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Abstract Digital knowledge maps are rich sources of information to track students’ 
learning. However, making sense of concept maps has been found challenging. 
Using multiple quantitative and qualitative methods in combination allows triangu-
lating of changes in students’ understanding. This chapter introduces a novel form 
of concept map, called knowledge integration map (KIM), and uses KIMs as exam-
ples for an overview of concept map analysis methods. KIMs are a form of digital 
knowledge maps. KIMs have been implemented in high school science classrooms 
to facilitate and assess complex science topics, such as evolution. KIM analysis 
aims to triangulate changes in learners’ conceptual understanding through a multi-
level analysis strategy, combining quantitative and qualitative methodologies. 
Quantitative analysis included overall, selected, and weighted propositional analy-
sis using a knowledge integration rubric and network analysis describing changes in 
network density and prominence of selected concepts. Research suggests that scor-
ing only selected propositions can be more sensitive to measuring conceptual 
change because it focuses on key concepts of the map. Qualitative analysis of KIMs 
included topographical analysis methods to describe the overall geometric structure 
of the map and qualitative analysis of link types. This chapter suggests that a com-
bination of quantitative and qualitative analysis methods can capture different 
aspects of KIMs and can provide a rich description of changes in students’ under-
standing of complex topics.
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1  Introduction

Concept maps are rich sources of information about students’ understanding and 
can be used as complementary assessment items in the pretest and posttest (Rice, 
Ryan, & Samson, 1998). Concept maps can serve as sources for several different 
forms of information: presence or absence of connections, quality of connections, 
different types of link labels, different types of networks, and spatial placement of 
concepts. Many existing analysis methods do not capture the manifold alternative 
concepts students represent in a concept map and tend to lose information by repre-
senting concept map scores as a single number, for example by scoring components 
of the concept map qualitatively by counting the number of concepts, links, hierar-
chy levels, and examples (Novak & Gowin, 1984); by qualitatively evaluating prop-
ositions (McClure, Sonak, & Suen, 1999); or by comparing the students’ concept 
map with a benchmark map (for an overview of concept mapping analysis methods 
see Cathcart, Stieff, Marbach-Ad, Smith, & Frauwirth, 2010). However, no single 
scoring method can accurately describe all different forms of information in concept 
maps. This chapter introduces a novel form of concept map, called knowledge inte-
gration map (KIM), to illustrate the need for a more comprehensive multi-level 
analysis method for concept maps. KIM analysis combines propositional, network, 
and topological analysis methods. Using quantitative and qualitative analysis 
methods in combination can provide complementary insights of connections 
between concepts and allows tracking changes in the quality of concept maps.

1.1  Concept Maps and Knowledge Integration

Concept map activities can support eliciting existing concepts and connections 
through the process of visualizing them as node-link diagrams. The explicitness and 
compactness of concept maps can help keeping a big picture overview (Kommers & 
Lanzing, 1997). The “gestalt effect” of concept maps allows viewing many concepts 
at once, increasing the probability of identifying gaps and making new connections. 
Generating  concept maps  requires  learners  to  represent  concepts  in  a  new  form 
which can pose desirable difficulties (Bjork & Linn, 2006; Linn, Chang, Chiu, 
Zhang, & McElhaney, 2010)—a condition that introduces difficulties for the learner 
which slow down the rate of the learning and can enhance long-term learning out-
comes, retention, and transfer. The process of translating concepts from texts and 
images to a node-link format may foster deeper reflection about concepts and their 
connections (Weinstein & Mayer, 1983) and prevent rote memorization (Scaife & 
Rogers, 1996). Throughout a curriculum, learners can add new concepts to their 
existing concept map. Unlike textbooks, concept maps have no fixed order and may 
thereby encourage knowledge integration strategies. For example, a student may 
decide to add the most important or most central concept first. Developing criteria 
to select concepts requires deeper processing than the student might normally 
 exercise when reading text.
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Students need to develop meta-cognitive strategies to distinguish alternative con-
cepts, for example through predicting outcomes and explanation generation 
(Bransford, Brown, & Crocking, 2000a). The scaffolded process of adding and 
revising concept maps requires students to decide which concepts and connections 
to include. The decision-making process may foster the generation of criteria to 
distinguish pivotal concepts. Clustering-related concepts in spatial proximity can 
support learners’ reflections on shared properties of and relations between concepts. 
Cross-links between related concepts can be seen as indication for knowledge inte-
gration across different contexts. Concept maps may support making sense of con-
cepts by eliciting semantic relationships between concepts (see Table 2.1 above).

Knowledge integration suggests that a successful curriculum starts by eliciting 
concepts about scientific phenomena. Learners need tools to elicit their concepts 
and distinguish alternative concepts. Concepts (or ideas) cannot be understood in 
isolation. Concepts need to be connected to existing concepts, and their meaning 
can only be understood within such an integrated framework (Bruner, 1960). 
Learning a concept means seeing it in relation to other concepts, distinguishing it 
from other concepts, and being able to apply it in specific contexts. To learn a sub-
ject is to have actively integrated key concepts and the relations between them.

Knowledge integration activities are designed to help learners construct more 
coherent understanding by developing criteria for the concepts that they encounter. 
Research suggests that concept mapping is especially efficient, in comparison to 
other interventions such as outlining or defining concepts, for the learning of rela-
tions among concepts (Canas, 2003). Concept maps as a knowledge integration 
tool allow eliciting and critiquing concepts and relations between concepts. The 
visual format of concept maps can foster critical distinctions between alternative 
concepts and relations, either individually or through collaboration in communities 
of learners.

Table 2.1 Concept mapping for knowledge integration

Knowledge integration process KIM activity

Eliciting existing ideas KIMs can be used as a pretest activity to elicit existing 
concepts

Adding new ideas and connecting  
to existing ideas in repertoire

New concepts can be added to existing propositions in 
the KIM. If several alternative relations between 
two concepts are possible, students have to decide 
which one to use in the map. If applicable, students 
decide which concepts to add to the map

Distinguishing/critiquing ideas After adding new concepts, concepts can be rearranged 
into new groups, and the KIM network structure 
might need revision to reflect the new concepts

Sorting out ideas/refining Different sources of evidence can be used as reference 
to sort out concepts and further refine the KIM

Applying ideas KIMs can be used as resources to generate  
explanations of scientific phenomena

2 Making Sense of Knowledge Integration Maps
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Cognitive science (Bransford et al., 2000a) research found that new concepts 
need to be connected to existing concepts to be stored in long-term memory. 
Eliciting existing concepts brings them from long-term memory to working mem-
ory. Learners make sense of new concepts by integrating them into their existing 
repertoire of concepts.

Knowledge integration suggests that concepts should be presented in multiple 
contexts and support generation of connecting concepts across contexts. Multiple 
representations of concepts (for example dynamic visualizations, animations, pic-
tures, diagrams) can facilitate learning and performance supporting different 
accounts of scientific phenomena (Ainsworth, 2006; Pallant & Tinker, 2004), for 
example by complementing each other or constraining interpretations (Ainsworth, 
1999). However, having learners make connections between different representa-
tions can be challenging as they are connected through multiple relations that are 
often not intuitively obvious to the learner (Duncan & Reiser, 2005).

2  Knowledge Integration Map

Knowledge needs to be structured to be meaningful (Bransford, Brown, & Crocking, 
2000b). David Ausubel (Ausubel, 1963;  Ausubel,  Novak, & Hanesian,  1978) 
discussed the importance of the hierarchical arrangement of information within 
organizational  tools. Evolution  concepts,  however,  are not necessarily hierarchi-
cally organized but consist of concepts from different fields. Research indicates 
that re- representing text in a concept mapping format can be done in a fairly auto-
mated way without requiring construction of new or revision of existing connec-
tions between concepts (Holley, Dansereau, & Harold, 1984; Karpicke & Blunt, 
2011). Greater benefit may arise  if  the concept map activity constrains concepts 
and relations to a novel format, for example by providing biology-specific scaffold-
ing to distinguish “genotype concepts” and “phenotype concepts.” The distinction 
between phenotype and genotype is fundamental to the understanding of heredity 
and development of organisms (Mayr, 1988). Bruner stated that “virtually all cog-
nitive activity involves and is dependent on the process of categorizing” (Bruner, 
Goodnow, & Austin, 1986), p. 246). Providing such scaffolding for sorting out and 
grouping related concepts into categories can support knowledge integration of 
evolution concepts.

A novel form of concept map, called KIM, aims to elicit and scaffold cross-field 
connections through the spatial arrangement of concepts in specified levels (see 
Table 2.2). Markham (Markham, Mintzes, & Jones, 1993) found that the major dif-
ferences in content knowledge of novices and experts are a lack of integration, lack 
of cross-links between concepts, and a limited number of hierarchical levels. 
Integrating complex concepts in fields such as evolution requires connecting con-
cepts from different fields (for example genetics, cell biology, and evolution).

Concept mapping tasks are found in many different forms and provide different 
amounts of constraints. The task ranges from low directed maps where students can 
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freely choose their concepts and labels to highly directed tasks where students fill in 
concepts out of a given list into blanks in a given skeletal network structure (Novak 
& Canas, 2006). Highly constrained maps can be beneficial for low-performance 
and younger students, although they provide less insight into students’ partial 
knowledge. Free drawing concept maps provide the most insight but do not allow 
for standardized comparisons between students. Constraining students by providing 
them with a set of concepts or link labels allows for standardized or even automated 
comparison across students on the exact same content but appears to be more chal-
lenging for many students than working from memory. They must discipline them-
selves to use the given concepts rather than to freely follow their thought patterns 
(Fisher, Wandersee, & Moody, 2000). KIMs aim for a balanced design by providing 
students with a small set of concepts but allowing them to generate their own con-
nections and labels. This design allows comparing maps of different students with 
each other. KIM worksheets consist of five elements: (1) focus question, (2) 
evolution- specific levels (genotype and phenotype), (3) instructions, (4) given list of 
concepts, and (5) starter map (see Fig. 2.1).
KIM  tasks  are  created  through  the  process:  (1)  Generate  focus  question;  (2) 

based on domain-experts and textbooks, identify key concepts for the map that 
allow answering the focus question adequately; (3) structure concept map into field- 
specific levels, for example in biology: genotype/phenotype or individual/popula-
tion;  in  chemistry: micro/macro/symbolic;  (4)  create  a  starter map;  (5)  create  a 
concept map training activity. KIMs model what experts consider important con-
cepts by providing a list of expert-selected concepts. Kinchin (2000a) noted that the 
number of given concepts should be kept small (around 10–20) to reduce complex-
ity and time consumption.

Based on an evaluation of major biology textbooks, state standards, and inter-
views with experts (for a discussion on expertise, see for example Chi, Glaser, & 
Rees 1982;  Schvaneveldt  et  al.  1985;  Scardamalia  &  Bereiter,  1991; Hoffman, 
1998), 11 concepts have been selected for the forced-choice design of the KIM.  

Fig. 2.1 Knowledge integration map worksheet
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The number of concepts was kept low in order to keep to size and complexity of the 
KIM reasonable for the given time constraints for its creation. A total of 55 connec-
tions are possible between the given 11 concepts, but not all propositions are of 
equal importance. (Considering each direction individually and allowing for circu-
lar links to same concept, 11 × 11 = 121 connections are possible.) Students need to 
decide which connections are essential to represent their understanding. Additionally, 
each connection can go in either direction and be described by many different labels. 
Students need to match the directionality of the connection with the label and con-
struct a label that accurately describes the nature of relations. As the map constrains 
students to only one connection for each relation, the students need to develop 
decision- making criteria. Students are free to generate their own links and labels. To 
model expert understanding, the given list of concepts includes only expert concepts 
but no alternative concepts such as “need,” “intentionality,” or “want.” Alternative 
concepts can be expressed through concept placement and link labels.

2.1  Forms of KIM Analysis

Literature indicates that concept map analysis is no trivial task and can use a wide 
variety of scoring methods (see the following discussion of quantitative and qualita-
tive analysis methods). Concept maps can be analyzed either qualitatively or quan-
titatively. Figure 2.2 provides an overview of different KIM analysis methods.

Fig. 2.2 Overview of KIM analysis methods
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2.2  Quantitative Concept Map Analysis

The inclusion of concept maps as large-scale assessment tools, for example those 
used in the 2009 NAEP exam in science (Ruiz-Primo, Iverson & Yin, 2009), requires 
economical as well as reliable and valid scoring methods. Several studies reported the 
validity and reliability of quantitatively evaluating concept maps as assessment tools 
(for example Ifenthaler, 2010; Markham, Mintzes, & Jones, 1994; Ruiz-Primo, 2000; 
Ruiz-Primo et al., 2009; Ruiz-Primo, Schultz, Li, & Shavelson, 2001; Ruiz- Primo, 
Schultz,  &  Shavelson,  1997;  Ruiz-Primo  &  Shavelson,  1996;  Stoddart,  Abrams, 
Gasper, & Canaday, 2000; Yin, Vanides, Ruiz-Primo, Ayala, & Shavelson, 2005).

Concept maps contain several elements that can be quantitatively evaluated: con-
cepts, hierarchy levels, propositions, and the overall network structure. Links and 
concepts can be easily counted, but their amount provides little insight into a stu-
dent’s understanding. A higher number of links does not necessarily mean that the 
student understands the topic better as many links might be invalid or trivial (Austin 
& Shore, 1995; Herl, 1999). Evaluating  the number of hierarchy  levels has been 
suggested by Novak (Novak & Gowin, 1984). The existence of hierarchies is linked 
to a higher level of expertise, but hierarchy levels can be difficult to differentiate and 
some concept maps can be non-hierarchical but still valid maps. Propositions, the 
composite of two concepts, a link label, and an arrow can be evaluated in order to 
learn about students’ understanding. It can be decided to evaluate all propositions 
equally, to weight certain propositions more than others (Rye & Rubba, 2002), or to 
analyze only certain indicator propositions (Ruiz-Primo et al., 2009). Yin  et  al. 
(2005) showed that scoring each individual proposition on a four-point individual 
proposition scale, summed up to a “total accuracy score,” provided the best validity: 
0 for scientifically wrong or irrelevant propositions, 1 for partially incorrect propo-
sitions, 2 for correct but scientifically “thin” propositions, and 3 for scientifically 
correct and strong propositions. The “total accuracy score” allows comparing the 
overall quality of students’ concept maps. The disadvantage of this method is its 
time consumption, and equal evaluation of links that show deeper understanding 
and trivial  links. Yin et al.  (2005) compared the total accuracy score to a second 
concept map scoring method, the convergence score. Propositions of the students’ 
concept map are compared to an expert-generated benchmark map. The conver-
gence score is the proportion of accurate propositions out of all possible proposi-
tions in the benchmark map. Concept maps can contain large number of rather 
trivial connections. An alternative to scoring all links is to focus only on a small 
number of selected links (Yin et al., 2005). Ruiz-Primo et al. (2009) suggest that 
scoring only essential links is more sensitive to measuring change because it focuses 
only on the key concepts of the concept map.

However, analyzing only isolated propositions does not account for the network 
characteristics of a concept map. Quantitative propositional alone could lead to the 
same score for a list of isolated propositions and a network of the same propositions. 
Network  analysis  can  be  used  to  describe  the  connectedness  of  a KIM’s  overall 
density and prominence of selected indicator concepts.
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2.2.1  Benchmark KIM

To understand and use concepts, concepts need to be connected to existing con-
cepts. The degree of interconnections between concepts is an essential property of 
knowledge. One aspect of competence in a field is well-integrated and structured 
knowledge (Bransford et al., 2000a; Glaser, Chi, & Farr, 1985; Novak & Gowin, 
1984). Cognitive psychologists postulate that “the essence of knowledge is struc-
ture” (Anderson, 1984, p. 5). An expert-generated KIM can be used to identify the 
overall structure, central concepts, and essential connections (see Fig. 2.3). However, 
a benchmark map should not be interpreted and used as the single correct solution 
but as an expert-generated suggestion that allows identifying central concepts and 
connections for a detailed analysis. A benchmark KIM can be used to standardize 
variables to compare different student-generated KIMs against one another. The 
benchmark KIM indicates how many and which connections experts generate. To 
calculate standardized KIM variables, student-generated KIM variables are divided 
by the benchmark KIM variables.

2.2.2  Indicator Concepts

Ruiz-Primo suggested that knowledge within a content field is organized around 
central concepts, and to be knowledgeable in the field implies a highly integrated 
conceptual structure (Ruiz-Primo et al., 1997).  Graphic  organizers  can  enhance 
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student learning by representing complex concepts in an organized structure reflecting 
the importance of each concept (Plotnick, 1997; Romance & Vitale, 1999). To 
reverse this finding, learners’ understanding of the importance of concepts can be 
identified by analyzing how connected selected concepts are in a KIM. For the KIM 
network analysis, one concept from each level (genotype/phenotype) has been 
selected as the “indicator concept.” Indicator concept analysis describes the number 
and kind of connections to other concepts. The criteria for selecting indicator con-
cepts were (1) centrality in the expert benchmark KIM (see Fig. 2.3) and (2) impor-
tance according to evolutionary theory literature:

•  For the genotype level, “mutation” has been identified as the indicator concept.
•  For the phenotype level, “natural selection” has been identified as the indicator 

concept.

2.2.3  Essential Connections

Ruiz-Primo et al. (2009) found that a KIM analysis that focuses on preselected 
“essential links” instead of all links can reveal a greater variety of maps while 
being more time efficient. KIM analysis used ten essential connections (see 
Fig. 2.3). The criteria for selecting the essential connections were (1) connections 
between the indicator concepts and the newly introduced concept “gene pool” and 
“genetic drift” and (2) cross-connections between genotype and phenotype levels. 
An increased number of cross-connections can be interpreted as a more connected 
understanding of genotype and phenotype concepts.

KIMs differ from classical concept maps in several characteristics (see Table 2.3).

2.2.4  KI-Rubric for Concept Maps

To quantitatively describe changes in KIMs from pretest to posttest, primary and 
secondary analysis variables were used. Primary variables are based directly on the 
KIMs, while secondary variables are calculated from primary variables. Primary 
propositional scoring included (1) scoring of all propositions and (2) scoring of only 
essential propositions.

[AU5]

Table 2.3 Comparison between classical concept maps and KIMs

Classical concept map Knowledge integration map

No weighted concepts Weighted concepts (indicator concepts)
No weighted relations Weighted relations (essential connections)
Hierarchical arrangement of concepts Non-hierarchical placement of concepts  

in domain-specific levels
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 1.  Score all propositions
KIM propositions consist of two concepts and their relation (indicated by a 
labeled line with an arrowhead). Propositions are the elementary units of KIMs. 
Individual propositions were analyzed using a five-level knowledge integration 
rubric (see Table 2.4). All propositions were weighted equally.

 2.  Score only essential propositions
Using the same five-level knowledge integration rubric (see Table 2.4), only 
essential propositions were scored (see Fig. 2.3).

2.2.5  Concept Placement Analysis

KIMs ask students to sort out concepts into domain-specific levels (for example 
genotype and phenotype). Concept placement is an additional level of information 
that indicates how students categorize concepts. Connecting concepts within a level 
indicates students’ understanding of the relations between closely related concepts. 
Connecting concepts across levels (cross-links) indicates students’ understanding 
across ontologies and levels of space and time. Cross-links are of particular interest 
as they can indicate “creative leaps on the part of the knowledge producer” (Novak 
& Canas, 2006) and reasoning across ontologically different levels (Duncan & 
Reiser, 2007). Cross-links are relations between concepts in different levels. Cross- 
connections are of particular interest as they indicate if students see connections 
between genotype- and phenotype-level concepts. As concepts might be wrongly 
placed by students, an observed cross-connection might actually be a connection 

Table 2.4 KIM knowledge integration rubric

KI score Link label quality Link arrow Sample propositions

0 None (no connection) None (no connection) None
1 Wrong label Wrong arrow direction Genetic variability includes mutation
2 No label Only line Mutation -- genetic variability

Correct label Wrong arrow direction Genetic variability –contributes  
to > mutation

Incorrect label Correct arrow direction Mutation – includes > genetic 
variability

3 No label Correct arrow direction Mutation --> Genetic Variability
4 Partially correct label Correct arrow direction Mutation – increases -> Genetic 

Variability
5 Fully correct label Correct arrow direction Mutation – causes random changes 

in the genetic material which  
in turn increases -> Genetic 
Variability
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between two concepts of the same level (“uncorrected cross-link”). To account for 
such cases, a “corrected cross-link” variable indicates intra-domain connections 
even if the concepts were wrongly placed.

2.2.6  Primary Analysis Variables

Two different sets of primary variables were created: non-weighted number of links 
(see Table 2.4) and links weighted by their respective knowledge integration (KI) 
scores (see Table 2.5).

 1.   Primary variables: Number of links (see Table 2.5).
As propositions may differ not only in quantity but also quality, propositions 
were weighted by multiplying them with their respective KI scores (see 
Table 2.4).

 2. Primary variables: Knowledge integration scores (see Table 2.6).

2.2.7 KIM Secondary Analysis Variables

Another way to describe quantitative changes in KIMs is density variables and 
ratios (calculated from primary analysis variables). Ratios and densities can be 
relative or standardized (see Table 2.7).

2.3  KIM Network Analysis

Research suggests that concept maps can assess different forms of knowledge than 
conventional assessment forms (Ruiz-Primo, 2000;  Shavelson,  Ruiz-Primo,  & 

Table 2.5  KIM primary variables: Number of links

Variable name Description

Total number of links Number of links in the KIM
Total number of essential 

links
Number of essential links in the KIM

Total number of uncor-
rected cross-links

Uncorrected cross-links are connections that cross the line 
between the genotype and phenotype level. Because of falsely 
placed concepts, the connection might not be a true cross-
connection between a genotype- and phenotype-level concept. 
However, the uncorrected cross-link can be seen as an indicator 
for students’ motivation to connect concepts across levels

Total number  
of corrected  
cross-links

Corrected cross-links count connections between genotype- and 
phenotype- level concepts, even if the concepts were wrongly 
placed
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Wiley,  2005;  Yin  et  al.,  2005), for example knowledge structure and cross- 
connections. However, the commonly used quantitative propositional method of 
analysis does not capture changes in the overall network structure. Network analy-
sis uses the frequency of usage of essential concepts as indicators for a more inte-
grated understanding. The network analysis method is based on social network 
analysis (Wasserman & Faust, 1994). As students develop a more complex under-
standing, they might also identify certain concepts as more important and connect 
them more often. In the KIM example used in this chapter, the indicator concepts 
“mutation” (genotype level) and “natural selection” have been selected (see 
Fig. 2.3). Two measurements were used to capture changes in connection frequen-
cies to the indicator concepts.

Table 2.6 KIM primary variables

Variable name Description

Total KI score of all links  
(total accuracy score)

Product of total number of links and their respective KI 
scores

KI score essential links Product of total number of essential links and their 
respective KI scores

KI score genotype level only Product of number of links in the genotype-level area  
(not counting cross-links) and their respective KI scores

KI score phenotype level only Product of number of links in the phenotype-level area  
(not counting cross-links) and their respective KI scores

KI score uncorrected 
cross-connections

Product of number of uncorrected cross-connections and 
their respective KI scores

KI score corrected 
cross-connections

Product of number of corrected cross-connections  
and their respective KI scores

Table 2.7 KIM secondary variables

Variable name Description

Relative density Total number of student-generated connections divided by total 
number of possible connections (=55)

Standardized density Total number of student-generated connections divided by total 
number of links in benchmark map (=23)

Relative essential  
link ratio

Total number of essential student-generated connections divided by 
total number of student-generated connections

Standardized essential  
link ratio

Total number of essential student-created connections divided by 
total number of essential connections in benchmark map (=10)

Corrected cross- 
connections ratio

Total number of student-generated cross-connections (corrected) 
divided by total number of cross-connections in benchmark map

KI score ratio Total KI score in student-generated map divided by total KI score 
in expert-generated benchmark map (=126)

Standardized KI  
score ratio

Total KI score of essential connections in student-generated map 
divided by total KI score of essential connections in benchmark 
map (=50)
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Network  analysis  method  can  identify  changes  in  “centrality”  (outgoing 
connections) and “prestige” (incoming connections) of expert-selected indicator 
concepts (mutation for genotype level; and natural selection for phenotype level).

•  Centrality: Outgoing connections from the indicator concept. This variable 
describes how many relations lead away from the indicator concept.

•  Prestige: Incoming connections to the indicator concept. This variable describes 
how many relations from other concepts lead to the indicator concept.

The two network variables centrality and prestige can be combined to a total 
“prominence score” (importance indicator) for each indicator concept. Multiplied 
with the KI score for each connection, a “weighted prominence score” for each of 
the two indicator concepts can be calculated.

An adjacency matrix was used to establish centrality and prestige of each indica-
tor concept. The adjacency matrix, sometimes also called a connection matrix, is a 
matrix with rows and columns labeled by graph vertices, with a 1 or a 0 in position 
according to whether two concepts are adjacent or not (Chartrand & Zhang, 2004; 
Pemmaraju & Skiena, 2003). The expert-generated KIM benchmark was used to 
determine benchmark values of centrality and prestige.

2.4  Qualitative KIM Analysis

Qualitative analysis methods complement quantitative descriptions of concept 
maps by tracking changes in the geometrical structure (topology) and types of 
propositions.

2.4.1 KIM Topological Analysis

Quantitative analysis methods focus only on isolated propositions and therefore 
cannot give an account of the network character of a whole map. Kinchin (2000b, 
2001) suggested a framework of four classes (simple, chain/linear, spoke/hub, net) 
to describe the major geometrical structure of a concept map. A “network” structure 
indicates a more integrated understanding than a “fragmented” concept map 
structure. However, a ranking of these categories is only possible at the extreme 
ends, with “fragmented” at one end and “networks” at the other. All other classes 
fall in between. Yin et al. (2005) extended Kinchin’s framework by two additional 
classes (tree and circle) (see Table 2.8):

(0) Simple: Mostly isolated propositions.
(1) Chain: Propositions are in a linear chain.
(2) Tree: Linear chain but with branches.
(3) Hub: Connections emanate from a center concept.
(4) Circular propositions: Propositions are daisy-chained forming a circle.
(5) Network: Complex set of interconnected propositions.
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Table 2.8  Concept map topological categories (adapted from Yin et al., 2005)

Simple/fragmented Chain/linear Tree

Hub/spoke Circular Network

The analysis methods developed for KIMs further extend Yin’s framework. 
As KIMs are divided into domain-specific levels (for example genotype and pheno-
type), the geometrical structure of each level needs to be described (see Table 2.9). 
Coding includes each possible combination of geometrical structures in the two 
levels. Changes in the topology of KIMs can indicate changes in students’ knowl-
edge integration.

2.4.2 Qualitative Proposition-Type Analysis

Learning  about  relations  between  concepts  is  challenging  for  all  learners. When 
learning a language, students learn nouns before verbs (Gentner, 1978). Typically, 
KIM concepts are nouns while link labels are verbs. Learning about the relations 

Table 2.9 Topological KIM 
categories (for a two-area 
KIM)

First area Second area

Empty Empty
Fragmented Fragmented
Linear Linear
Tree Tree
Hub Hub
Circular Circular
Network Network
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Table 2.10 Categories of different types of KIM relations

Super-category Sub-category Code Examples

UNRELATED No connection 0
No label (just line) 1
Unrelated label 2

STRUCTURE
What is the 

structure  
(in relation 
to other 
parts)?

Part–whole (hierarchical) 3 Is a/are a; is a member of; consist of; 
contains; is part of; made of; 
composed of; includes; is example of

Similarity/comparison/contrast 4 Contrasts to; is like; is different than
Spatial proximity 5 Is adjacent to; is next to; takes place in
Attribute/property/characteristic 

(quality (permanent) or 
state (temporary)

6 Can be in state; is form of

BEHAVIOR
What action 

does it do? 
How does it 
work/
influence 
others?

Causal-deterministic (A 
always influences B)

7 Contributes to; produces; creates; 
causes; influences; leads to; 
effects; depends on; adapts to; 
changes; makes; results in; forces; 
codes for; determines

Causal-probability (modality) 8 Leads to with high/low probability; 
often/rarely leads to; might/could 
lead to; sometimes leads to

Causal-quantified 9 Increases/decreases
Mechanistic 10 Explains domain-specific mechanism/

adds specific details or intermediary 
steps

Procedural-temporal (A 
happens before B)

11 Next/follows; goes to; undergoes; 
develops into; based on; transfers 
to; happens before/during/after; 
occurs when; forms from

FUNCTION
Why is it 

needed?

Functional 12 Is needed; is required; in order to; is 
made for

Teleological 13 Intends to; wants to

between concepts can be more challenging than understanding concepts. However, 
understanding the relations between concepts is essential to an integrated under-
standing of biology.

Most existing concept map analyses focus on quantitative variables (see 
Sect. 2.2). To describe semantic changes in the relations between concepts, qualita-
tive variables are needed. To track changes in relation types, a link label taxonomy 
has been developed for KIMs (see Table 2.10). The relation categories also include 
negations, e.g., “does not lead to” or “is not part of.”

The concept mapping literature suggests a number of different link types. For 
example, Fisher (2000) distinguished three main types of propositional relations in 
biology that are used in 50 % of all instances: whole/part, set/member, and charac-
teristic (p. 204). O’Donnell distinguished between three types of relations in knowl-
edge maps: dynamic, static, and elaboration (O’Donnell, Dansereau, & Hall, 2002). 
Lambiotte suggested dynamic, static, and instructional relation types for concept 
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maps (Lambiotte, Dansereau, Cross, & Reynolds, 1989). Derbentseva distinguished 
between static and dynamic relations in concept maps (Derbentseva et al., 2007; 
Safayeni, Derbentseva, & Canas, 2005).

To create a taxonomy of link types, higher order variables are needed. KIM 
analysis used the structure–behavior–function (SBF) framework to create the super-
categories of the taxonomy. The SBF framework was originally developed by Goel 
(Goel & Chandrasekaran, 1989; Goel, Rugaber, & Vattam, 2008) to describe com-
plex systems in computer science and then applied to complex biological systems 
by Hmelo-Silver (Hmelo-Silver, 2004; Hmelo-Silver, Marathe, & Liu, 2007; Liu & 
Hmelo-Silver, 2009).

•  Structure: What  is  the  structure  (in  relation  to  other  parts)?  These  variables 
describe  static  relations  between  concepts.  Static  relations  between  concepts 
indicate hierarchies, belongingness, composition, and categorization.

•  Behavior: What action does it do? How does it work/influences others? These 
variables describe the dynamic relations between concepts. Dynamic relations 
between concepts indicate how one concept changes the quantity, quality, or 
state of the other concept.

•  Function:  Why  is  it  needed?  These  variables  describe  functional  relations 
between concepts, for example “want” (intentionality) or “need” (teleological).

The sub-categories for the taxonomy emerged from KIM analysis (see 
Table 2.10). Categorizing link labels allows tracking and describing how connec-
tions changed ontologically.

3  Discussion and Implications

This chapter introduced KIMs as a novel form of concept map and illustrated how a 
combination of qualitative and quantitative analysis methods can provide comple-
mentary information to triangulate changes in learners’ understanding of complex 
topics, such as evolution. KIMs can be rich sources for students’ alternative ideas. 
KIMs can contain different forms of information: presence or absence of connections, 
quality of connections, different types of link labels, different types of networks, 
and spatial placement of concepts. To account for these different aspects of KIMs, 
different analysis strategies need to be applied to triangulate changes in understand-
ing of learners. KIMs provide an additional layer of information by structuring the 
drawing area into domain-specific areas. As a learning tool, the KIM areas aim to 
support learners’ meaningful structuring of concepts by modeling expert under-
standing. KIMs can be used in different stages of curriculum development and 
implementation: As curriculum planning tools, KIMs can be used to identify core 
concepts and essential connections. As learning tools, KIMs can be used for indi-
vidual or collaborative generation activities. As assessment tools, KIMs can be used 
to identify alternative concepts, elicit existing and missing connections within and 
across levels, categorization of concepts, overall network structure, and prominence 

2 Making Sense of Knowledge Integration Maps

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423



of important concepts. This chapter used an example from biology to illustrate KIM 
generation and analysis; however, KIMs can be implemented in a wide variety of 
different fields.

Concept maps as assessment tools have been used to track conceptual change in 
a wide  variety  of  contexts  (Edmondson,  2000; Mintzes, Wanderersee & Novak, 
2001; Ruiz-Primo, 2000b; Ruiz-Primo & Shavelson, 1996). Since 2009, concept 
maps have been used in addition to traditional assessment tools in standardized 
large-scale  assessments  in  the US National Assessment  of  Educational  Progress 
(NAEP) (Ruiz-Primo et al., 2009) to measure changes in conceptual understanding 
of science concepts. Concept maps can reveal students’ knowledge organization by 
showing connections, clusters of concepts, hierarchical levels, and cross-links 
between concepts from different levels (Shavelson et al., 2005). Concept map anal-
ysis, especially of more constrained forms, has been found to be reliable and valid 
(Markham et al., 1994; Michael, 1995; Ruiz-Primo et al., 1997, 2001; Rye & Rubba, 
2002;  Shavelson  et  al.,  2005;  Stoddart  et  al.,  2000; Yin  et  al.,  2005). Less con-
strained forms of concept maps can include many different kinds of concepts and 
connections. The amorphousness and arbitrariness of structure, mixture of different 
kinds of concepts (for example physical object, process, abstract construct, property), 
and different types of links (for example causal, correlational, temporal, part–whole, 
functional, teleological, mechanical, probabilistic, spatial) can make analysis chal-
lenging and time consuming (McClure et al., 1999). This chapter identified several 
methods and variables, such as KIM cross-links, indicator concepts’ prominence 
scores, weighted essential link scores, network analysis, topological analysis, and 
qualitative propositional analysis, that can be more efficient and sensitive than scor-
ing each proposition in isolation.

Cross-links can indicate the integration of knowledge across levels or domains. 
Experts and successful students develop well-differentiated and highly  integrated 
frameworks  of  related  concepts  (Chi,  Feltovich,  &  Glaser,  1981; Mintzes, 
Wandersee, & Novak, 1997; Pearsall, Skipper, & Mintzes, 1997). Cross-links are 
of special interest as they can indicate creative leaps on the part of the knowledge 
producer (Novak & Canas, 2006).
Network analysis of indicator concepts describes changes of the centrality and 

prestige of indicator concepts. Improved understanding of a complex topic can be 
tracked through an increase in the prominence of indicator concepts. Distinguishing 
certain concepts as being important can be interpreted as a shift from a surface-level 
understanding to a higher order understanding.

Concept maps aim to represent only selected important connections as not all 
possible propositions are equally meaningful. More connections do not necessar-
ily mean a better map and deeper understanding. It is not necessary to generate 
every possible connection and include every possible concept but be purposefully 
selective. Similarly, concept map analysis can focus on essential links. Essential 
links can be identified through expert-generated KIMs. Research (Ruiz-Primo 
et al., 2009; Schwendimann, 2011a, 2011b) suggests that focusing on weighted 
essential links can reveal a greater variety of understanding while being more time 
efficient.
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The analysis of isolated propositions does not account for the network character 
of KIMs. Network density and prominence scores of selected indicator concepts can 
describe changes in the network structure of KIMs.

The topological structure of a KIM can indicate shifts in learners’ knowledge 
structure. A “network” structure indicates a more integrated understanding than a 
“fragmented” concept map structure.

Qualitative proposition-type analysis can indicate shifts in learners’ understanding. 
For example in evolution education, a shift in the prominence of normative evolu-
tion concepts “mutation” and “natural selection” and a decrease of teleological con-
cepts “need” or “want” can indicate an improved understanding of the mechanism 
of evolution. More quantified relations can be seen as an indicator for deeper under-
standing (Derbentseva et al., 2007).

3.1  KIM Analysis and Benchmark Maps

Expert-generated KIM benchmark maps can be used to identify central concepts, 
indicator concepts, and essential connections and establish comparison variables. 
However, they should not be seen as the only correct solution for direct comparison 
as there is no single ideal expert benchmark map. Using expert-generated bench-
mark maps might suggest that there is only one correct answer (Kinchin, 2000a). 
From a constructivist perspective, concept maps should reflect the rich variety of 
students’ repertoire of concepts. Using only a single expert-generated as the bench-
mark for direct comparisons does not allow capturing the many ways ideas can be 
expressed in concept maps. There is no single “expert map” as experts can generate 
a wide variety of concept maps (Schwendimann, 2007). Expert maps can strongly 
differ from one another (Acton, Johnson, & Goldsmith, 1994), even when using a 
limited number of given concepts, and show great variety. Expert-generated concept 
maps distinguish themselves not necessarily in quantity but in informed selection of 
important concepts, higher level clustering of concepts, and meaningful connec-
tions. Students might  try  to find the one “correct answer” for a KIM. Instructors 
should stress the point that each KIM is unique and that there are many different 
possible solutions for a good KIM, as even experts in the same field generate KIMs 
that are different from one another.

This also raises the question of who is considered an expert. There are many dif-
ferent kinds of experts, for example researchers, practitioners, proficient amateurs, 
and science teachers (Hmelo-Silver et al., 2007). An expert benchmark map can be 
generated by a single expert (Coleman, 1998), the teacher, or a group of experts 
(Osmundson, Chung, Herl, & Klein, 1999). Ruiz-Primo et al. (2001) suggest creat-
ing an aggregated expert-group map. Interpreting concept map propositions can be 
difficult as expert and novices might use the same expressions but with different 
meaning. Ariew (2003) points out that experts can use seemingly nonnormative 
expressions as “shorthand” for normative concepts, for example a teleological 
expressions in biology such as “Beavers developed large teeth because they needed 
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to cut trees.” More education research is needed to address the “expert problem” 
by providing better descriptions of what constitutes an expert and distinguishing 
different types of experts.

This chapter suggests that scoring propositions using a knowledge integration 
rubric can reveal a greater variety of students’ alternative concepts than a direct 
comparison to an expert-generated benchmark map (for examples of direct com-
parisons  see  Chang,  Sung, & Chen,  2001; Cline, Brewster, & Fell, 2009; Herl, 
O’Neil, Chung, Dennis, & Lee, 1997; Rye & Rubba, 2002). The knowledge integra-
tion concept map rubric acknowledges different ways concepts can be expressed. 
It seems easier to construct concept maps than to make sense of them. Analyzing 
concept maps can be time consuming and cognitively demanding. Efficient analysis 
methods are needed if concept maps are to become more widely used as summative 
or as formative real-time assessment tools (Pirnay-Dummer & Ifenthaler, 2010). 
The analysis methods described in this chapter were developed for human coders. 
Automated concept map analysis methods aim to complement or replace coding by 
hand. Simple automated analysis approaches directly match concept maps to a sin-
gle expert-generated benchmark map. Direct matching approaches are not sensitive 
to the rich diversity of alternative ways in which ideas can be expressed in concept 
maps. Recent approaches for automated analysis aim to alleviate this limitation by 
using the graphical properties of concept maps or by focusing on the frequencies of 
selected elements in the map. For example, Hoppe, Engler, and Weinbrenner (2012) 
developed an algorithm to automatically analyze graphical properties of concept 
maps without the need for an expert-generated concept map for comparison. 
Evaluating  the  frequency  of  certain  propositions  (Cathcart  et  al.,  2010) or short 
chains  of  propositions  (Grundspenkis  &  Strautmane,  2009) allows describing 
greater variety of alternative ideas than a direct comparison to an expert map.
No single analysis method can capture and track the rich information present in 

concept maps. This chapter concludes that only using complementary methods in 
concert allows describing alternative ideas and triangulating changes in concept 
maps. A comprehensive analysis of concept maps might combine human and auto-
mated evaluation using both quantitative and qualitative methods. Further research 
is needed to more fully and more efficiently make sense of concept maps.
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