
Making Secure TCP Connections Resistant to Server Failures

Hailin Wu, Andrew Burt, Ramki Thurimella
Department of Computer Science

University of Denver
Denver, CO 80208, USA

{hwu, aburt, ramki}@cs.du.edu

Abstract

Methods are presented to increase resiliency to server
failures by migrating long running, secure TCP-based
connections to backup servers, thus mitigating damage
from servers disabled by attacks or accidental failures.
The failover mechanism described is completely
transparent to the client. Using these techniques, simple,
practical systems can be built that can be retrofitted into
the existing infrastructure, i.e. without requiring changes
either to the TCP/IP protocol, or to the client system. The
end result is a drop-in method of adding significant
robustness to secure network connections such as those
using the secure shell protocol (SSH). As there is a large
installed universe of TCP-based user agent software, it
will be some time before widespread adoption takes place
of other approaches designed to withstand these kind of
service failures; our methods provide an immediate way to
enhance reliability, and thus resistance to attack, without
having to wait for clients to upgrade software at their end.
The practical viability of our approach is demonstrated by
providing details of a system we have built that satisfies
these requirements.

1. Introduction

TCP is neither secure nor can withstand server failures
due to malevolent intrusion, system crashes, or network
card failures. Nonetheless, today’s information assurance
requirements demand building software, networks and
servers that are resistant to attacks and failures. While
individual connections can be made secure from
eavesdropping or alteration by such protocols as the
Secure Shell protocol (SSH), the server that provides these
services continues to be a single point of failure. This is
an artifact of TCP’s original design, which assumed
connections should be aborted if either endpoint is lost.
That TCP also lacks any means of migrating connections
implies that there is no inherent way to relocate
connections to a backup server. Thus any secure software
built on top of TCP inherits the vulnerability of the single
server as a point of failure.Combining TCP with a mix of
public key and symmetric key encryption such as SSH or

SSL addresses the protocol’s general security deficiency.
In this paper we extend these methods to increase the
resiliency of secure connections to tackle server failures.
Specifically, we show practical ways to migrate active
SSH connections to backup servers that do not require any
alterations to client-side software, including their client
application software, operating systems, or network stacks,
thus making this solution immediately deployable. These
techniques are general and can be employed for other
forms of secure connections, such as SSL, which is our
next research goal.

Recently, the authors [4] presented techniques to
migrate open TCP connections in a client-transparent way
using a system called Jeebs (Jeebs, from the film Men in
Black, being the alien masquerading as a human who,
when his head is blown off, grows a new head). Using this
system, it is possible to make a range of TCP-based
network services such as HTTP, SMTP, FTP, and Telnet
fault tolerant. Jeebs has been demonstrated to recover TCP
sessions from all combinations of Linux/Windows
clients/servers.

The results in this paper are a natural extension of the
recent results on TCP migration [4] to secure connections,
with which the ordinary Jeebs implementation is unable to
cope because of the very nature of their security. Our
implementation for secure connections, SecureJeebs,
consists of making simple, modular and secure extensions
to the SSH software and placing a "black box" on the
server's subnet to monitor all TCP connections for the
specified server hosts and services, detect loss of service,
and recover the TCP connections before the clients' TCP
stacks are aware of any difficulty.

While great strides have been made in providing
redundancy of network components such as load balancing
switches and routers, and in proprietary applications such
as used in database servers, a missing component in end-
to-end fault tolerance has been the inability to migrate
open TCP connections across server failures. Although
neither these products nor SecureJeebs provide reliability
if the whole cluster providing the service were to be
involved in catastrophe such as an earthquake or fire, or if
network components that are on the path of service were
to fail, SecureJeebs eliminates servers as a single point of

failures. SecureJeebs is further distinguished from load
balancing and other techniques in that it transparently and
securely migrates secure connections that are in progress.
This feature permits SecureJeebs to be used not only to
enhance reliability of unreliable servers, but also to take
production servers offline for scheduled maintenance
without disrupting the existing connections.

Following an overview in Section 2 and discussion of
related work in Section 3, we describe the necessary
background in section 4 and present our techniques and
the architecture of Jeebs in Section 5. We present a
performance analysis in Section 6 and concluding remarks
in Section 7.

2. Overview

2.1. Migration

Recovering TCP sessions that are about to abort due to
loss of the server requires two components: (1) A monitor,
to record pertinent information about existing connections
and detect their imminent demise; and (2) a recovery
system that can perform emergency reconnection to a new
server that will take over the connection. Each is
described briefly below.

The monitor operates by logging traffic from the server

host it is watching. The granularity of recovery is at the IP
number level. The monitor can be further selected to only
watch certain ports, but since the entire IP number is
migrated to a new server, all ports on that IP number
should be monitored in practice (However, since virtual IP
numbers are used in practice, specific services can be
isolated so that they are the only services using a given IP
number. Thus individual services can be migrated if they
are the only services using that virtual IP number).
Logging includes the TCP state information,

unacknowledged data, and any prior data that may be
required for recovery purposes (such as initial requests).
Further, the monitor observes the health of each
connection to detect imminent failure. Health monitoring
and server crash detection use standard techniques as
described elsewhere in the literature [3, 6, 12].
SecureJeebs is installed on the server’s subnet to monitor
and recover connections, thus is currently limited to
recovering what appear to be local server crashes. Packets
are logged at the TCP level by a sniffer, thus potentially
suffering from missed packets, though mitigating this
deficiency has been addressed in [4]. Recovery of TCP
state is handled via a passive recovery daemon on a
monitoring server, and application state is migrated using
simple, per-protocol recovery modules described briefly
here and fully in [4]. Connections are recovered to a
backup server (which may co-exist with the recovery
server or be a separate system on the subnet) as shown in
the figures below.

When an IP number is deemed in need of migration, all
connections to that server are restored by the recovery
system. The recovery system takes over the IP number of
the designated server and initiates recovery of each
connection. Connection state is restored using simple per-
service recovery procedures. There are three styles of

recovery: Standalone, where a new piece of software is
written specifically to handle connections in progress
(with new connection requests being serviced by a copy of
the original daemon for that service); Integrated, where the
existing service daemon on the recovery system is
modified to understand how to adopt stranded connections
(in addition to handling new requests); and Proxy, where a
small, programmable daemon interposes itself between the
client and a backup copy of the original service daemon,
such that it can replay the necessary parts of the original
connection to bring the new server up to the point the
original server failed, then acts in a pass-through mode

Crashed
SSH Server IP 1SSH Server IP 1Port 22

Secure Jeebs Client 1 Client 1 Secure Jeebs

Monitor IP 2Monitor IP 2 Client 2 Client 2
DB

DB IP 1 Recovery Server IP 3 Port 22 Recovery Server

Client 3 Client 3
Replay
Client

Before Server Crash After Server Crash

Figure 1. Illustration of Secure Jeebs. Monitor detects server crash and starts recovery
server and replay client. After CPR ends, all the original sessions are recovered.

while the new server finishes the connection. Session keys
and other sensitive data needed to ensure the integrity of
secure connections are likewise migrated in a secure
manner as described in detail in section 5.

The difficulties involved in migrating a secure
connection such as SSH primarily arise from exporting
and importing various session keys securely and
efficiently, and making the state of the cipher consistent.
In addition, such protocols are specifically designed to
prevent various attacks such as man-in-the-middle or
replay attacks. We have overcome these obstacles and
devised several efficient, secure and reliable migration
mechanisms which are successfully implemented in our
testbed. Figure 1 illustrates one such approach: Controlled
Partial Replay (CPR).

2.2. Preserving Security

It is always a legitimate concern whether a
modification to a secure protocol such as SSH weakens the
original security. We argue that the methods proposed here
are sound from this perspective.

First of all, as explained in detail in section 5, the
changes we make are all client-transparent protocol-level
changes that are consistent with the regular operation of
SSH. The main changes are to the key exchange phase on
the server side: we export several entities so that if there
were to be a failure, the recovery server can recreate the
original session. The exported entities include client’s
payload of SSH_MSG_KEXINIT message, prime p, and
generator for subgroup g, server’s exchange value f and its
host key. The export operation is independent of the
regular behavior of SSH server, in other words, it does not
interfere with the normal packet exchange between client
and server at all, thus it does not open new holes within
the transport layer or connection protocols.

Secondly, all the entities for export, including those
mentioned above, the last block of cipher text (details in
5.3.1), and message sequence number (details in 5.3.2),
are encrypted using the recovery server’s public host key.
In addition, a message digest is appended for integrity
check, and we further provide non-repudiation by signing
the message digest using the original server’s private key.
With these measures, only the recovery server can
successfully decrypt these quantities with the assurance
that they are from the original server and not tampered
with during the export/import process.

Thirdly, access control is in place to make sure that
after the original server exports those aforementioned
quantities to the database, only the recovery server is
allowed to access them. This is possible because to the
original SSH server, the recovery server is a known
identifiable entity, i.e., the database can authenticate the
recovery server before granting access.

Finally, all these extra exporting and importing happen
in a dedicated point-to-point physical channel and is
totally transparent to the client or the third party. From the
third party’s point of view, the CPR is just like a regular
SSH session, except that it is short and the recovery server
promptly resumes connection to the original client at the
end of it.

3. Related Work

Our primary motivation is to provide tools that enhance
reliability, which can easily be attached to the existing
infrastructure without making any modifications to the
client. This contrasts with previous solutions whose
purpose is to provide continuity of service for mobile
clients [9,14,18,23], perform dynamic load balancing
using content-aware request distribution [5,15], do socket
migration as part of a more general process migration [7-
8], or build network services that scale [13]. The
difference in motivation between our work and the
previous methods presents special challenges and has
subtle effects on the proposed architecture.

Much of the previous work proposes modifications to
TCP [1,2,16-17, 23-25] thus making client transparency
difficult, if not impossible. One way to make these
solutions work with legacy clients is by interposing a
proxy: it uses the new protocol by default, but switches to
TCP if that is the only protocol the client understands.
This approach in general has a few drawbacks. First and
foremost, instead of removing the original single-point of
failure, it introduces another. These methods also create an
additional point of indirection, potentially impacting
performance of normal communication and potentially
introducing an additional security vulnerability.

One way to achieve fault tolerance is to build recovery
machinery into the server and develop clients to take
advantage of this feature. The feature may be user
controlled, such as the “REST” restart command in FTP,
or it may be hidden from user control. An example of such
a methodology is Netscape’s SmartDownload that is
currently gaining some popularity [10]. This approach
requires modifying the clients and servers, and recoding of
applications.

To the best of our knowledge, we are the first to
describe a method to migrate a secure TCP connection in a
client transparent way.

4. Background

SSH is a protocol for secure remote login and other secure
network services over an insecure network. SSH encrypts
all traffic to effectively eliminate eavesdropping,
connection hijacking, and other network-level attacks.
Additionally, it provides myriad secure tunneling

Server Client

1

3 Key exchange begins

6

2

4

5

8 Choose y,
 compute f = g y mod p

“SSH-2.0_OPENSSH_3.5p1”

“SSH-2.0_OPENSSH_3.5P1”

SSH_MSG_KEXINIT

SSH_MSG_KEXINIT

Diffle-Hellman Group and Key Exchange

SSH_MSG_KEX_DH_GEX_REQUEST

(min, max, preferred group size in bits)

SSH_MSG_KEX_DH_GEX_GROUP
(p: safe prime; g: generator)

SSH_MSG_KEX_DH_GEX_INIT
Choose x, e = g x mod p 7 e

SSH_MSG_KEX_DH_GEX_REPLY
(f, signature)

SSH_MSG_NEWKEYS 9
Message Encrypted Below

SSH_MSG_NEWKEYS 10

Authentication Protocol

SSH_MSG_SERVICE_REQUEST 11
(ssh-userauth)

SSH_MSG_SERVICE_ACCEPT 12

SSH_MSG_USERAUTH_REQUEST Public key authentication 13
request (public key)

SSH_MSG_USERAUTH_PK_OK 14 Server supports public
 key authentication
 request SSH_MSG_USERAUTH_REQUEST

SSH_MSG_USERAUTH_SUCCESS 16 Verify signature using
Send signature 15
generated using client’s
private key
 client’s public key
Connection Protocol

SSH_MSG_CHANNEL_OPEN Request to open a 17
channel SSH_MSG_CHANNEL_OPEN_CONFIRMATION 18

SSH_MSG_CHANNEL_REQUEST
(pty-req)
Pseudo-terminal 19
allocation request
Start shell request 20

Figu
SSH_MSG_CHANNEL_REQUEST
(shell)

SSH_MSG_CHANNEL_WINDOW_ADJUST 21 Adjust window size

SSH_MSG_CHANNEL_DATA 22 Send login prompt and
 welcome message Interactive Session

 Not shown here.

re 2. SSH protocol sample packet exchange

capabilities and authentication methods. With an installed
base of several million systems, it is the de-facto standard
for remote logins and a common conduit for other
applications. Increasingly, many organizations are making
SSH the only allowed form of general access to their
network from the public Internet (i.e., other than more
specialized access such as via HTTP/HTTPS).

SSH consists of three major components: The
Transport Layer Protocol [19] provides server
authentication, confidentiality, and integrity with perfect
forward secrecy. The User Authentication Protocol [20]
authenticates the client to the server. The Connection
Protocol [21] multiplexes the encrypted tunnel into several
logical channels. For further details refer to [19-22].

We will briefly show how SSH works by
demonstrating protocol level packet exchange during a
typical session in Figure 2 (previous page).

When the connection has been established, both sides
send an identification string in steps 1 and 2. After
exchanging the key exchange message
(SSH_MSG_KEXINT) in steps 3 and 4, each side agrees
on which encryption, Message Authentication Code (MAC)
and compression algorithms to use. Steps 5 through 8
consist of Diffie-Hellman group and key exchange
protocol which establishes various keys for use throughout
the session. It is the focus of our recovery research and
will be elaborated further in section 5.

Following the successful key setup phase, signaled by
the exchange of new keys message
(SSH_MSG_NEWKEYS) in steps 9 and 10, messages are
encrypted throughout the rest of the session.

Steps 11 to 16 illustrate user authentication protocol, in
particular, the public key authentication method. Steps 17
and above illustrate the SSH connection protocol, which
provides interactive login sessions, remote execution of
commands, and forwarded TCP/IP connections. Figure 2
also shows opening a remote channel (17, 18), and
pseudo-terminal and shell start requests (19, 20). After the
server sends the login prompt and greeting messages, the
client begins transferring data, entering interactive session.

5. SSH Recovery

5.1. Overview

We have investigated two feasible approaches, a full
replay “Proxy” based approach and Controlled Partial
Replay approach (CPR). After a brief discussion of the
Proxy approach, this paper will focus on the CPR
approach because of its performance benefits.

A Proxy style recovery daemon is a standalone piece of
software with some understanding of the protocol whose
sessions are to be recovered. However, it does not listen
on any original service port, only on a port dedicated to
recovery requests. When a recovery request arrives, the

Proxy opens a new connection to an existing service
daemon on a designated recovery host and replays most of
the entire initial part of the original conversation between
the client and original server, a conversation it retrieves
from the monitor's database. After replaying the
connection up to the point it was (almost) disrupted, the
Proxy simply acts as a two-way pipe between client and
new server. In recovering an SSH daemon, the Proxy
recovery daemon would invoke a new sshd process then
replay the entire original conversation to the recovery SSH
daemon (acting as if it were the client), so that the new
sshd could advance the state of the encryption engine to
match that of the original and now defunct sshd. (The new
sshd would have itself been modified to use the same
encryption data as the original, as is discussed below, in
that this is a modification necessary to both approaches.)

In the CPR approach, once the monitor detects server
failure, the CPR daemon starts an SSH recovery server—a
modified copy of the regular SSH server—then performs a
brief replay of the client process that mimics the original
SSH client in that it sends and receives the same
sequences of the same packets in the same order as the
original client. (These are in no way sent to or seen by the
original client.) The recovery server is modified to
generate the same set of encryption/decryption/MAC keys
as the original session, as described below. This replay
proceeds until authentication and connection are
successful and the recovery server arrives at the same
connection state as the original server was. The recovery
client then ends the partial replay process by sending to
the recovery server a user-defined message
“SSH_USEFUL_REPLAY_END” which contains TCP/IP
kernel parameters (sequence numbers, port numbers, IP
addresses, etc.). Upon receiving this message, the
recovery server restores these TCP/IP kernel parameters
via a small kernel module loaded on the recovery system,
so that the sshd process invisibly resumes the connection
to the original client, thus completing the recovery process.
The recovery client terminates itself afterwards.

In order for our CPR to work, we need to guarantee that
the SSH recovery server as well as the recovery client can
derive the same set of keys as those of the original session,
and in a secure manner. In addition, we need to address
protocol specifics which normally are designed to prevent
replay from happening in the first place. We will show
that our recovery approach not only works, but also does
not lessen the security of SSH.

Lastly, while the modifications needed for recovery
must be made to the SSH software on the server side, the
changes are not complex (in that they address the protocol
and not the specific implementation), and can be easily
expressed as simple patches for existing versions of SSH;
ultimately these could be incorporated directly into future
SSH revisions as standard functionality or optional
modules.

5.2. Reproducing the keys n -- preferred size in bits of the group the server
 should send The first step for the recovery server and recovery

client to reproduce the keys is to force the recovery server
to send the same SSH_MSG_KEXINIT in step 3 in
Figure 2. This is because SSH_MSG_KEXINIT contains
16-bytes of random data generated by the sender and used
as an input to future key and session identifier generating
functions.

K -- the shared secret
g -- generator for subgroup
f -- exchange value sent by the server
K_S -- server certificate

Various encryption keys are computed as hash of a K
and H and a known single character.

Therefore, we need to make sure that the recovery
server generates the same SSH_MSG_KEXINIT as that of
the original server, so that both the recovery client and
server can derive the same set of keys as those of the
original session. This is accomplished in a straightforward
manner: we first modify the original server so that it
exports the 16-byte random number, after encrypting it
using the recovery server’s public key (and signing with
the original server’s private key); this is exported through
secure channel to the recovery server for later use, should
recovery be called for. During the CPR process, instead of
generating the random numbers on the fly as is the normal
mode of operation for SSH, the recovery server imports
the saved value, decrypts it using its private key (validates
the signature), and finally produces the same
SSH_MSG_KEXINIT.

As stated earlier, the Diffie-Hellman group and key
exchange is a secure key exchange method that produces a
unique set of keys. The current SSH Transport Layer
Protocol only designates Diffie-Hellman key exchange as
the required method. However, the Diffie-Hellman group
and key exchange method offers better security because it
uses a different group for each session, and is the default
key exchange method deployed in OpenSSH. Therefore,
without loss of generality, it is assumed herein.

In Figure 3, we expand step 5-8 of Figure 2 to illustrate
this key exchange method in detail. Note that || denotes
string concatenation.

In step 5 of Figure 3, the client sends min, n, and max
to the server, indicating the minimal acceptable group size,
the preferred size of the group and the maximal group size
in bits the client will accept. In step 6, the server finds a
group that best matches the client's request, and sends p
and g to the client. In step 7, client generates a random
number x. It computes e = gx mod p, and sends "e" to
server. In step 8, server generates a random number y and
computes f = gy mod p. When the server receives “e” it
computes K = ey mod p, and H = hash(Vc|| Vs|| Ic|| Is|| Ks||
min || n || max || p || g || e || f || K) where

Vc & Vs --client's & server's version strings, resp
Ks -- server host key
p -- safe prime
Ic & Is -- the payload of the client & server’s
 SSH_MSG_KEXINIT, resp
min & max --minimal & maximal size in bits of an
acceptable group, resp

Client Server

byte msg_REQUEST
unit32 min

5 unit32 n
uint32 max

byte msg_GROUP
6 mpint p

mpint g

byte msg_INIT
7 mpint e = gx mod p

byte msg_REPLY
string Ks and K_S

8 mpint f = gy mod p

Figure 3. Diffie-Hellman
Group and Key Exchange

Following the above description, we can conclude that
the entities that are unique to each session that affect key
generation are: Vc, Vs, Ic, Is, Ks, min, n, max, p, g, e, f, K
and H. In our CPR process, the recovery client replays the
messages previously sent by the original client, thus Vc, Ic,
min, n, max, e will be the same for the recovery session,
but other items that are normally generated at run time by
the server must be the restored as those originally used.
Because the recovery server is only a slightly modified
version of the original server, it will thus produce the same
Vs. Therefore, the entities that we need to force the
recovery server to duplicate in order to generate the same
set of keys are: Is, p, g, f, and Ks. We modify the original
SSH server so that it encrypts these aforementioned
entities using recovery server’s public key, appends with
message digest, signs and exports them to a secure
network location. For the recovery server, instead of
generating these host-specific entities dynamically, it reads

them in from the secure location, decrypts them using its
private host key, verifies message digest and signature,
and generates the same packets to be sent to client in step
6 and 8 in Figure 3. In doing so, the recovery server and
the corresponding recovery client are guaranteed to
produce the same set of initial IVs, as well as encryption
and integrity keys, enabling our CPR to proceed.

5.3. SSH Transport Layer Protocol

Each SSH packet includes, respectively, 4 bytes in a
packet length field, 1 byte in a padding length field, a
payload field, and random padding. The encrypted
packets have an additional MAC field at the end as
described below. Packet format before and after
encryption is depicted in Figure 4.

5.3.1. Encryption

According to the export/import method we described in
section 5.2.1, we can guarantee that the same encryption
algorithms and identical set of keys will be used during
CPR. However, for block ciphers, the previous block of
cipher text, denote as Ci, is used as the random data that
will be XOR’d into the next plaintext. This in essence,
means that, though we start with the same sets of keys,
because we are only doing a partial replay, we may still
arrive at an inconsistent cipher context at the end of CPR.
We have designed two approaches to solve this problem:
(1) to modify the original SSH server to export the most
recent Ci with every packet encryption and decryption, and
to reset the cipher context of the SSH recovery server to Ci
at the end of CPR; vs. (2) to modify the regular SSH
server to securely export every raw packet, so that the
cipher context can be advanced by applying
encryption/decryption over all the saved raw packets. We
implemented both of these two approaches and found that,

as expected, the first approach is just as effective without
the inefficiency of saving all the raw packets.

5.3.2. Data Integrity

As shown in Figure 4, each encrypted packet is
appended with a Message Authentication Code (MAC) to
achieve data integrity. MAC is produced according to the
following formula:

MAC = mac_algorithm(key, sequence_number ||
 unencrypted_packet)

where unencrypted_packet is the entire packet without
MAC and sequence_number is an implicit 32 bit packet
sequence number. The sequence number is initialized to
zero for the first packet, and is incremented after every
packet.

Of the three parameters to MAC, we observe here that
the only entity that is unique to every packet in each
session is the sequence_number. The regular SSH server is
thus modified to securely export the latest sequence
number after each packet send/receive operation. At the
end of CPR, we reset the sequence_number of the
recovery server as the latest one from the original session.

Padding Random
Padding

Packet
length length

Raw Packet

5.3.3. Random Padding
MAC

The random padding field consists of randomly
generated bytes to ensure the total length of the raw packet
is a multiple of the cipher block. Although the recovery
server and original server generate different random
padding for their packets, it is not necessary to alter the
recovery server in order to reconcile this inconsistency.
This is because both the recovery client and recovery
server will derive the same encryption and MAC
algorithms after the key exchange phase, as well as the
same set of keys, which enables the recovery client to
successfully decrypt any packet received from the
recovery server and to proceed until CPR ends. The only
ramification of different random padding is that the
recovery server’s cipher context, or the last block of cipher
text (Ci), will be different from that of the original server.
However, as explained in section 5.1, we will reset the
cipher context of the recovery server at the end of CPR to
make it consistent with the original server, thus making
exporting and importing random padding field
unnecessary.

Encrypted Packet

Figure 4. SSH packet format

5.3.4 Application State
Application state is recovered in a manner generally

addressed in [4]. For a given application (such as a remote
shell or a specific application invoked using SSH) a per-
application recovery module is created. These are
generally simple to create, and may be crafted from
existing models. The primary issue in an application

recovery module is for it to monitor the original
connection and extract relevant state from it. This can be
restored by replay to an unmodified application daemon or
by directly setting state into a daemon modified for that
purpose. For example, highly non-deterministic
applications like a shell session can display a list of
previously executed commands for the user to choose to
re-execute. More deterministic applications, such as FTP,
can have their state replayed by a simple proxy client
directly.

The only significant difference between recovery
applications under Jeebs compared to SecureJeebs is that
the recovery module must be connected into the SSH
monitor, so it can decrypt the session’s application
communications to determine which are relevant state-
setting messages, e.g., a CHDIR command in FTP, or
gathering the list of commands executed for a login
session. However, since the SSH software has been
slightly modified for recovery purposes anyway, this is not
a significant imposition.

6. Performance

We chose OpenSSH 3.5 and modified the source code
to create both the regular and recovery SSH server. We
conducted our experiments on several very modest
machines (each an Intel Pentium 333 MHz with 128M

memory and Intel Ethernet Pro 10/100B PCs running Red
Hat 7.2 with a mySQL database).

The fundamental measure of success in this case is
whether SSH connections can be restored before TCP’s
abort timer expires and the clients begin resetting
connections. This value is established on the order of
multiple minutes, with two minutes being the general
minimum and nine minutes the common value. In our
experiments, recovery even under load takes less than two
minutes.

The following shows the time spent in a representative
SSH recovery session:

Monitor alerts of server crash: 17:39:21
Recovery start: 17:39:26
IP take over and recovery server

daemon started: 17:39:32

Recovery complete: 17:39:40

It takes approximately 11 seconds to discover a server

crash, reset the virtual interface, and start a recovery
daemon. The actual recovery process, which includes
controlled partial replay, reading and decrypting the saved
parameters, and resetting the recovery server’s encryption
cipher states, takes another 8 seconds. This is compared to
observations that show a regular client login to server
takes, on average, 3.2 seconds.

Recovery ratio

0

20

40

60

80

100

1 5 10 20 30 40 50 60 70

of open connections

%
 re

co
ve

re
d

Avg recovery time

0

50

100

150

200

250

1 5 10 20 30 40 50 60 70

of open connections

Re
co

ve
ry

 ti
m

e
(s

ec
)

Figure 5. Recovery percentage and the average recovery time vs. # of open sessions.

of connections 1 5 10 20 30 40 50 60 70
Avg recovery time 19 37.4 57.2 120 118 129 184 189.6 191
standard deviation 0 0.89 2.68 8.4 13 17.3 54.8 53.49 55.61
median 19 38 58 124 123 134 171 173 169
shortest recovery time 19 36 51 101 88 97 54 99 91
longest recovery time 19 38 59 127 128 152 248 255 258

Table 1. Recovery time for multiple concurrent sessions (time unit is second).

We observe that the recovery percentage drops from
100% with 20 or less simultaneous sessions, to around
60% recovered with 70 simultaneous sessions. This
degradation is partially due the limitations imposed by a
relatively obsolete hardware. Under 20~30 open sessions,
we achieve the average recovery time within the two
minute TCP timer expiration limit, again, determined by
our inadequate hardware. It is obvious that more powerful
systems can handle more demanding tasks such as larger
number of concurrent logins, and thus likewise the
recovery tasks presented in this paper. It is also possible
that tremendously high network load could cause lost
packets (as addressed more fully in [4], but this has not
been found to be a limiting factor. Regardless of cause,
recovery of most sessions, with some failures that would
have failed anyway, may be preferable to losing all
sessions.

7. Conclusions and Future Work

Until such time as secure TCP-based migration
solutions are available on the hundreds of millions of
existing systems, there will remain a need for client-
transparent migration. The SecureJeebs system
demonstrates how certain techniques can be deployed in a
simple manner, without requiring changes to any clients.
The simplicity and immediate applicability of the
techniques demonstrated in this paper make SecureJeebs
attractive for adoption in commercial product development.

We are currently extending this work in the following
directions:

 Migrate HTTPS by proposing simple extensions to
SSL

 Prove the applicability of the methods presented
here to secure file transfer protocol (SFTP)

 Improve the recovery ratio under high load by
employing more sophisticated recovery methods

Acknowledgements

We thank Sada Narayanappa for useful discussions on
various modules, Profs. Leutenegger and Lopez for
lending us the hardware to do experimentation, and Ocean
Yang for her help with the figures.

References

 [1] N. Aghdaie and Y. Tamir. Implementation and Evaluation
of Transparent Fault-Tolerant Web Service with Kernel-
Level Support. In Proc. of the 11th International
Conference on Computer Communications and Networks
(ICCCN 2002), Miami, Florida, October 14-16, 2002.

[2] L. Alvisi, T. C. Bressoud, A. El-Khashab, K. Marzullo,
and D. Zagorodnov. Wrapping Server-Side TCP to Mask
Connection Failures. In Proc. of IEEE INFOCOM,
Anchorage, Alaska, pp. 329-337 (April 2001).

[3] E. Amir, S. McCanne, and R. Katz. An Active Service
Framework and its Application to Real-time Multimedia
Transcoding. In Proc., ACM SIGCOMM ’98, Sep. 1998.

[4] A. Burt, S. Narayanappa and R. Thurimella. Techniques
for Client-Transparent TCP Migration. Submitted.

 [5] Cisco Systems. Cisco Distributed Director.
http://www.cisco.com/warp/public/cc/pd/cxsr/dd/tech/dd_
wp.htm.

[6] A. Fox, S. Gribble, Y. Chawathe, and E. Brewer. Cluster-
based Scalable Network Services. In Proc. ACM SOSP ’97,
Oct. 1997.

[7] M. Haungs, R. Pandey, E. Barr, and J.F. Barnes.
Migrating Sockets: Bridging the OS Primitive/Internet
Application Gap. Manuscript. Available for download
from http://www.cs.ucdavis.edu/~haungs/my_cv/

[8] B. Kuntz and K. Rajan. MIGSOCK: Migratable TCP
Socket in Linux , M.S. Thesis, Information Networking
Institute, Carnegie Mellon University, Feb. 2002.

[9] D. A. Maltz and P. Bhagwat. MSOCKS: An Architecture
for Transport Layer Mobility. In Proc. IEEE INFOCOM,
Mar. 1998.

[10] Netscape SmartDownload,
http://wp.netscape.com/computing/download/smartdownlo
ad/ib/about.html.

[11] M. Orgiyan and C. Fetzer. Tapping TCP Streams. in Proc.
of IEEE International Symposium on Network Computing
and Applications (NCA2001), Boston, MA, USA, Feb.
2002.

[12] V. S. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel,
W. Zwaenepoel, and E. Nahum. Locality-aware Request
Distribution in Cluster-based Network Servers. In Proc.
ASPLOS ’98, Oct. 1998.

[13] A. E. Papathanasiou and E. V. Hensbergen. KNITS:
Switch-based Connection Hand-off. In Proc. IEEE
INFOCOM, Jun. 2002.

[14] X. Qu and J. Xu Yu and R.P. Brent. Implementation Of a
Portable-IP System For Mobile TCP/IP. TR-CS-97-19,
The Australian National University, Canberra, Australia,
1997.

[15] Scaling Next Generation Web Infrastructure with Content-
Intelligent Switching,
http://www.nortelnetworks.com/products/library/collateral/
intel_int/l7_white_paper1.pdf

[16] C. Snoeren and H. Balakrishnan. An End-to-End
Approach to Host Mobility. In Proc. 6th ACM
MOBICOM, Aug. 2000.

[17] C. Snoeren, D. G. Andersen, and H. Balakrishnan. Fine-
Grained Failover Using Connection Migration. In Proc.
3rd USENIX Symp. on Internet Technologies and Systems
(USITS), Mar. 2001.

[18] O. Spatscheck, J. S. Hansen, J. H. Hartman and L. L.
Peterson. Optimizing TCP Forwarder Performance.
IEEE/ACM Transactions on Networking, 8:2, pp. 146—
157, 2000.

[19] SSH Transport Layer Protocol.
http://www.ietf.org/internet-drafts/draft-ietf-secsh-
transport-15.txt

[20] SSH Authentication Protocol.
http://www.ietf.org/internet-drafts/draft-ietf-secsh-
userauth-16.txt.

http://www.cisco.com/warp/public/cc/pd/cxsr/dd/tech/dd_wp.htm
http://www.cisco.com/warp/public/cc/pd/cxsr/dd/tech/dd_wp.htm
http://www.alteonwebsystems.com/products/whitepapers/layer7switching.
http://www.alteonwebsystems.com/products/whitepapers/layer7switching.
http://www.ietf.org/internet-drafts/draft-ietf-secsh-transport-15.txt
http://www.ietf.org/internet-drafts/draft-ietf-secsh-transport-15.txt
http://www.ietf.org/internet-drafts/draft-ietf-secsh-userauth-16.txt
http://www.ietf.org/internet-drafts/draft-ietf-secsh-userauth-16.txt

[21] SSH Connection Protocol. http://www.ietf.org/internet-
drafts/draft-ietf-secsh-connect-16.txt

[22] SSH Protocol Architecture. http://www.ietf.org/internet-
drafts/draft-ietf-secsh-architecture-13.txt

[23] R. R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. J.
Schwarzberger, T. Taylor, I. Rytina, M. Kalla, L. Zhang,
and V. Paxson. RFC 2960: Stream Control Transport
Protocol, 2000.

[24] F. Sultan, K. Srinivasan, and L. Iftode. Transport Layer
Support for Highly-Available Network Services. In Proc.
HotOS-VIII, May 2001. Extended version: Technical
Report DCS-TR-429, Rutgers University.

[25] F. Sultan, K. Srinivasan, D. Iyer, L. Iftode. Migratory TCP:
Connection Migration for Service Continuity over the
Internet. In Proc. of the 22nd International Conference on
Distributed Computing Systems (ICDCS '02), July 2002.

[26] V.C. Zandy and B.P. Miller. Reliable Network Connections.
In Proc. 8th Annual ACM/IEEE International Conference
on Mobile Computing and Networking, pages 95–106,
Atlanta, Georgia, September 2002.

http://www.ietf.org/internet-drafts/draft-ietf-secsh-connect-16.txt
http://www.ietf.org/internet-drafts/draft-ietf-secsh-connect-16.txt

