/Windows 
clients/servers. 

The results in this paper are a natural extension of the 
recent results on TCP migration [4] to secure connections, 
with which the ordinary Jeebs implementation is unable to 
cope because of the very nature of their security. Our 
implementation for secure connections, SecureJeebs, 
consists of making simple, modular and secure extensions 
to the SSH software and placing a "black box" on the 
server's subnet to monitor all TCP connections for the 
specified server hosts and services, detect loss of service, 
and recover the TCP connections before the clients' TCP 
stacks are aware of any difficulty.  

While great strides have been made in providing 
redundancy of network components such as load balancing 
switches and routers, and in proprietary applications such 
as used in database servers, a missing component in end-
to-end fault tolerance has been the inability to migrate 
open TCP connections across server failures.  Although 
neither these products nor SecureJeebs provide reliability 
if the whole cluster providing the service were to be 
involved in catastrophe such as an earthquake or fire, or if 
network components that are on the path of service were 
to fail, SecureJeebs eliminates servers as a single point of 



failures.  SecureJeebs is further distinguished from load 
balancing and other techniques in that it transparently and 
securely migrates secure connections that are in progress.  
This feature permits SecureJeebs to be used not only to 
enhance reliability of unreliable servers, but also to take 
production servers offline for scheduled maintenance 
without disrupting the existing connections. 

Following an overview in Section 2 and discussion of 
related work in Section 3, we describe the necessary 
background in section 4 and present our techniques and 
the architecture of Jeebs in Section 5. We present a 
performance analysis in Section 6 and concluding remarks 
in Section 7. 

2.  Overview 

2.1.  Migration 

Recovering TCP sessions that are about to abort due to 
loss of the server requires two components:  (1) A monitor, 
to record pertinent information about existing connections 
and detect their imminent demise; and (2) a recovery 
system that can perform emergency reconnection to a new 
server that will take over the connection.  Each is 
described briefly below. 

 
The monitor operates by logging traffic from the server 

host it is watching.  The granularity of recovery is at the IP 
number level. The monitor can be further selected to only 
watch certain ports, but since the entire IP number is 
migrated to a new server, all ports on that IP number 
should be monitored in practice (However, since virtual IP 
numbers are used in practice, specific services can be 
isolated so that they are the only services using a given IP 
number.  Thus individual services can be migrated if they 
are the only services using that virtual IP number). 
Logging includes the TCP state information, 

unacknowledged data, and any prior data that may be 
required for recovery purposes (such as initial requests).  
Further, the monitor observes the health of each 
connection to detect imminent failure. Health monitoring 
and server crash detection use standard techniques as 
described elsewhere in the literature [3, 6, 12]. 
SecureJeebs is installed on the server’s subnet to monitor 
and recover connections, thus is currently limited to 
recovering what appear to be local server crashes. Packets 
are logged at the TCP level by a sniffer, thus potentially 
suffering from missed packets, though mitigating this 
deficiency has been addressed in [4].  Recovery of TCP 
state is handled via a passive recovery daemon on a 
monitoring server, and application state is migrated using 
simple, per-protocol recovery modules described briefly 
here and fully in [4].  Connections are recovered to a 
backup server (which may co-exist with the recovery 
server or be a separate system on the subnet) as shown in 
the figures below. 

When an IP number is deemed in need of migration, all 
connections to that server are restored by the recovery 
system.  The recovery system takes over the IP number of 
the designated server and initiates recovery of each 
connection.  Connection state is restored using simple per-
service recovery procedures.  There are three styles of 

recovery:  Standalone, where a new piece of software is 
written specifically to handle connections in progress 
(with new connection requests being serviced by a copy of 
the original daemon for that service); Integrated, where the 
existing service daemon on the recovery system is 
modified to understand how to adopt stranded connections 
(in addition to handling new requests); and Proxy, where a 
small, programmable daemon interposes itself between the 
client and a backup copy of the original service daemon, 
such that it can replay the necessary parts of the original 
connection to bring the new server up to the point the 
original server failed, then acts in a pass-through mode 
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Figure 1. Illustration of Secure Jeebs. Monitor detects server crash and starts recovery 
server and replay client. After CPR ends, all the original sessions are recovered. 



while the new server finishes the connection. Session keys 
and other sensitive data needed to ensure the integrity of 
secure connections are likewise migrated in a secure 
manner as described in detail in section 5. 

The difficulties involved in migrating a secure 
connection such as SSH primarily arise from exporting 
and importing various session keys securely and 
efficiently, and making the state of the cipher consistent.  
In addition, such protocols are specifically designed to 
prevent various attacks such as man-in-the-middle or 
replay attacks.  We have overcome these obstacles and 
devised several efficient, secure and reliable migration 
mechanisms which are successfully implemented in our 
testbed.  Figure 1 illustrates one such approach: Controlled 
Partial Replay (CPR). 

2.2.  Preserving Security 

It is always a legitimate concern whether a 
modification to a secure protocol such as SSH weakens the 
original security. We argue that the methods proposed here 
are sound from this perspective. 

First of all, as explained in detail in section 5, the 
changes we make are all client-transparent protocol-level 
changes that are consistent with the regular operation of 
SSH. The main changes are to the key exchange phase on 
the server side: we export several entities so that if there 
were to be a failure, the recovery server can recreate the 
original session. The exported entities include client’s 
payload of SSH_MSG_KEXINIT message, prime p, and 
generator for subgroup g, server’s exchange value f and its 
host key.  The export operation is independent of the 
regular behavior of SSH server, in other words, it does not 
interfere with the normal packet exchange between client 
and server at all, thus it does not open new holes within 
the transport layer or connection protocols. 

Secondly, all the entities for export, including those 
mentioned above, the last block of cipher text (details in 
5.3.1), and message sequence number (details in 5.3.2), 
are encrypted using the recovery server’s public host key. 
In addition, a message digest is appended for integrity 
check, and we further provide non-repudiation by signing 
the message digest using the original server’s private key. 
With these measures, only the recovery server can 
successfully decrypt these quantities with the assurance 
that they are from the original server and not tampered 
with during the export/import process. 

Thirdly, access control is in place to make sure that 
after the original server exports those aforementioned 
quantities to the database, only the recovery server is 
allowed to access them. This is possible because to the 
original SSH server, the recovery server is a known 
identifiable entity, i.e., the database can authenticate the 
recovery server before granting access.  

Finally, all these extra exporting and importing happen 
in a dedicated point-to-point physical channel and is 
totally transparent to the client or the third party.  From the 
third party’s point of view, the CPR is just like a regular 
SSH session, except that it is short and the recovery server 
promptly resumes connection to the original client at the 
end of it. 

3.  Related Work 

Our primary motivation is to provide tools that enhance 
reliability, which can easily be attached to the existing 
infrastructure without making any modifications to the 
client. This contrasts with previous solutions whose 
purpose is to provide continuity of service for mobile 
clients [9,14,18,23], perform dynamic load balancing 
using content-aware request distribution [5,15], do socket 
migration as part of a more general process migration [7-
8], or build network services that scale [13]. The 
difference in motivation between our work and the 
previous methods presents special challenges and has 
subtle effects on the proposed architecture. 

Much of the previous work proposes modifications to 
TCP [1,2,16-17, 23-25] thus making client transparency 
difficult, if not impossible. One way to make these 
solutions work with legacy clients is by interposing a 
proxy: it uses the new protocol by default, but switches to 
TCP if that is the only protocol the client understands. 
This approach in general has a few drawbacks. First and 
foremost, instead of removing the original single-point of 
failure, it introduces another. These methods also create an 
additional point of indirection, potentially impacting 
performance of normal communication and potentially 
introducing an additional security vulnerability. 

One way to achieve fault tolerance is to build recovery 
machinery into the server and develop clients to take 
advantage of this feature. The feature may be user 
controlled, such as the “REST” restart command in FTP, 
or it may be hidden from user control. An example of such 
a methodology is Netscape’s SmartDownload that is 
currently gaining some popularity [10]. This approach 
requires modifying the clients and servers, and recoding of 
applications. 

To the best of our knowledge, we are the first to 
describe a method to migrate a secure TCP connection in a 
client transparent way.  

4.  Background 

SSH is a protocol for secure remote login and other secure 
network services over an insecure network.  SSH encrypts 
all traffic to effectively eliminate eavesdropping, 
connection hijacking, and other network-level attacks.  
Additionally, it provides myriad secure tunneling  
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capabilities and authentication methods.  With an installed 
base of several million systems, it is the de-facto standard 
for remote logins and a common conduit for other 
applications. Increasingly, many organizations are making 
SSH the only allowed form of general access to their 
network from the public Internet (i.e., other than more 
specialized access such as via HTTP/HTTPS).  

SSH consists of three major components: The 
Transport Layer Protocol [19] provides server 
authentication, confidentiality, and integrity with perfect 
forward secrecy.  The User Authentication Protocol [20] 
authenticates the client to the server.  The Connection 
Protocol [21] multiplexes the encrypted tunnel into several 
logical channels.  For further details refer to [19-22]. 

We will briefly show how SSH works by 
demonstrating protocol level packet exchange during a 
typical session in Figure 2 (previous page). 

When the connection has been established, both sides 
send an identification string in steps 1 and 2.  After 
exchanging the key exchange message 
(SSH_MSG_KEXINT) in steps 3 and 4, each side agrees 
on which encryption, Message Authentication Code (MAC) 
and compression algorithms to use.  Steps 5 through 8 
consist of Diffie-Hellman group and key exchange 
protocol which establishes various keys for use throughout 
the session.  It is the focus of our recovery research and 
will be elaborated further in section 5.  

Following the successful key setup phase, signaled by 
the exchange of new keys message 
(SSH_MSG_NEWKEYS) in steps 9 and 10, messages are 
encrypted throughout the rest of the session. 

Steps 11 to 16 illustrate user authentication protocol, in 
particular, the public key authentication method.  Steps 17 
and above illustrate the SSH connection protocol, which 
provides interactive login sessions, remote execution of 
commands, and forwarded TCP/IP connections.  Figure 2 
also shows opening a remote channel (17, 18), and 
pseudo-terminal and shell start requests (19, 20).  After the 
server sends the login prompt and greeting messages, the 
client begins transferring data, entering interactive session. 

5.  SSH Recovery 

5.1.  Overview 

We have investigated two feasible approaches, a full 
replay “Proxy” based approach and Controlled Partial 
Replay approach (CPR). After a brief discussion of the 
Proxy approach, this paper will focus on the CPR 
approach because of its performance benefits. 

A Proxy style recovery daemon is a standalone piece of 
software with some understanding of the protocol whose 
sessions are to be recovered. However, it does not listen 
on any original service port, only on a port dedicated to 
recovery requests. When a recovery request arrives, the 

Proxy opens a new connection to an existing service 
daemon on a designated recovery host and replays most of 
the entire initial part of the original conversation between 
the client and original server, a conversation it retrieves 
from the monitor's database. After replaying the 
connection up to the point it was (almost) disrupted, the 
Proxy simply acts as a two-way pipe between client and 
new server.   In recovering an SSH daemon, the Proxy 
recovery daemon would invoke a new sshd process then 
replay the entire original conversation to the recovery SSH 
daemon (acting as if it were the client), so that the new 
sshd could advance the state of the encryption engine to 
match that of the original and now defunct sshd.  (The new 
sshd would have itself been modified to use the same 
encryption data as the original, as is discussed below, in 
that this is a modification necessary to both approaches.) 

In the CPR approach, once the monitor detects server 
failure, the CPR daemon starts an SSH recovery server—a 
modified copy of the regular SSH server—then performs a 
brief replay of the client process that mimics the original 
SSH client in that it sends and receives the same 
sequences of the same packets in the same order as the 
original client.  (These are in no way sent to or seen by the 
original client.)  The recovery server is modified to 
generate the same set of encryption/decryption/MAC keys 
as the original session, as described below.  This replay 
proceeds until authentication and connection are 
successful and the recovery server arrives at the same 
connection state as the original server was. The recovery 
client then ends the partial replay process by sending to 
the recovery server a user-defined message 
“SSH_USEFUL_REPLAY_END” which contains TCP/IP 
kernel parameters (sequence numbers, port numbers, IP 
addresses, etc.).  Upon receiving this message, the 
recovery server restores these TCP/IP kernel parameters 
via a small kernel module loaded on the recovery system, 
so that the sshd process invisibly resumes the connection 
to the original client, thus completing the recovery process.  
The recovery client terminates itself afterwards.  

In order for our CPR to work, we need to guarantee that 
the SSH recovery server as well as the recovery client can 
derive the same set of keys as  those of the original session, 
and in a secure manner.  In addition, we need to address 
protocol specifics which normally are designed to prevent 
replay from happening in the first place.  We will show 
that our recovery approach not only works, but also does 
not lessen the security of SSH. 

Lastly, while the modifications needed for recovery 
must be made to the SSH software on the server side, the 
changes are not complex (in that they address the protocol 
and not the specific implementation), and can be easily 
expressed as simple patches for existing versions of SSH; 
ultimately these could be incorporated directly into future 
SSH revisions as standard functionality or optional 
modules. 



5.2.  Reproducing the keys n -- preferred size in bits of the group the server 
   should send The first step for the recovery server and recovery 

client to reproduce the keys is to force the recovery server 
to send the same SSH_MSG_KEXINIT  in step 3 in 
Figure 2.  This is because SSH_MSG_KEXINIT contains 
16-bytes of random data generated by the sender and used 
as an input to future key and session identifier generating 
functions. 

K -- the shared secret 
g -- generator for subgroup 
f -- exchange value sent by the server 
K_S -- server certificate  

Various encryption keys are computed as hash of a K 
and H and a known single character.  

Therefore, we need to make sure that the recovery 
server generates the same SSH_MSG_KEXINIT as that of 
the original server, so that both the recovery client and 
server can derive the same set of keys as those of the 
original session.  This is accomplished in a straightforward 
manner:  we first modify the original server so that it 
exports the 16-byte random number, after encrypting it 
using the recovery server’s public key (and signing with 
the original server’s private key); this is exported through 
secure channel to the recovery server for later use, should 
recovery be called for.  During the CPR process, instead of 
generating the random numbers on the fly as is the normal 
mode of operation for SSH, the recovery server imports 
the saved value, decrypts it using its private key (validates 
the signature), and finally produces the same 
SSH_MSG_KEXINIT. 

As stated earlier, the Diffie-Hellman group and key 
exchange is a secure key exchange method that produces a 
unique set of keys.  The current SSH Transport Layer 
Protocol only designates Diffie-Hellman key exchange as 
the required method.  However, the Diffie-Hellman group 
and key exchange method offers better security because it 
uses a different group for each session, and is the default 
key exchange method deployed in OpenSSH.  Therefore, 
without loss of generality, it is assumed herein. 

In Figure 3, we expand step 5-8 of Figure 2 to illustrate 
this key exchange method in detail.  Note that || denotes 
string concatenation. 

In step 5 of Figure 3, the client sends min, n, and max 
to the server, indicating the minimal acceptable group size, 
the preferred size of the group and the maximal group size 
in bits the client will accept.  In step 6, the server finds a 
group that best matches the client's request, and sends p 
and g to the client. In step 7, client generates a random 
number x. It computes e = gx mod p, and sends "e" to 
server. In step 8, server generates a random number y and 
computes f = gy mod p.  When the server receives “e” it 
computes K = ey mod p, and H = hash(Vc|| Vs|| Ic|| Is|| Ks|| 
min || n || max || p || g || e || f || K) where 

Vc & Vs  --client's & server's version strings, resp 
Ks  -- server host key  
p -- safe prime 
Ic & Is -- the payload of the client & server’s 
     SSH_MSG_KEXINIT, resp 
min & max --minimal & maximal size in bits of an 
acceptable group, resp 
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Following the above description, we can conclude that 
the entities that are unique to each session that affect key 
generation are: Vc, Vs, Ic, Is, Ks, min, n, max, p, g, e, f, K 
and H.  In our CPR process, the recovery client replays the 
messages previously sent by the original client, thus Vc, Ic, 
min, n, max, e will be the same for the recovery session, 
but other items that are normally generated at run time by 
the server must be the restored as those originally used.  
Because the recovery server is only a slightly modified 
version of the original server, it will thus produce the same 
Vs.  Therefore, the entities that we need to force the 
recovery server to duplicate in order to generate the same 
set of keys are: Is, p, g, f, and Ks.  We modify the original 
SSH server so that it encrypts these aforementioned 
entities using recovery server’s public key, appends with 
message digest, signs and exports them to a secure 
network location.  For the recovery server, instead of 
generating these host-specific entities dynamically, it reads 



them in from the secure location, decrypts them using its 
private host key, verifies message digest and signature, 
and generates the same packets to be sent to client in step 
6 and 8 in Figure 3.  In doing so, the recovery server and 
the corresponding recovery client are guaranteed to 
produce the same set of initial IVs, as well as encryption 
and integrity keys, enabling our CPR to proceed.  

5.3.  SSH Transport Layer Protocol 

Each SSH packet includes, respectively, 4 bytes in a 
packet length field, 1 byte in a padding length field, a 
payload field, and random padding.  The encrypted 
packets have an additional MAC field at the end as 
described below.  Packet format before and after 
encryption is depicted in Figure 4.  

 
5.3.1.  Encryption 

According to the export/import method we described in 
section 5.2.1, we can guarantee that the same encryption 
algorithms and identical set of keys will be used during 
CPR.  However, for block ciphers, the previous block of 
cipher text, denote as Ci, is used as the random data that 
will be XOR’d into the next plaintext.  This in essence, 
means that, though we start with the same sets of keys, 
because we are only doing a partial replay, we may still 
arrive at an inconsistent cipher context at the end of CPR.  
We have designed two approaches to solve this problem: 
(1) to modify the original SSH server to export the most 
recent Ci with every packet encryption and decryption, and 
to reset the cipher context of the SSH recovery server to Ci 
at the end of CPR; vs. (2) to modify the regular SSH 
server to securely export every raw packet, so that the 
cipher context can be advanced by applying 
encryption/decryption over all the saved raw packets.  We 
implemented both of these two approaches and found that, 

as expected, the first approach is just as effective without 
the inefficiency of saving all the raw packets. 

5.3.2.  Data Integrity  

As shown in Figure 4, each encrypted packet is 
appended with a Message Authentication Code (MAC) to 
achieve data integrity. MAC is produced according to the 
following formula: 

MAC = mac_algorithm( key, sequence_number ||  
   unencrypted_packet ) 

where unencrypted_packet is the entire packet without 
MAC and sequence_number is an implicit 32 bit packet 
sequence number.  The sequence number is initialized to 
zero for the first packet, and is incremented after every 
packet. 

Of the three parameters to MAC, we observe here that 
the only entity that is unique to every packet in each 
session is the sequence_number. The regular SSH server is 
thus modified to securely export the latest sequence 
number after each packet send/receive operation. At the 
end of CPR, we reset the sequence_number of the 
recovery server as the latest one from the original session. 

Padding Random 
Padding 

Packet 
length length 

Raw Packet    

5.3.3.  Random Padding  
MAC 

The random padding field consists of randomly 
generated bytes to ensure the total length of the raw packet 
is a multiple of the cipher block.  Although the recovery 
server and original server generate different random 
padding for their packets, it is not necessary to alter the 
recovery server in order to reconcile this inconsistency.  
This is because both the recovery client and recovery 
server will derive the same encryption and MAC 
algorithms after the key exchange phase, as well as the 
same set of keys, which enables the recovery client to 
successfully decrypt any packet received from the 
recovery server and to proceed until CPR ends.  The only 
ramification of different random padding is that the 
recovery server’s cipher context, or the last block of cipher 
text (Ci), will be different from that of the original server. 
However, as explained in section 5.1, we will reset the 
cipher context of the recovery server at the end of CPR to 
make it consistent with the original server, thus making 
exporting and importing random padding field 
unnecessary. 

Encrypted Packet  

Figure 4. SSH packet format 

5.3.4  Application State 
Application state is recovered in a manner generally 

addressed in [4].  For a given application (such as a remote 
shell or a specific application invoked using SSH) a per-
application recovery module is created.  These are 
generally simple to create, and may be crafted from 
existing models.  The primary issue in an application 



recovery module is for it to monitor the original 
connection and extract relevant state from it.  This can be 
restored by replay to an unmodified application daemon or 
by directly setting state into a daemon modified for that 
purpose.  For example, highly non-deterministic 
applications like a shell session can display a list of 
previously executed commands for the user to choose to 
re-execute.  More deterministic applications, such as FTP, 
can have their state replayed by a simple proxy client 
directly. 

The only significant difference between recovery 
applications under Jeebs compared to SecureJeebs is that 
the recovery module must be connected into the SSH 
monitor, so it can decrypt the session’s application 
communications to determine which are relevant state-
setting messages, e.g., a CHDIR command in FTP, or 
gathering the list of commands executed for a login 
session.  However, since the SSH software has been 
slightly modified for recovery purposes anyway, this is not 
a significant imposition. 

6.  Performance 

We chose OpenSSH 3.5 and modified the source code 
to create both the regular and recovery SSH server.  We 
conducted our experiments on several very modest 
machines (each an Intel Pentium 333 MHz with 128M 

memory and Intel Ethernet Pro 10/100B PCs running Red 
Hat 7.2 with a mySQL database). 

The fundamental measure of success in this case is 
whether SSH connections can be restored before TCP’s 
abort timer expires and the clients begin resetting 
connections. This value is established on the order of 
multiple minutes, with two minutes being the general 
minimum and nine minutes the common value.  In our 
experiments, recovery even under load takes less than two 
minutes. 

The following shows the time spent in a representative 
SSH recovery session: 

Monitor alerts of server crash: 17:39:21 
Recovery start: 17:39:26 
IP take over and recovery server 

daemon started: 17:39:32 

Recovery complete: 17:39:40 
 
It takes approximately 11 seconds to discover a server 

crash, reset the virtual interface, and start a recovery 
daemon.  The actual recovery process, which includes 
controlled partial replay, reading and decrypting the saved 
parameters, and resetting the recovery server’s encryption 
cipher states, takes another 8 seconds. This is compared to 
observations that show a regular client login to server 
takes, on average, 3.2 seconds.  
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Figure 5.  Recovery percentage and the average recovery time vs. # of open sessions. 

# of connections 1 5 10 20 30 40 50 60 70 
Avg recovery time 19 37.4 57.2 120 118 129 184 189.6 191 
standard deviation 0 0.89 2.68 8.4 13 17.3 54.8 53.49 55.61 
median 19 38 58 124 123 134 171 173 169 
shortest recovery time 19 36 51 101 88 97 54 99 91 
longest recovery time 19 38 59 127 128 152 248 255 258 

Table 1.  Recovery time for multiple concurrent sessions (time unit is second). 



We observe that the recovery percentage drops from 
100% with 20 or less simultaneous sessions, to around 
60% recovered with 70 simultaneous sessions.  This 
degradation is partially due the limitations imposed by a 
relatively obsolete hardware.  Under 20~30 open sessions, 
we achieve the average recovery time within the two 
minute TCP timer expiration limit, again, determined by 
our inadequate hardware. It is obvious that more powerful 
systems can handle more demanding tasks such as larger 
number of concurrent logins, and thus likewise the 
recovery tasks presented in this paper.   It is also possible 
that tremendously high network load could cause lost 
packets (as addressed more fully in [4], but this has not 
been found to be a limiting factor.  Regardless of cause, 
recovery of most sessions, with some failures that would 
have failed anyway, may be preferable to losing all 
sessions. 

7.  Conclusions and Future Work 

Until such time as secure TCP-based migration 
solutions are available on the hundreds of millions of 
existing systems, there will remain a need for client-
transparent migration.  The SecureJeebs system 
demonstrates how certain techniques can be deployed in a 
simple manner, without requiring changes to any clients.  
The simplicity and immediate applicability of the 
techniques demonstrated in this paper make SecureJeebs 
attractive for adoption in commercial product development.   

We are currently extending this work in the following 
directions: 

 Migrate HTTPS by proposing simple extensions to 
SSL 

 Prove the applicability of the methods presented 
here to secure file transfer protocol (SFTP) 

 Improve the recovery ratio under high load by 
employing more sophisticated recovery methods 
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