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Abstract—Effective management of large-scale cellular data
networks is critical to meet customer demands and expectations.
Customer calls for technical support provide direct indication
as to the problems customers encounter. In this paper, we study
the customer tickets – free-text recordings and classifications by
customer support agents – collected at a large cellular network
provider, with two inter-related goals: i) to characterize and
understand the major factors which lead to customers to call
and seek support; and ii) to utilize such customer tickets to
help identify potential network problems. For this purpose, we
develop a novel statistical approach to model customer call rates
which account for customer-side factors (e.g., user tenure and
handset types) and geo-locations. We show that most calls are
due to customer-side factors and can be well captured by the
model. Furthermore, we also demonstrate that location-specific
deviations from the model provide a good indicator of potential
network-side issues.

I. INTRODUCTION

With the rapid growth in mobile voice and data services,

effective management of large-scale cellular data networks is

critical to meet customer demands and expectations. As a valu-

able source of information, customer-initiated feedback, e.g.,

calls to customer support lines, provides first-hand indication

as to the issues and problems that customers encounter. These

calls are typically recorded by customer (support) agents in

the form of customer tickets – free-text recordings of the

conversations as well as classifications of call reasons and

resolutions by customer agents. In this paper, we collect and

systematically study the customer tickets over a 6-month time

period at one of the largest cellular network service providers

in the United States. Our goal is two-fold: i) to characterize

and understand the major factors which lead customers to

call and seek support – in particular, we are interested in

separating customer-side factors from the network-side; and

ii) to utilize such customer tickets to help identify potential

network-side issues and problems.

In this paper, we take a novel statistics-based, “semantic-

free” approach to model and track customer call rates – the

percentage of customers calling over an appropriately chosen

time window, say, a week – over time, and to account for

various factors affecting call rates, e.g., such as customer-

side factors (e.g., user tenure and handset types) as well

as geo-locations at various granularities (e.g., state, metro,

radio network controllers (RNCs) or cell towers). The intuition

here is that we use geo-locations (at various granularities) as

proxies of network segments and elements: a location with a

persistently high call rate can be a good indicator of potential

chronic network-side issues and problems (e.g., congestion or

poor coverage) at that location; on the other hand, an increase

in call rates that are not location-specific is less likely network-

related, and more likely caused by customer-side issues and

problems (e.g., mobile devices, software, etc.). Mobility, how-

ever, poses a challenge in associating customers with locations.

Customers often move around within the cellular networks,

but the customer tickets themselves do not contain enough

information to allow inference of which location the customer

is complaining about. To circumvent this difficulty, we utilize

another source of data collected within the cellular network

(the GPRS Tunneling Protocol Control (GTP-C) messages,

see Section V) to characterize the mobility of customers, and

devise an effective method to associate customer tickets with

locations where the reported problems may have happened.

Using the approach outlined above, we conduct a compre-

hensive study to analyze various customer-side factors, and

correlate them with customer call rates at various locations. We

build a statistical model to account for customer-side factors

such as user tenure and device types. We show that most calls

are due to customer-side factors and can be well captured by

the model. Furthermore, we apply the proposed model to the

6-month ticket trace and detect locations with higher customer

call rates that deviate from the model’s prediction. Through

detailed analysis of customer tickets as well as corroboration

using non-ticket customer feedback (details in Section VI),

we demonstrate that such location-specific deviations from the

model are indeed excellent indicators of potential network-side

issues.

The remainder of this paper is organized as follows: Sec-

tion II overviews the cellular network architecture and datasets

that we use in the study. In Section III we motivate and argue

for the semantics-free, statistical approach for characterizing

customer call rates, and discuss the overall methodology.

Section IV and Section V lay the foundations for the proposed

technique by studying the correlation of call rates with various

customer-side factors and characterizing customer mobility,

respectively. Network-side problem detection using our model

and its evaluation are presented in Section VI. Section VII

discusses related works, and Section VIII concludes the paper.

II. BACKGROUND

Cellular Network Overview. The cellular network under

study uses primarily UMTS (Universal Mobile Telecom-

munication System), a popular 3G mobile communication

technology supporting both voice and data services. Fig. 1

depicts the key components in a typical UMTS network. The



UMTS network has a hierarchical structure: where each Radio

Network Controller (RNC) controls multiple node-Bs, and one

Serving GPRS Support Node (SGSN) serves multiple RNCs

(see [1] for UMTS network details).

Fig. 1. UMTS network architecture.

Customer Tickets. When a customer calls the customer ser-

vice help line, the customer agent handling the call generates a

customer ticket to record the conversation with the customer. A

ticket contains the time for the call and the entire conversation

is recorded in a free-text format. In addition, each ticket is

annotated with a call reason and a resolution summary, both

of which are selected by the customer agent from a set of

predefined categories, indicating the main problem reported/or

the question asked by the customer and the resolution of

the tickets given by that agent, respectively. Customers may

call for a variety of reasons. A large majority of calls are

non-technical related, e.g., questions about billing, service

contracts, etc. Sometimes customers call when experiencing

certain technical problems, e.g., unable to connect to the

network, etc. These technical-related customer tickets are what

we are interested in studying and making sense of.

Datasets. Our study is based on the customer tickets received

and collected during a 6-month period. To assist our analysis,

other relevant information such as customer tenure (i.e., how

long a customer has been a subscriber), mobile device type,

and so forth are also used – we emphasize here that no

customer private information is used in our analysis and all

customer identities are anonymized before any analysis is con-

ducted. Similarly, to adhere to the confidentiality under which

we had access to the data, at places, we present normalized

views of our results while retaining the scientifically relevant

bits. Additional information sources such as GPRS Tunneling

Protocol Control (GTP-C) messages at all Gateway GPRS

Support Nodes (GGSNs) are used either for our analysis or

for corroborating results of our network problem detection

approach (see Sections V and VI for details).

III. CHARACTERIZING CUSTOM TICKETS: CALL RATES

AND OVERALL METHODOLOGY

A. “Technical” Customer Tickets

Most “non-technical” tickets can be easily identified and

filtered, using customer agent classification (call reason and/or

resolution summary, e.g., billing, contract, usage, etc.) and/or

certain key words contained in the free-text, e.g., plan, pay-

ment, bill and account. For the remaining tickets, further

separation can be difficult and unreliable.

Instead of relying on the customer agent classification

or keywords in the free-text in the tickets and examining

individual tickets, in this paper, we take a statistics-based,

“semantics-free” approach: we study and characterize sta-

tistical properties of tickets across different factors (e.g.,

geographical locations, device types, etc.), and build statistical

models to help understand the correlations between customer

call rates and these factors – in particular, we use them to

help identify potential network-side problems. We use the

“semantics” of tickets (call reasons, resolutions or keywords

in the free-texts) only for the purpose of corroboration and

validation of our results. For the remainder of the paper,

we consider the collection of tickets after only removing

those “non-technical” tickets that can be easily and reliably

identified. For convenience, we refer to this collection as

“technical” tickets.

B. Call Rates and Their Distributions across Geolocations

To address the bias caused by repeat tickets from customers,

our analysis is based on the time series of the customer

call rate. The customer call rate is defined as the proportion

of customers who have issued at least one ticket within an

observation time period T , where we set T = 1 week to

address both the daily and weekly effect.

To understand the increase in call rate at certain weeks,

we investigate on call rates at different states in the US

(Fig. 2, Section V explains the details of mapping customers

to different locations using GTP-C messages), where the x-
axis shows the time (weeks) and the y-axis represents the ID
of the 50 states. Each point (x, y) stands for the x-week’s call
rate at state y. A darker color corresponds to a higher call rate.

For ease of visualization, we number the states on the y-axis
in decreasing order of the average state-level call rate.

The call rates show significant variation across states (see

Fig. 2). We observe an universal increase in call rate across

all states from the 23rd week to the 25th week. Investigation

into the tickets reveals that a new version of a very popular

smartphone device was released at the beginning of the 23rd

week and the increase of the call rate was mainly caused by

customers who received this device. In addition, some states

show high call rate at certain weeks (dark points on the plot)

and a few states (the top rows on the graph) exhibit persistently

higher call rates than the rest of states. No customer side

factors could be identified as responsible for such regional

difference, which implies it might be the artifact of either

network outage or potential chronic problems at these areas.

C. Basic Model and Overall Methodology

Our key idea is to model the customer call rate purely using

customer related factors. If the model does not fit the observed

call rate well, the difference between the model and the real

call rate can be explained by potential network problems.

As we have observed in Fig. 2[c], network problems cause

unexpected fluctuations in the call rate as a function of the



Fig. 2. Call rate breaks down by states.
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Fig. 3. User tenure vs. call rate. Fig. 4. Device vs. call rate.

location, not the time. Therefore, our model will fix week t
and examine the call rate given the location for that week.

Let Ut denote the set of customers in a cellular network

at the beginning of week t and L denote the locations across

the network. We note that a location l ∈ L may refer to a

real-world geographic location, such as a city or a state, but it

may also correspond to a network element, such as a node-B

or an RNC. The observed customer call rate P (c|l) at l can
be expressed as follows:

P (c|l) =
1

P (l)

∑

u∈Ut

P (c|u, l)P (l|u)P (u), (1)

where P (c|u, l) is in fact an indicator function with

P (c|u, l) = 1 if u has issued ticket regarding l and P (c|u, l) =
0 otherwise. P (l|u) stands for the proportion of time that u
spends at l. P (l) stands for the expected number of customers
that appear at l and P (u) = 1/|Ut| is a prior identical for all
users. We note that in Eq. 1, the customer related factors and

the network related problems are both captured by P (c|u, l).
Our second model assumes that only customer related

factors determine the customer call rate: P (c|u, l) = P (ĉ|u).
While this location-independence assumption is obviously not

true, our goal is precisely to pinpoint the situations where it

is broken. P (ĉ|u) can be further approximated as P (ĉ|ft(u))
where ft(u) are the customer related factors associated with

u at week t (user tenure, device, etc.). Replacing P (c|u, l) in
Eq. 1 gives us the expected call rate at l given the location-

independence assumption.

P (ĉ|l) =
1

P (l)

∑

u

P (ĉ|ft(u))P (l|u)P (u), (2)

Comparing these two models helps us understand how

various customer related factors affect the call rate. If |P (ĉ|l)−
P (c|l)| < δ, where δ is a small constant, the network related

problems contribute little to the customer call rate. On the

other hand, we identify a network related problem (e.g., an

outage problem) if P (c|l) is significantly larger than P (ĉ|l),
and the problem is likely to be chronic if such difference is

persistent over a long time period.

In Section IV, we present a comprehensive study of dom-

inant customer related factors and interpret how they affect

the call rate. This study provides us a way to estimate

P (ĉ|u) ≈ P (ĉ|ft(u)) using these dominant factors. Due to the
fact that customers are moving around in the cellular network,

we present a method for estimating P (l|u) in Section V by

tracking GTP-C messages. Combining these results, we use

the model comparison to detect locations with chronic network

problems and present our results in Section VI.

IV. CORRELATING CALL RATE WITH CUSTOMER FACTORS

Among all the available customer related factors in the

customer profile dataset, we have identified two factors that

have significant correlation with the call rate: user tenure and

device. In this section, we interpret these factors and show

how they impact the customer call rate.

A. Impact of User Tenure on Call Rate

User tenure is defined as the number of weeks a customer

stays in the service since the registration time. Taking one

particular week T , we show the user tenure vs. the call rate

in Fig. 3, where the x-axis represents the specific user tenure
and the y-axis stands for the call rate of all the customers with
a tenure x weeks at the beginning of the week T .
We observe in Fig. 3 that a customer tends to have a much

higher call rate when she initially enrolls in the service. We

summarize the top resolutions that are associated with these

new customers (with a tenure of no more than 4 weeks). Most

of these resolutions are unique to new customers, such as

porting from other ISPs and check service availability, etc.

New customers also tend to ask questions regarding system

configuration or to request for equipment exchange, etc1.

B. Impact of Customer Device on Call Rate

The second customer related factor that we analyze is

the customer device. For our study, we choose the top 15

devices from 3 different categories: 6 smartphones (denoted as

“SP-X”, all with mandatory data plans), 5 traditional phones

(denoted as “TP-X”, all with optional data plans) and 4 laptop

card devices (denoted as “LC-X”, all with mandatory data

plans). In Fig. 4, we illustrate the call rates corresponding to

different devices over one-week period across all customers.

The dotted lines show the average call rates for the three

categories of devices, respectively.

We observe that the call rate varies across different cate-

gories of devices and also within each category. For example,

smartphones and traditional phones show high average call

rates, which are 2 times larger than that of the laptop cards.

Among all laptop cards, LC-2 has a much smaller call rate

than other laptop cards (e.g., 1/4 of the call rate of LC-1).

From other information sources, we know that LC-2 and

LC-3 are essentially the same device with different names.

LC-2 is mainly provided for business customers and LC-3

is used by non-business customers. The difference in the user

population results in striking differences in the dominant ticket

resolutions. The LC-3 device had a software problem and

1We have also extracted annual and biennial patterns from Fig. 3, see [1].



many customers called for technical support on installation

and configuration of the connection manager software. Though

we expect that LC-2 should also exhibit a similar problem,

the software related resolutions show no dominance for LC-2.

This is because most companies maintain their own technical

support team which resolves such software issue for their

employees. Therefore, the dominant resolutions associated

with LC-2 are service cancellation and SIM card change due to

employment changes, since a customer often has to terminate

the contract if she switches jobs.

C. Modeling Call Rate Given Customer Related Factors

We have shown how customer related factors contribute to

the variation of the call rate. From the history of tickets, we can

directly model P (ĉ|ft(u)) using a multinomial distribution, by
counting the call rate given all combinations of the values of

these customer related factors. However, the model constructed

in this way contains too many parameters and hence does not

generalize. Instead, in this paper, we construct a much simpler

discriminative linear model P (ĉ|ft(u)) = g(ft(u)), where g
is a linear function which combines various customer related

factors with different weights. We use the Adaboost algorithm

combined with logistic calibration [1] to automatically learn

the function g from tickets, which has the advantage of

automatically determining the best partition of continuous

variables, e.g., user tenure.

V. USER MOBILITY AND CUSTOMER TICKETS

In order to learn p(l|u), we need to study the user mobility
patterns in the network. The analysis in this section serves the

purpose of mapping customers to locations where the reported

problems are likely to have occurred.

A. Mapping Customers to Locations using GTP-C Messages

When a customer wants to access the cellular network data

service, a GTP Create message is sent to the GGSN (recall

Fig. 1) to establish a GTP tunnel for the current GTP session,

which contains the Location Area Code (LAC) and Cell ID

(CID) of the node-B that is currently serving the customer.

A GTP Update message will be sent to the GGSN to update

the latest LAC and CID when the customer travels beyond

a certain distance and a SGSN handover happens. When

the customer finishes using the data service, a GTP Delete

message is sent to the GGSN to remove the GTP tunnel and

hence terminate the GTP session. By tracking the GTP-C

messages, we are able to associate customers with locations.

B. Mapping Tickets to Locations

We manually investigate hundreds of tickets regarding con-

nectivity problems, and find that the tickets are likely mapped

to locations where customers spend more time (e.g., home

location or work place), which we refer to as primary locations

hereafter. Our technique for extracting primary locations for

each customer is as follows.

Let pi := P (li|u) be the fraction of time that a customer u
spends at location i, 1 ≤ i ≤ n, where n is the total number

of locations visited by the customer during the month, and

hence
∑n

i=1
pi = 1. We compute the relative uncertainty (RU)

as RU := −
∑n

i=1
pi log(pi)/ log(n). A RU value above θ

(θ = 0.8 in the experiment) indicates that the customer spends

roughly equal amount of time at all locations and hence no

location is primary. Otherwise, we extract the location with the

longest time usage as a primary location and compute the RU

value for the remaining locations. The process iterates until

all primary locations are extracted.

Since customers mainly stay at the primary locations and

most tickets are regarding these primary locations, we only

consider primary locations while mapping the tickets to loca-

tions. In particular, let 1 ≤ i ≤ K be the K primary locations

associated with a customer. When a ticket is received from the

customer, we consider the chance that the ticket is related to

location j (pj) equals pj/
∑K

i=1
pi if j is among one of the K

primary locations, and pj equals 0 for a non-primary location.

VI. DETECTING CHRONIC NETWORK PROBLEMS

A. Experimental Results

We compute the observed call rate and the expected call rate

for various network locations at different granularities, using

Eq. 1 and Eq. 2 (Sec. III). Fig. 5 shows two example node-

Bs, where the first node-B (top plot) has a higher observed

call rate over time, indicating a potential chronic problem at

that node-B. In comparison, the bottom plot in Fig. 5 shows

a node-B in a relatively good condition, where the observed

call rate is always below the expected call rate.

We define a chronic problem score as median(P (c|l) −
P (ĉ|l)) as an indicator for identifying locations with a persis-
tently higher observed call rate (than the expected call rate), or,

equivalently, locations with potential chronic problems. This

score provides us a means of ranking all network locations

based on the likelihood of having chronic problems. To

ensure that each location we examine has a sufficiently large

population, we only focus on the node-Bs and RNCs which

are among the primary locations for at least 100 customers.

B. Evaluations using Customer Side Datasets

Evaluation using ticket call reasons. Our first evaluation is

based on the dominant ticket call reasons associated with the

locations whose chronic problem scores are greater than 0.

We use the normalized Pearson’s residuals for ranking the call

reasons with the highest correlations with the call rate.

In Table I, we display the composition of the top 4 call

reasons for the locations with and without potential chronic

network problems. We observe that, at these detected loca-

tions, there are far more dominant call reasons related to

network connectivity issues (20%), when compared to 5% for

the other locations. In addition, over 47% of the call reasons

are related to equipment problems at these detected locations,

compared to 10% for the rest of the locations. As we have

pointed out earlier in the paper, it is sometimes difficult for the

customer agents to differentiate equipment related problems

from network related problems. We analyzed 100 randomly

selected tickets related to equipment problems and around 30%
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Fig. 5. Node-Bs of good/bad condition.

TABLE I
DOMINANT CALL REASONS ASSOCIATED WITH LOCATIONS OF

POTENTIAL CHRONIC NETWORK PROBLEMS.

Dominant call reasons Percentage of calls

Network problem? Yes No

connectivity 20% 5%
equipment 47% 10%
feature 17% 3%
other 16% 82% Fig. 6. Evaluation using App rate.

of them were due to problems of sending/receiving data/SMS

or frequently dropped calls. We suspect that such equipment

problems may also be caused by chronic network problems at

these detected locations.

Evaluation using App messages. Our second evaluation is

based on the messages from a customer side application

(referred to as App) on one of the most popular smartphone

devices (referred to as SP-M). App serves as an independent

way other than customer tickets for customers to report

problems. When a customer encounters a certain problem, she

can select from one of the predefined problem categories and

send a message to the ISP to report the problem. The message

contains the serving LAC and CID when the message is sent,

which enables an accurate mapping between a problem and the

related network locations. We collect all the App messages

received during the same 6 month period as the customer

ticket dataset. We find that only 20% of the App messages

are regarding primary locations. For this reason, to ensure a

fair comparison between the call rate and the App message

rate at a particular location, we only select App messages

whose associated network location are among the senders’

primary locations. In addition, since it is difficult to estimate

the customers who have installed App, we use the entire SP-M

customer population as the base of App users, effectively mak-

ing the assumption that App users are uniformly distributed

among all SP-M customers across different locations.

We can now calculate the App call rate (specifically, a

call rate that is proportional to the true App call rate) as

the percentage of SP-M customers who have sent at least

one App message given an observation time period T . A
location is considered to have a potential network problem if

the corresponding App call rate is higher than other locations.

Again, we only look at locations which are among the primary

locations for at least 100 SP-M customers. Fig. 6 demonstrates

the correlation between the App call rate and the chronic

problem scores for RNCs. We divide locations according to

the scores into equal-sized bins. For RNCs inside each bin,

we report the median of their App call rates.

We observe a strong correlation between the App call rate

and the chronic problem score. For RNCs with scores greater

than 0, we find the corresponding App call rate is around 3

times the App call rate for the rest of the RNCs. In addition,

the median App call rate drops as the score becomes lower.

VII. RELATED WORK

There is a rich literature in detecting and troubleshooting

network problems in large networks. A majority of work

focus on detecting, locating or trouble-shooting wired/wireless

IP data network problems using passive or active network

measurement data, e.g., via expert rule-based inference [2] or

machine-learning techniques [3], [4], or via inference of de-

pendency among network elements, entities and events [5], [6],

or correlating bursts of customer tickets with other network

events [7]. Our work differs in that we directly analyze and

characterize customer tickets to understand the major factors

affecting customer call rates, and develop novel statistical

models and approaches to explicitly account for and sep-

arate customer-side and network-wide factors. Furthermore,

we demonstrate that location-specific deviations from model

prediction can help point to and locate network problems.

VIII. CONCLUSION

In this paper, we presented comprehensive analyses of

customer tickets received in a large cellular network. We

showed that the probability of a caller reporting a particular

problem is affected by various customer-side factors such as

user tenure and device type and network side problems. By

explicitly addressing these customer-side factors and taking

into account user mobility in the network, we devised a

novel approach to use customer tickets as a front-line to

pinpoint locations with potential chronic network problems.

Evaluation using independent data sources corroborate that

these identified locations are associated with certain network

related problems, which inevitably lead to a persistent high

call rate at these areas.
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