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Making Sense of Text: Artificial Intelligence-Enabled Content Analysis

Introduction

Content analysis is a widely used research method for systematically and objectively 

analyzing content, while carefully considering the reliability, validity, and efficiency of this 

analysis and the development of insights and related theory (Neuendorf, 2017, Krippendorff, 

2018). The content data can include the written text, speeches, reviews, images, audio, videos, 

and hypertext that are found in any form of communication. Marketing researchers use content 

analysis to examine content central to their field, including: brand-controlled content such as 

advertising (Gross and Sheth, 1989; Gilly, 1988) and websites (Govers and Go, 2004; Jose and 

Lee, 2007); marketing content disseminated by media such as press coverage (Harris et al., 

2001); and user-generated content such as complaints (Harrison-Walker, 2001), travel blogs (Pan 

et al., 2007), and employer reviews (Dabirian et al., 2017; Dabirian et al., 2019). Furthermore, 

marketing researchers use content analysis to analyze interview and survey data (Bitner et al, 

1990; Dong et al., 2015) and marketing literature (Helgeson et al., 1984; Leonidou and 

Leonidou, 2011).

This paper focuses on one type of content, text, which in itself is complex and requires a 

significant understanding of language and human cognition. Traditionally, researchers used what 

is now known as the manual approach to carrying out a content analysis of text. This involves 

humans manually coding and analyzing the text. In the 1980s, the computer-aided approach for 

content analysis of text was developed for researchers to automate, at least partially, the coding 

and analysis. Software programs are used to manipulate text and compute word frequency lists, 

keyword-in-context lists, concordances, classifications of text in terms of content categories, 

category counts, and so on – results of which human researchers then interpret (Deffner, 1986). 
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Computer-aided content analysis has been widely adopted as it aids researchers’ intuition and 

reasoning by facilitating the manipulation and presentation of data to help uncover patterns 

unlikely to be detected by the researcher (Wolfe et al. 1993). And, despite validity concerns 

about the computer-aided approach’s ability to understand the sentiments, opinions, and 

expressions in content (Morris, 1994; Su et al., 2017), there is a strong view that such downsides 

are outweighed by the reliability, time, and cost benefits of the approach when dealing with large 

data sets (Rosenberg et al., 1990, Conway, 2006). Given this trade-off between the validity of 

manual content analysis versus the reliability and efficiency of computer-aided content analysis, 

scholars argue that a hybrid of both approaches would capitalize on all benefits (Su et al., 2017; 

Lewis et al., 2013).

Artificial intelligence (AI) promises to offer the benefits of both manual and computer-

aided approaches. In the context of this paper, AI is “the study of knowledge representations 

(generally) by way of computers and the use of those representations in language performance, 

reasoning, learning and problem solving” (Sowa, 1984, p. 22). In other words, AI has the 

potential to improve dramatically our ability to analyze, manipulate, and understand complex 

content such as natural language. This has led researchers to suggest that AI could deliver the 

validity of manual content analysis with the reliability and efficiency of computer-aided content 

analysis by automating aspects of human thinking and actions in a rational way (Hannigan et al., 

2019). Assessing the promise of AI-enabled content analysis, specifically the validity, reliability, 

and efficiency of the approach, is the aim of this paper. This aim is also central to the focus of 

this Special Issue that deals with the opportunities that computerized content analysis approaches 

can have for marketing scholars and practitioners.
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To achieve this aim, this paper is structured as follows. First, it presents a review of how 

content analysis is used in marketing research and highlights the types of content studied. It then 

explains what AI is, why it should be used for content analysis, and offers a roadmap of steps for 

how to use AI-enabled content analysis. This paper illustrates the application and comparison of 

AI-enabled content analysis relative to manual and computer-aided (i.e., non-AI) approaches 

using the text of leadership speeches, which can reflect the brand of a leader. Then, each 

approach’s reliability, validity, and efficiency is compared. Despite the heavy focus on 

computers and advanced technologies, this paper is largely nontechnical.

Content Analysis in Marketing Research

Content analysis has long been used in the social sciences and is an increasingly 

important method, rising from 4,765 published studies in 2002 to 33,223 published studies in 

2017 (Hannigan et al., 2019). It was introduced as a method for consumer research by Ferber and 

Wales (1958) and since then, marketing research went on to use content analysis to examine 

most, if not all forms of marketing communications, including brand-controlled content, content 

disseminated by media, and user-generated content. Table 1 presents a selection of marketing 

studies that use content analysis. The studies were chosen to highlight how this method is 

employed to examine different marketing phenomena from different sources, types of content, 

and with different content analysis approaches (i.e., manual or computer-aided approaches, with 

no marketing studies as of yet using AI).

An early example of manual content analysis for brand-controlled content compares the 

roles of men and women in magazine ads, concluding that they rarely show women in working 

roles and confirming existing clichés about the roles of women in American society in the 1970s 

(Courtney and Lockertz, 1971). This type of research was then extended with computer-aided 
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content analysis in the 1990s, for example with Kolbe and Albanese’s (1996) study of the 

physical characteristics of men appearing alone in magazine ads, finding the portrayal of 

inappropriate male stereotypes.

Insert Table 1 about here.

As websites were developed to communicate marketing messages, scholars began 

studying them, often using content analysis. Travel websites (such as travel agencies, travel 

magazines, and travel guides) were analysed using CATPAC II, a tool for computer-aided 

analysis to identify word frequency to examine destination image (Choi et al., 2007). In terms 

manual content analysis, the websites of green electricity providers in Germany were analyzed, 

concluding that utilitarian benefits for customers were conveyed well but psychological and self-

expressive benefits were not (Herbes and Ramine, 2014). 

In the area of brand packaging, scholars have used manual content analysis to examine 

anthropomorphism (i.e., the attribution of human characteristics or behavior to a god, animal, or 

object) in product packaging of the top 100 grocery brands in the U.K. (Triantos et al., 2016). 

Another study used manual content analysis to examine how misleading environmental 

information on packaging can be, resulting in seven different informational categories and four 

accuracy categories for packaging content (Polonsky et al., 1998).

As brand slogans are an important marketing communication tool, content analysis has 

been used to evaluate their meaning. The General Inquirer text analysis program was used to 

study and categorize brand slogans based on word frequency (Dowling and Kabanoff, 1996); and 

manual content analysis was undertaken to examine the brand slogans of Fortune 500 companies 

for the presence of linguistic devices; finding that 92 percent of brand slogans contained at least 

one linguistic device (Miller and Tomas, 2016).
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Studies of marketing content disseminated by media include a manual content analysis of 

articles from six Greek newspapers, concluding that the political parties and the press did not 

have a common view of the relative importance of political issues (Harris et al., 2001). Schultz et 

al. (2012) used Amsterdam Content Analysis Toolkit, a computer-aided content analysis 

program to evaluate 1,376 newspaper articles in the U.S. and U.K. covering the BP crisis, 

finding that BP successfully dissociated itself from being responsible for the cause and presented 

itself as providing solutions for the crisis.

The rising volume and influence of user-generated content has led to a proliferation of 

marketing studies examining this content, often using content analysis. For example, Harrison-

Walker (2001) manually content analyzed 551 consumer complaints from the “Untied” website, 

an independent complaint forum against United Airlines, examining the complaints according to 

seven categories. Pan et al. (2007) used TextAnalyst, a computer-aided content analysis program 

to examine visitor opinions posted on leading travel blog sites for the Charleston, South Carolina 

area to generate a semantic network of their experiences to reveal the strengths, weaknesses, and 

the competitive environment of Charleston as a tourist destination. Table 1 provides further 

examples of content analysis studies from marketing research in each category of brand, media, 

and user-generated content.

Finally, and as per the focus of this paper, content analysis has been used to study 

speeches of leaders who represent corporate or political brands. For example, Oliveira and 

Murphy (2009) used resonance analysis, a computer-aided text analysis method that identifies 

the most central words to reveal three distinct frames: profitable multinational, litigation target, 

and corporate good citizen in the crisis management speeches of the Philip Morris CEO during 

the 1990s.
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In sum, it is clear that content analysis is a widely-used method for marketing research. 

While computer-aided content analysis tools are increasingly used, they tend to examine 

manifest content (i.e., content that can be simply counted, such as specific words in a text). 

When marketing researchers need to examine latent content (i.e., deducing meaning, symbolism 

and patterns from the content) that require interpretation (Duriau et al., 2007), they still rely on 

time-consuming manual content analysis. This literature review does not find any marketing 

studies using AI for content analysis.

Why Use AI-Enabled Content Analysis?

While AI can process content in the form of text, images, audio. and video, this paper 

focuses on text for comparison purposes, since traditional computer-aided content analysis is 

limited to text. Natural Language Processing (NLP) is a method for analyzing naturally-

occurring human language and processing phrases and dialogs using computers (Demirkan and 

Delen 2013). NLP has long been used in linguistics to semantically interpret text (Manning and 

Schütze, 1999). Some computer-aided content analysis programs can conduct Shallow NLP 

(High, 2012). This type of NLP provides an understanding of the language and sentence 

structure, but lacks an understanding of the context and sentiments which is an imperative 

feature of the human cognitive system. For example, with Shallow NLP, “My nose is running.” 

can be interpreted as a nose that is going on a run, which is nonsensical. On the other hand, Deep 

NLP, which comes with AI systems such as IBM Watson, Amazon AWS Lex, Salesforce 

Einstein, uses both sentence structure and context of the text to provide a deeper understanding 

of the language. This allows such AI systems to correctly intrepret “My nose is running.” as a 

symptom of an illness.
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Another important feature of AI-enabled content analysis systems that perform Deep 

NLP is their use of machine learning. The AI system receives its information not only from the 

sentence structure and context of the text but also from a knowledge base (for IBM Watson, the 

Corpus). Machine learning means that the AI-enabled content analysis approach involves 

training the program every time it processes a text. As the system gets smarter, it improves its 

accuracy and context recognition. For example, the system can be applied to medical documents 

(Diomaiuta et al. 2017) where its knowledge base uses a medical dictionary to analyze the 

language in the text similar to a human with medical training. Its relative advantage, of course, is 

that the system can process large documents in a fraction of the time, constantly learns, and 

never forgets. Therefore, by processing both context and sentence structure from the text and 

from its previously gathered knowledge, the system achieves a significantly higher level of 

accuracy than its alternatives.

In the early 2000s, topic modeling developed as a unique NLP-like approach for text 

analysis. In a comprehensive review of how topic modeling is used in business research, 

Hannigan et al. (2019) explained how topic modeling uses statistical associations of words in a 

text to generate topics (i.e., themes) without researchers having to develop and use dictionaries 

and interpretive rules. This allows researchers to identify important topics that human 

researchers are unlikely to distinguish. For example, McCarthy and Ruckman (2017) used topic 

modeling to analyze and compare the text in technology patents that are similar in technological 

claims to help assess why some patents were licensed while other technologically-similar patents 

were not. Hannigan et al. (2019) concluded their review by highlighting AI as a promising 

technology for enhancing text analysis. This is based on its potential to retain more contextual 
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information, handle content that is continuously changing such as online reviews by consumers, 

and analyze non-text content such as images, audio, and video.

Insert Figure 1 about here.

Figure 1 illustrates how the IBM Watson AI system processes text. In the first step, it 

takes documents (text files) and performs Deep NLP to generate keywords, which contain one 

word or a phrase such as nouns, pronouns, noun sequences, and verb-noun phrases. IBM Watson 

also calculates the frequency of each keyword in the document. The knowledge base then 

converts the keywords into the subject matter translations (i.e., categorization). For example, if a 

marketing knowledge base is chosen, expressions like “consumer protest”, “don’t buy”, or 

“unethical brand” could all translate to “brand boycott”. It is important to note that, at this stage, 

manual coding is still required. In other words, although the term AI seems to suggest that such 

content analysis programs could run autonomously, in a fully-automated fashion, this is not the 

case. NLP and the knowledge base require training, which is commonly undertaken by people, 

whose role is to connect each keyword to particular constructs. In 2018, for example, medical 

experts in Japan trained an AI system on hundreds of datasets to see if it could accurately spot 

instances of stomach cancer. Once trained to differentiate malignant from benign endoscopic 

images, AI only took 0.004 second to judge whether a patient showed early stage cancer or 

normal stomach tissue (The Japan Times, 2018). AI correctly detected cancer in 80 percent of 

cancer images, while the accuracy rate was 95 percent for normal tissue (The Japan Times, 

2018). Without training it first, this would not have been possible. For the analysis of text, this 

training is also required, at least for now, but like the cancer diagnosis example, the potential of 

vastly improved results is promising. After this overview of artificual intelligence, and its 
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promise for content analysis, the research methods are presented next, including the study 

context and performance measures for all three content analysis approaches. 

Application and Comparison of AI-Enabled Content Analysis

Context

To apply AI-enabled content analysis and compare it to manual and computer-aided 

approaches, this paper focuses on the levels of charisma in speeches by well-known business 

leaders. Charisma in speeches is selected not to develop theory about leadership speeches, but to 

illustrate the application of AI-enabled content analysis relative to the other approaches. The 

context of leadership speeches is appropriate for such an aim for two reasons.

First, leadership speeches reflect the brands of leaders and organizations, and thus are 

suited to the topic and readership of this journal. Top executives as human brands represent the 

brand of their organization and personify the values of the organization (Bendisch et al., 2013; 

Zerfass et al., 2016). Weber Shandwick (2015) indicates that they can influence the public’s 

opinion about their organization, as an average of 45 percent of a company’s reputation can be 

attributed to the reputation of the chief executive. This paper focuses on the charisma of leaders, 

as it is believed to be an important quality that enhances employee performance (Humphreys, 

2002) and is linked to organizational effectiveness and perceptions of leader effectiveness 

(Bryman, 1992; Fiol et al., 1999). These impacts in turn can even influence customer orientation 

and relationship commitment in the purchasing of products and services (Hult et al., 1998). 

Further, leadership charisma can be assessed by language in general (Conger, 1991; Shamir et 

al., 2018), and more specifically around leaders’ verbal communication style, rhetorical devices, 

and the use of figurative language and imagery (Willner, 1985).
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Second, the text in speeches is an ideal form of content for applying, illustrating, and 

comparing a new approach to content analysis. The language in a leader’s speech can 

demonstrate their shared values and collective identity (Hermanowicz and Morgan, 1999), which 

are components of charismatic leadership (Bligh et al., 2004a; Conger and Kanungo, 1987; 

1988). Furthermore, speeches by leaders are often long enough for analysis and publicly 

available. Consequently, this paper can draw upon prior research on the rhetoric content of 

leadership speeches (e.g., Bligh et al., 2004a, Shamir et al., 2018) and existing dictionaries for 

the computer-aided approach are available (e.g., Bligh et al., 2004a). The speeches of leaders 

selected for this paper are based on an Inc. Magazine list of top commencement speeches by 

business leaders (Murphy, 2014). One male (Bill Gates) and two female (Sheryl Sandberg and 

Oprah Winfrey) business leaders are chosen. The speeches are analyzed for eight categories of 

charismatic speech (Bligh et al., 2004a; Shamir et al., 2018), as listed and described in Table 2.

Insert Table 2 about here.

Measures

To contrast and compare manual, computer-aided, and AI-enabled approaches to content 

analysis, each approach is assessed using three measures: reliability, validity, and efficiency. 

Reliability is the degree of agreement among coders (or within a single coder over time) when 

classifying content (Riffe et al., 2005). It is an indicator of a researcher's relative subjectivity in 

coding the content. An additional important aspect of content analysis reliability is category 

reliability, which is a coder’s ability to formulate categories of content that represent key 

constructs (Kassarjian, 1977; Kolbe and Burnett, 1991). To avoid having to assess this aspect of 

reliability, the eight pre-formulated categories for speech charisma are used, as outlined in Table 

2. Thus, focusing only on inter-coder reliability, this paper calculates and reports this measure as 
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a ratio: total number of coding agreements between coders relative to the total number of coding 

decisions, using the eight pre-defined categories. 

It is anticipated that reliability, when using manual content analysis, would be lowest due 

to errors of coder judgement and interpretation. The AI-enabled approach relies on the strength 

of its NLP and its knowledge base, but still requires manual coding of the keywords that are 

generated. With computer-aided content analysis, the coding is based on pre-defined and 

relatively fixed dictionaries, which eradicates the issue of inter-coder reliability. While this paper 

focuses on reliability as a measure of inter-coder agreement, inter-coder reliability assessments 

reflect the reliability of the coding protocol and a coder’s use of this protocol (Lacy et al., 2015). 

Furthermore, even though computer-aided analysis is anticipated to offer high reliability, this is 

expected to be at the expense of validity (Su et al., 2017), which is the second of the three 

measures.

Validity is the degree to which the coding of content echoes the actual meaning of the 

concepts being measured (Babbie, 1998; Su et al., 2017). This measure reflects the soundness or 

quality of the analysis and the inferences made from the content, relative to some standard or 

reference. Validity is related to reliability in that validity can be seen as encompassing reliability 

(as a measure cannot be valid if it is not reliable) and accuracy (the extent to which the 

measuring procedure is free from bias) (Neuendorf, 2017). Validity refers both to the coding 

scheme that is developed and the coding decisions that are made about which content belongs in 

which category. How validity is established for speech charisma is discussed later on.

Content analysis validity can be limited to manifest content or extended to latent content. 

This assessment of manual, computer-aided, and AI-enabled approaches to content analysis 

evaluates the validity of each approach using both manifest and latent content. In other words, 
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validity in this paper refers to the degree to which the language used in the speeches actually 

represents speech charisma. This evaluation compares how each approach varies in its ability to 

facilitate counting of content and understanding of complex meanings of the context and content. 

It is expected that the computer-aided approach will be superior to the manual approach for 

manifest content analysis, and that manual content analysis will excel over computer-aided for 

latent content (Conway, 2006; Matthes and Kohring, 2008). Thus, this paper seeks to determine 

how the AI-enabled approach performs in making sense of underlying latent content.

To establish validity, this paper follows Potter and Levine‐Donnerstein (1999). To begin, 

using the eight categories of speech charisma, a coding scheme is developed to guide coders in 

the analysis of the content. The coding scheme comprises the list of categories, their definitions, 

and rules for identifying which words and phrases fit into each category, based not only on the 

theoretical categories in Table 2 but also on related content analysis studies of speech charisma 

(Awamleh and Gardner, 1999; Spangler et al., 2012). The coding scheme is the foundation upon 

which validity is determined, whether it be face or construct (Poole and Folger, 1981; Potter and 

Levine‐Donnerstein, 1999). Face validity is the extent to which the “coding system is logically 

consistent and the categories clearly defined” (Folger et al., 1984, p. 137), which requires a 

theory – in this case, speech charisma and its eight theoretical categories. Construct validity is 

the extent to which a category is related to other categories in a way that is consistent with theory 

(Carmines and Zeller, 1979) and can be convergent (in which an expected relationship is found 

between categories) or discriminant (in which the expectation of no relationship is confirmed 

between two or more categories) (Neuendorf, 2017). A criticism of content analyses is that many 

use constructs and/or categories that have not been used before and have not been fully validated 
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(Janis, 1965; Neuendorf, 2017). This is one reason why this paper uses the previously validated 

construct of speech charisma that has both face and construct validity (Bligh et al., 2004b).

Next, the coding decisions are compared against a “standard” - the “correct” or 

“accurate” codes (Carlsmith et al., 1976; Wimmer and Dominick, 1991). If the coding matches 

the “standard for correct decision-making, then the coding is regarded as producing valid data” 

(Potter and Levine-Donnerstein, 1999, p. 266). Thus, when the coding is accurate, it is 

considered valid. For this paper, the standard used for validation (i.e., the baseline) is the result 

from manual coding after undergoing rigorous pre-testing of the coding scheme and training of 

the coders and follows Bligh et al. (2004b), in which manual coding is used to validate results 

from computer-aided content analysis.

The third measure is efficiency, which this paper defines as the extent to which an 

approach allows researchers to carry out content analysis quickly relative to other approaches. 

While the efficiency of any task can be numerically measured and compared, by determining the 

cost or energy expended to produce an output, this paper focuses on time. This focus on time is 

chosen because content analysis is a work-intensive activity that can consume significant 

researcher time, especially when dealing with the large volumes of digitized content. Also, the 

time it takes to complete an analysis is a relatively straightforward aspect to measure. Relative to 

manual coding, it is anticipated that computer-aided and AI-enabled approaches to content 

analysis will be quicker to carry out. Some researchers suggest that such technologies are 

capable of analyzing large volumes of content at great speed (Conway, 2006; Krippendorff, 

2018), and that computer-aided and AI-enabled approaches not only assist in the efficient 

processing of large volumes of digital content, but also minimize the propensity for mistakes that 
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human coders make during this very lengthy, tedious, and error-prone work (Nacos et al., 2009; 

Su et al., 2017).

Overall, it is not only each individual measure, but also the combination of the measures 

that is considered in this comparison of the three approaches. This paper is interested in how 

manual, computer-aided, and AI-enabled approaches vary with respect to reliability, validity, and 

efficiency, but also how their combinations will allow for a comparison of the general efficacy of 

the three approaches.

Application of the Content Analysis Approaches

This section reports on the three different approaches used to analyze the leadership 

speeches. Based on the traditional content analysis method, nine steps are followed in each 

approach (discussed below and summarized in Table 3). For each approach (manual, computer-

aided, and AI-enabled), this paper specifically outlines and describes every step to allow for the 

replicability of this study. The steps for AI-enabled content analysis equate to a “roadmap” for 

how to use this approach to develop theory. Then, this paper explains how the assessment of 

reliability, validity, and efficiency are determined for each approach.

Manual content analysis is conducted following the steps recommended by Insch et al. 

(1997) and Neuendorf (2017). Step 1 identifies the research question and construct. The research 

question is “how charismatic are the speeches of leaders?” and the construct of speech charisma 

is selected (Bligh et al., 2004a; Shamir et al., 2018). Step 2 identifies the texts to be examined, 

which are the complete transcribed texts of commencement speeches for Bill Gates, Sheryl 

Sandberg, and Oprah Winfrey that are publicly available. Step 3 specifies the unit of analysis. 

Word sense or phrase is selected (which includes single words and phrases versus other 

possibilities of single words only, sentence, paragraph, or full speech) because human coders are 
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able to discern the meaning of words or phrases based on the context. For instance, the phrase 

“Angel Network” is recognized as a collective noun rather than two separate nouns. 

Step 4 specifies the categories: single versus multiple classification (whether a word or 

phrase can be assigned to only one or to more than one category), assumed versus inferred 

categories (deductive or inductive), and the use of existing content analysis dictionaries. For the 

manual content analysis, a word or phrase can be assigned to only one category. This paper uses 

the same categories of speech charisma identified by Bligh et al. (2004a) and Shamir et al. 

(2018). Because the manual content analysis uses an existing coding scheme (Bligh et al., 2004a) 

with exemplars of words and phrases for each category, existing content analysis dictionaries are 

not required.

Step 5 generates a sample coding scheme. The coding scheme by Bligh et al. (2004a) is 

used as a basis for the coding form that is developed. In Step 6, three researchers pretest the 

coding scheme by coding the three speeches. In Step 7, based on the pretest, the coding scheme 

and coding form are revised or “purified”, with further exemplars of words and phrases that are 

specific to the context of the speeches (e.g., faculty, graduates). See Appendix A for the final 

coding scheme and coding form. Step 8 is the actual content analysis, in other words, the data 

collection. The principal investigator, after augmenting the coding scheme and leading the 

pretest, trains two researchers who are not involved in the pretesting or revision of the coding 

scheme, as recommended by Lacy et al. (2015). Manual coding is then conducted, with each 

speech being coded by two researchers. This involves reading each speech once, then focusing 

on coding one category with one pass (or more) through the speech before coding the next 

category. In total, each speech is read at least ten times by a researcher and the coding of each 

speech takes about two days to complete. To adjust for different speech lengths, the results are 
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reported as percentages. The total score for the charisma in each speech is determined by 

calculating the sum of the percentages for each of the eight categories of speech charisma. The 

manual coding indicates that Gates’ speech demonstrates more speech charisma than Sandberg 

or Winfrey.

Step 9 calculates reliability, validity, and efficiency of each content analysis approach. 

Reliability is calculated as inter-coder agreement for each speech before the differences between 

the coders are discussed. Due to the length of each speech, at over 3,000 words, there are 

inaccuracies and inconsistencies (this issue is discussed further in the Results section). After 

discussion about how the different words and phrases are being interpreted by each coder, the 

speeches are coded for a second time. The differences between the coders are again checked, 

resulting in differences of only 4 percent of the coding. The remaining differences are discussed 

and agreed to, resulting in a final coding that is then used for validity testing. Validity for each 

content analysis approach is determined by comparing the results for each category of speech 

charisma against the final results from the manual coding. The final scores from the manual 

coding (Appendix B) are then used was the baseline for evaluating the validity of the other 

approaches, consistent with Bligh et al. (2004b) and Neuendorf (2017). Efficiency is reported, 

comprising the amount of time to complete Steps 5 to 8. See Table 3 for a summary of the steps.

Insert Table 3 about here.

For the computer-aided content analysis, two different software programs are used to 

examine speech charisma using the same three speeches: DICTION 7 and LIWC 2015. 

DICTION is used extensively in the social sciences (Hart and Curry, 2016) and has 33 different 

dictionaries containing over 10,000 search words. The search words are single words only and 

statistical weighting is applied to partially correct for context (Hart, 2000). Users can also create 
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and share their own dictionaries, a feature that is not used in this instance since well-established 

dictionaries for speech charisma already exist.

Steps 1 to 4 are largely identical to the steps for the manual content analysis (Table 3). 

The exception is Step 3 in which the unit of analysis for DICTION is individual words only, as 

DICTION can search only by individual word. For Step 4, single (versus multiple) classification 

is used, as DICTION does not duplicate words between its dictionaries. For Step 5, the coding 

scheme developed by Bligh et al. (2004a) and the pre-installed program dictionaries that relate to 

the categories of speech charisma are used as the base but are updated due to a new version of 

DICTION being employed (DICTION 7 for this paper versus DICTION 5 being used by Bligh et 

al., 2004a). The specific dictionaries that are used for each category are shown in Appendix C. 

Step 6 pretests DICTION using the standard dictionaries and it is determined that there is no 

need to adjust the coding scheme, thus Step 7 is not undertaken. In Step 8, each of the speeches 

are run through DICTION and the results shown in Appendix D. 

Linguistic Inquiry and Word Count (LIWC) is used widely in psychology and linguistics 

(Tausczik and Pennebaker, 2009) and was designed to study the emotional, cognitive, and 

structural components in verbal and written speech using internal dictionaries comprising 

empirically-defined psychological and structural categories (Pennebaker et al., 2015; Tumasjian 

et al., 2010). The coding scheme used for LIWC2015 is based on its pre-installed dictionaries 

with almost 6,400 words, word stems, and select emoticons (Pennebaker et al., 2015). LIWC 

processes single words only but words can belong in more than one dictionary, which means that 

words could be counted multiple times (unlike DICTION, in which a word can occur in only one 

dictionary). Steps 1 to 4 are identical to the steps undertaken for the manual approach. For Step 

5, the specific default dictionaries are selected to best match the categories of speech charisma 
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(Appendix E). Then, Step 6 pretests LIWC using the selected dictionaries. After reviewing the 

results (Appendix F), it is determined that there are limitations in LIWC’s default dictionaries for 

speech charisma. For example, some words are counted in an inappropriate dictionary (e.g., 

"class" is counted in the "work" dictionary when it should be counted in the "collective focus" 

category since “class” refers to a group of graduates) and proper nouns such as names of people, 

place names (e.g., Harvard), geographical names (e.g. Nashville), and brand names (e.g., Oreos) 

are not captured in the default dictionaries. These limitations are addressed through using the 

feature in LIWC that allows users to create custom dictionaries. Thus, in Step 7, three 

researchers manually code the speeches and use the coding results to create custom dictionaries 

(i.e., coding schemes) to augment the default dictionaries in four of the categories. These custom 

dictionaries are added to: (1) “Collective focus” with place names, geographical names, and 

single nouns connoting plurality e.g. crowd, family. (2) “Followers' worth” with affirmations or 

abstract values. (3) “Values and moral justification”, as there are no dictionaries for values or 

moral justifications other than one dictionary for religion. To avoid double counting of words, 

“religion” is deactivated and a custom dictionary for values and moral justification is added. (4) 

“Action” with words of inactivity. In Step 8, the speeches are run through LIWC with the 

additional custom dictionaries. For both LIWC and DICTION, reliability, validity, and efficiency 

are calculated in Step 9.

The AI-enabled content analysis approach uses IBM Watson, specifically, the IBM 

Watson NLP product inside IBM Bluemix, which is a “platform as a service” product developed 

to build, run, deploy, and manage applications on the cloud. In other words, one uploads the 

documents into the web interface, without the need to install, configure, and maintain a program 

or an app. For this product, there are two options. The first option is a free version of IBM 
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Watson NLP that allows researchers to load the text into the NLP engine and generate a list of up 

to 50 keywords and eight JavaScript Object Notation (JSON) files: sentiment, emotion, 

keywords, entities, categories, concept, syntax, and semantic roles. The second option is IBM 

Watson Explorer, which identifies keywords, phrase constituents, sentiments, emotions, entities, 

and more. It generates a comma-separated values (CSV) file that can be used for further 

manipulation. This paper uses the IBM Watson Explorer option to generate up to 500 keywords.

As with the other two approaches, assigning meaning to written text, i.e., creating a 

semantic representation of the text, is a challenging task given the ambiguity inherent in natural 

language resulting from contextual circumstances, linguistic styles, or dialog history. A key task 

in natural language understanding involves analyzing the syntax (i.e., the structure of sentences), 

semantics (i.e., the relationship between words, phrases, and symbols), and pragmatics (i.e., the 

context in which words or phrases are used in natural language) (Gill, n.d.). The difference 

compared to the other approaches is that AI systems can rely on machine learning and 

understand the context better to extract meaning from text. It can more easily separate the 

meaning of homonyms - words with the same spelling and pronunciation, but different meanings 

(e.g., to book a criminal versus to book a hotel room), homophones - words that share the same 

pronunciation, regardless of how they are spelled (e.g., to, too, two) and homographs - words 

that share the same spelling, regardless of how they are pronounced (e.g., to tear up versus to 

tear down). Much like computer-aided content analysis, AI applications use a lexicon (a 

vocabulary) and a set of grammar rules coded into its procedures. However, AI applications then 

use statistical models and machine learning to apply these rules and determine the most-likely 

meaning of what was said.
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The process of AI-enabled content analysis involves the same Steps 1-4 as for manual 

and computer-aided content analysis (Table 3). In Step 5, IBM Watson extracts keywords for all 

three speeches, then one researcher exports the results as a CSV file. The keywords in the CSV 

file are then connected to the speech charisma categories, just as the process in the manual and 

computer-aided approaches. To do this, a coding scheme is produced that include the list of 

keywords in the first column and their frequency in the second column. In Step 6, two 

researchers compare the coding scheme against the pre-defined categories of speech charisma 

and determine that it needs to be purified. In Step 7, the coding scheme is purified, similar to the 

process for manual coding. A third column is added to the coding scheme in which the respective 

categories of speech charisma are matched to each relevant keyword. Of course, not all keywords 

are matched to a category of speech charisma. Step 8 is similar to the process for manual coding, 

with the exception that up to 500 keywords are coded, compared to over 3,000 words for manual 

coding. It is important to note that Step 8 requires manual coding to connect each keyword 

(known as mapping) to one of the eight speech charisma categories. In Step 9, inter-coder 

reliability, validity, and efficiency are calculated. Appendix G shows the results for speech 

charisma for all three speeches using IBM Watson.

Researchers have two options for analyses. The first option is to stop at Step 8. AI will 

have helped with the keyword identification, but the rest of the content analysis remains a 

relatively manual process. The second option is to feed the coded table that mapped the 

keywords to the respective speech charisma categories back into IBM Watson to train the 

machine-learning algorithm. Much like the medical example (The Japan Times, 2018) mentioned 

in the previous section, where oncologists first needed to teach the AI about healthy versus 

unhealthy tissue samples, researchers can improve the machine learning and NLP. This is 
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particularly valuable when other researchers might want to conduct similar analyses, when 

datasets are large, when many different keywords are used, or when follow-up studies are 

required. This training of the machine-learning algorithm would mean that manual coding would 

eventually not be necessary, as the IBM Watson output would encompass the speech charisma 

categories and the analysis will continue to become more accurate. 

This training of the machine learning process is needed mainly for keyword analyses. In 

cases of sentiment (positive/negative), emotion (e.g., anger, joy, fear), entities (IBM Watson 

identifies entities as people, companies, organizations, cities, etc.), categories (IBM Watson 

provides a hierarchy, for example “parents/children” or “education/homework”), concepts (e.g., 

in the Gates speech, it calculates three concepts “Harvard University”, “Poverty” and “World”), 

syntax (e.g., “former” is classified as an adjective, “President” is classified as a pronoun), and 

semantic roles (e.g., where it parses the sentences into subject, verb, and object), machine 

learning is already built into the cloud-based IBM Watson. Every time IBM Watson is used for 

text analysis, by any researcher, the algorithm improves for all future analyses.

Results

This section summarizes the results from comparing manual, computer-aided, and AI-

enabled approaches to content analysis. It highlights how the interpretation of the coding scheme 

requires considerably different work, which ultimately contributes to the efficacy, especially the 

efficiency, of each approach. Then, the three measures of reliability, validity, and efficiency are 

compared for each of the three approaches.

Interpretation of Coding Scheme

In manual content analysis, human coders make interpretation decisions every time they 

code a word or phrase. While this is a time-consuming task, humans are able to catch misspelled 
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words, anomalies in spelling, or make sense of abbreviations. In computer-aided content 

analysis, researchers make interpretation decisions when deciding which dictionaries best 

correspond to each category (e.g., of speech charisma). However, the reliance on dictionaries for 

coding has some drawbacks, as some categories are not well covered by the default dictionaries. 

With LIWC, for example, the “temporal orientation” category is well represented in the default 

dictionaries; however, for the category of “collective focus”, there is no dictionary for single 

nouns connoting plurality (e.g., crowd, family). This requires the researchers to add custom 

dictionaries, as described earlier, which is a time-consuming task. Similarly, spelling mistakes, 

abbreviations, or other spelling anomalies need to be corrected or else they are not captured by 

the dictionaries. With AI-enabled content analysis, or rather with using an untrained AI content 

analysis tool (e.g., IBM Watson that is not trained for speech charisma), there is no interpretation 

of the coding scheme before running the program. Rather, the interpretation decisions are made 

when researchers map keywords to categories, much like in the manual case. 

Approach Reliability

Reliability is the degree of agreement among coders and varies significantly for the three 

different approaches. In manual content analysis, reliability is low, since instances of mis-

categorization of words or phrases (wrong category), miscounting words, and missing words 

altogether are quite high. Furthermore, inconsistencies in interpreting the coding scheme 

between the different coders or in interpretation of particular words or phrases lead to relatively 

low inter-coder reliability (64 percent across the three speeches). 

In computer-aided content analysis, once the appropriate dictionaries (default and 

custom) are selected and applied, coding reliability is 100 percent. This means that, regardless of 
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who uses the content analysis software program to analyze a particular speech, the matching of 

the text to the categories in the selected dictionaries will be exactly the same each time.

Somewhat surprising is the fact that AI-enabled content analysis without training of the 

machine-learning algorithm is less reliable than computer-aided approaches. This is because, 

while the generation of relevant words and phrases is exactly the same when the same speech is 

processed through IBM Watson, these words and phrases (keywords) still must be coded 

manually (since IBM Watson is not pre-trained for speech charisma). This means that the manual 

coding of the IBM Watson output has the same shortcomings as manual coding, albeit with up to 

500 keywords to code versus over 3,000. Inter-coder reliability is 96 percent across the three 

speeches and this is considered high reliability. AI-enabled content analysis with training of the 

machine-learning algorithm on the other hand, relies on a growing knowledge base, such that 

each additional document benefits from the improved dictionaries and requires less human 

intervention (e.g., less manual coding), leading to even higher levels of reliability when 

classifying content. Table 4 summarizes the results from the three approaches.

Insert Table 4 about here.

Approach Validity

In manual coding, the validity, or the degree to which the coding of content echoes the 

actual meaning of the concepts being measured, is high. Researchers can code both manifest and 

latent content. Moreover, they can place words and phrases into context based on the meaning of 

the description of the category, even without a dictionary of words. To achieve high validity, 

coders discuss the differences and then re-code the speeches. The re-coded speeches are then 

further discussed with a third researcher to agree to the final coding. As a result, the manual 

coding results are used as the ‘gold-standard’: the baseline for evaluating the other approaches.
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In comparison, computer-aided content analysis shows low to moderate validity, with 

LIWC varying 40 percent from the baseline and with DICTION varying 8 percent from the 

baseline. LIWC and DICTION are able to code manifest content only. They code single words 

only, which for instance means that “Angel Network” is counted twice, with “angel” under 

“values and moral justification” and “network” under “collective focus”. Additionally, proper 

nouns are not included in the standard dictionaries (e.g., Harvard, Nashville, Oreos) unless they 

are added to custom dictionaries. There are differences between LIWC and DICTION. LIWC 

allows words to be counted in more than one dictionary, so certain words are counted multiple 

times. DICTION’s dictionaries are mutually exclusive and the program uses statistical weighting 

to determine in which dictionary to place a word. The difference in validity may be due to the 

size of the dictionaries (DICTION has 10,000 words while LIWC has 6,400) and the ability to 

match the dictionaries to the categories of speech charisma. 

The validity of AI-enabled content analysis, compared to the manual approach, is high, 

varying only 4 percent from the baseline. IBM Watson can process both manifest and latent 

content and can process keywords in the context of the sentence. However, when using the 

untrained version of IBM Watson, the keywords are not specific to the coding scheme. which 

means that manual coding of the keywords is necessary, with the same benefits as the manual 

coding approach.

Approach Efficiency

Efficiency refers to the extent to which an approach allows researchers to carry out 

content analysis quickly. Efficiency is assessed, not as an absolute measure, but relative to other 

approaches, as with validity. As expected, manual content analysis exhibits low efficiency, as 

analyzing content without any technical support is the most uneconomical use of time of the 
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three approaches. As shown in Table 3, Step 6 pretests and purifies the coding scheme. Step 6 

requires 96 hours (3 speeches x 16 hours per speech x 2 researchers) while Step 7 requires 4 

hours. Step 8 necessitates 114.75 hours: reading each speech and familiarizing oneself with the 

coding scheme and coding form for 6 hours, coding for 96 hours (3 speeches x 16 hours per 

speech x 2 researchers), checking for 12 hours (3 speeches x 4 hours per speech), and 

summarizing of results for 0.75 hour. The grand total for the manual content analysis of three 

speeches is therefore 214.75 hours. 

The efficiency of computer-aided content analysis is moderate to high, depending on the 

program used. For DICTION, the total is 2 hours, which is considered high efficiency. Step 5: 1 

hour for the comparison and selection of the existing dictionaries to the categories of speech 

charisma. Step 6: 1 hour to run the speeches through the program and examine the results. Step 

7: no revisions. Step 8: seconds to process the speeches through the program. LIWC is less 

efficient, requiring 102 hours, which is considered moderate efficiency. After determining that 

the dictionaries in LIWC do not match the categories of speech charisma well enough, three 

researchers jointly create new custom dictionaries to augment the default dictionaries to better 

match the categories of speech charisma. Steps 5 and 6 are the same as for DICTION: 2 hours. 

Step 7: 100 hours comprising 3 speeches x 16 hours per speech x 2 researchers plus 4 hours for 

consolidation. Step 8: seconds to process the speeches. 

The efficiency of AI-enabled content analysis is moderate, requiring 107 hours. This is 

mainly because IBM Watson is not pre-trained for speech charisma. Step 5: seconds to generate 

a set of keywords. Step 6: 1 hour for the researchers to compare the Excel tables for each speech. 

Step 7: 100 hours for the researchers to jointly revise the coding scheme to prepare for manual 

coding, comprising 3 speeches x 16 hours per speech x 2 researchers plus 4 hours for 
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consolidation. Step 8: 6 hours comprising 3 speeches x 1 hour per speech x 2 researchers. If AI-

enabled content analysis with training for machine learning were undertaken, the manual coding 

would not be as time consuming, as explained earlier.

In summary, manual content analysis has low reliability, high validity, and low 

efficiency. Of all the approaches, manual content analysis has the highest validity because 

humans can best detect context and meaning (at this point in time), but has the lowest accuracy. 

It is also the most time-consuming of all the approaches. Comparatively, computer-aided content 

analysis has high reliability, low to moderate validity (depending on the software program used), 

and high efficiency. This approach is the fastest and most reliable of all the approaches but does 

not detect context and meaning that is inherent in latent content. AI-enabled content analysis has 

high reliability, high validity, and moderate efficiency. It has slightly lower reliability than 

computer-aided and slightly lower validity of manual but is several-fold faster than manual 

coding.

Discussion

While AI is increasingly being developed and used to mimic the cognitive functions that 

humans use for learning and problem solving, its employment for content analysis studies has 

not yet taken off. This paper aims to introduce what AI is and to explain and demonstrate how it 

can be used to conduct content analysis in marketing and other social science fields. 

Consequently, the first contribution is a review of what content analysis is and its continued 

importance to marketing research, particularly with the explosive growth of natural language-

based, user-generated content. Table 1 and the related discussion identifies the breadth of 

communication content that have been analyzed in marketing studies and the continued use of 

manual content analysis, even with the availability of computer-aided content analysis tools. 
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While both manual and computer-aided content analyses have been used in marketing research, 

this review also reveals the absence of AI-enabled content analysis studies.

The second contribution is a roadmap for using AI-enabled content analysis. A brief non-

technical introduction to AI is provided and its promise for content analysis in marketing 

research is outlined. Then, Table 3 and the related discussion explain how AI-enabled content 

analysis adheres to and differs from the established steps for carrying out content analysis. 

Specifically, AI enabled-content analysis differs in Steps 5-9. With Step 5, NLP is used to 

generate a set of keywords. Step 6 for AI-enabled content analysis compares the generated 

keywords to the coding scheme, similar to computer-aided content analysis. Step 7’s revision of 

the coding scheme is similar to manual content analysis. Step 8 is when researchers manually 

code the reduced set of keywords due to AI’s ability to reduce the content to the most relevant, 

making coding substantially more efficient (taking 1 hour for each speech compared to over 19 

hours for the fully manual approach). Consequently, it is clear that when AI-enabled content 

analysis is applied, it offers a powerful, versatile, and replicable technique for dealing with 

content that is challenging and rewarding in terms of its volume, variety, and velocity.

The third contribution is that manual, computer-aided, and AI-enabled content analysis 

are applied and compared using leadership speeches to juxtapose the application of the different 

approaches and assess each approach for reliability, validity, and efficiency rather than to 

develop theory about leadership speeches. As reported in Section 5, it is found that AI-enabled 

content analysis has high reliability, high validity, and moderate efficiency compared to manual 

and computer-aided. It is important to note though that if the AI-enabled approach is trained to 

analyze charisma in leadership speeches by examining hundreds of speeches, one would expect 

the efficiency to be high when analyzing further individual speeches. Manual content analysis 
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relative to AI-enabled has substantial drawbacks for reliability and efficiency while computer-

aided relative to AI-enabled has drawbacks for validity.

Building on these contributions, this paper now highlights some of the advantages and 

disadvantages of AI-enabled content analysis, relative to manual and computer-aided 

approaches, for marketing research and other social science fields. 

Advantages of AI-Enabled Content Analysis

First, one of the main advantages of AI-enabled content analysis over the manual and 

computer-aided approaches lies in the nature of the data that can be analyzed. The computational 

and learning capabilities of AI-enabled content analysis make it suitable for handling “big data” 

which is data that is extremely high in volume (i.e., the amount of content), variety (i.e., the 

different types of content), and velocity (i.e., the rate and direction at which content is generated) 

(Dabirian et al., 2017; Dabirian et al., 2019; Gamdomi and Haider, 2015; Paschen et al., 2019). 

The science and profession of marketing are increasingly able to capture big data due to the vast 

amount of marketing-related and digitized content that is produced by consumers and firms, 

typically via social media platforms (Kietzmann et al., 2010). Such big data is “naturally 

occurring data” (Muller et al., 2016. p. 292) in that it is generated with no specific research 

purpose in mind and therefore is suited to inductive examinations and theory building offered by 

AI-enabled content analysis.

Second, the computational strength of AI allows researchers to move away from 

traditional deductive investigations that would struggle with the unstructured nature of big data 

to investigations that are more inductive and abductive in nature (Hannigan et al, 2019; Wagner-

Pacifici et al., 2015). It enables such investigations with computational features that provide 

insight into the sentiment tone of text, image, audio, and video content, which in turn facilitates 
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cognition about the meaning of content, much as a human would. Furthermore, like simulation 

methods, AI programs can act like a “computational laboratory in which researchers can 

systematically experiment (e.g., unpack constructs, relax assumptions, vary construct values, add 

new features) in a controlled setting to produce new theoretical insights” (Davis et al., 2007, p. 

495). This is particularly the case when the content changes over time and has significant 

velocity.

Third, AI-enabled content analysis allows researchers to move beyond dictionary-centric 

content analysis, to more of a process of “rendering” where researchers make contributions by 

efficiently switching between contrasting data and theory. Rendering produces knowledge by 

iterating between selecting and trimming content and applying algorithms (Hannigan et al. 

2019). In other words, AI-enabled content analysis can be much more open-ended than manual 

and computer-aided approaches, which helps to delineate the structure and meaning of the 

content. AI helps researchers to sample content, identify categories, and determine causal links 

between the categories. For marketing research, this aspect of AI-enabled content analysis would 

be beneficial to studies dealing with complex and evolving content such as text analysis of 

customer reviews (Büschken and Allenby, 2016; Lee, 2014; Lee and Bradlow, 2011) or 

understanding how consumers view brands through social tags (Nam et al., 2017). Furthermore, 

in contrast to survey-based studies that by design have pre-determined variables and are a typical 

source of data for research, AI-enabled content analysis can handle similar and greater volumes 

of more open-ended data in a jointly inductive and qualitative way (Tonidandel et al., 2018, 

Hannigan et al., 2019).
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Disadvantages of AI-Enabled Content Analysis

Like any research method, AI-enabled content analysis also has limitations. The first is 

the cost or availability of the AI technology. This paper is fortunate to use the IBM Watson NLP 

product inside IBM Bluemix. However, this technology and similar ones (e.g., Amazon AWS 

Lex and Salesforce Einstein) are not currently widely available to university researchers, or only 

at a significant monetary cost. At this time, not many universities have access to sophisticated 

tools, such as IBM Watson Explorer. However, this is changing. Free and on-demand, pay-per-

use versions of these tools are vastly available and can be used for research. However, as with 

most computing technologies, it is anticipated that both the cost and availability of the AI 

technologies will be less prohibitive over time, resulting in an accessible and powerful resource 

for researchers.

A second limitation of AI-enabled content analysis is that its capabilities can be 

misunderstood. The appeal and hype for AI are such that it can be perceived as a technology with 

algorithms that miraculously yield meaningful inferences and theory. This is not the case, at least 

at this point in time. Like most technologies, it is a tool used by humans to support their 

activities. As shown in Table 3 and discussed earlier, researchers still need to make judgements 

and decisions for technical issues including (i) how to select, collect, and submit the content; (ii) 

which keywords are mapped to each category; and (iii) which AI algorithms to use. Furthermore, 

the meaning and linkages between observations and inferences are decided by researchers. For 

without appropriate researcher input and guidance, there is a risk of producing decontextualized 

results based on overly simple indices and counts (Prein and Kelle, 1995). Thus, AI-enabled 

content analysis does not replace the established steps of content analysis; it automates and 

augments them.
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Limitations

Of course, this paper has its limitations. The first is that only one type of content is 

analyzed (leadership speeches) and a limited sample is used (three speeches), restricting 

generalizability. Leadership speeches, as good examples of long-form text content, are chosen 

for the reasons stated earlier. Other forms of content such as short-form text (e.g., social media 

text), audio, images, videos, and hypertext and a larger sample could also be studied. Especially 

with audio-visual content, the ability of AI-enabled content analysis to interpret facial 

expressions of speakers, tone of voice, etc. promises previously unthinkable richness of data and 

research insights. 

The second limitation is that this paper uses a pre-defined coding scheme because the aim 

of this paper is to illustrate AI-enabled content analysis compared to manual and computer-aided 

approaches. However, AI can also be used to develop theory such as through topic modeling to 

identify themes and through identifying coding schemes in classic content analysis.

Conclusion

This paper opens by highlighting the importance of content analysis for theory 

development in marketing research and the promise of AI to help with this task. The paper then 

sets out to introduce, apply, and compare AI-enabled content analysis so researchers will know 

when and how to use the approach. This is achieved via three contributions. First is the review of 

studies in marketing that have used content analysis to highlight the marketing phenomena 

examined, the type of content analyzed, and the content analysis approach used (Table 1). The 

second is a roadmap of steps for AI-enabled content analysis using NLP for generating keywords 

that can be mapped to content categories (Table 3). The third is the application of AI-enabled, 

manual, and computer-aided approaches, illustrated through the content of leadership speeches, 
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to assess and compare the reliability, validity, and efficiency of each approach. It is hoped that 

these contributions demonstrate the utility and boundaries of AI-enabled content analysis and 

motivate fellow researchers to use AI-enabled content analysis for studying marketing and other 

social science phenomena.
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Table 1: Content analysis in marketing research 
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Figure 1: IBM Watson natural language processing of text
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Table 2: Eight categories of speech charisma
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Table 3: Steps and measures for three approaches to content analysis
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Table 4: Reliability, validity, and efficiency results across content analysis approaches
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Appendix A: Codebook and coding form

Page 44 of 52European Journal of Marketing

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



European Journal of M
arketing

2

Page 45 of 52 European Journal of Marketing

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



European Journal of M
arketing

3

Page 46 of 52European Journal of Marketing

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



European Journal of M
arketing

4

Appendix B: Manual coding results for charismatic leadership
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Appendix C: DICTION dictionaries used for charismatic leadership categories
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Appendix D: DICTION coding results for charismatic leadership
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Appendix E: LIWC dictionaries used for charismatic leadership categories
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Appendix F: LIWC coding results for charismatic leadership

Page 51 of 52 European Journal of Marketing

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



European Journal of M
arketing

9

Appendix G: IBM Watson / manual coding results for charismatic leadership
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