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ABSTRACT 

The development of complex interactive 3D systems raises 
the need for representations supporting more abstract 
descriptions of world objects, their behaviour and the world 
dynamics. The inclusion of Artificial Intelligence 
representations and their use within 3D graphic worlds face 
both fundamental and technical issues due to the difference 
in representational logic between computer graphics and 
knowledge-based systems. We present a framework for such 
an integration illustrated by a first prototype. 

ACM Classification: H5.1 [Multimedia Information 
Systems] Artificial, Augmented and Virtual Reality - 

General terms: Theory, Algorithms, Design and 
Experimentation 

Keywords: Knowledge Representation, Qualitative 
Reasoning, Intelligent Virtual Environments. 

INTRODUCTION 

With the development of Virtual Reality (VR) and 
Interactive 3D  (I3D) environments, there has been a 
growing interest in describing virtual world structure and 
dynamics at a more abstract level [5] [19] [18]. A number 
of researchers have proposed to integrate Artificial 
Intelligence representations “on top” of virtual worlds to 
facilitate a conceptual description of scenes and their 
evolution, thus introducing the concept of Intelligent 
Virtual Environments [2]. Typical applications include: 
world creations from ontological descriptions [18] or from 
Natural Language descriptions [8], multimodal interaction 
[20], and behaviour simulation and interpretation [6] [26].  

Physical simulations of I3D systems still lack the ability to 
perform accurate real-time simulations [15]. They rely on 
various types of physical event discretisation based on the 
graphic primitives for interaction, essentially contact and 

collision events. This discretisation, upon which most 3D 
platforms are still based, is actually inefficient to solve 
many problems of common sense physics. The reason is 
that the implementation of such effects is entirely 
procedural and not based on first principles, nor even on 
generic concepts or re-usable categories. However, this 
discretisation of behaviour which takes place in most 3D 
graphics engines also supports the integration of symbolic 
reasoning for behavioural simulation [7], as well as 
providing a general principle for the integration of 
knowledge-based systems in VR. 

In this paper, we introduce a framework for a consistent 
integration of semantic representations in VR supporting 
the interleaving of simulation and interpretation. Our main 
objective is to articulate object and action representations 
into the cycle of transformations affecting the virtual world, 
and to investigate the specific representational problems 
faced when relating the virtual world dynamics to 
knowledge structures. 

PREVIOUS AND RELATED WORK 

There has been a growing interest in high-level 
representations of virtual world simulations in recent years, 
coming from various perspectives, from virtual world 
design to the implementation of intelligent agents. 

Badler’s group [4] pioneered the introduction of explicit 
action representations in virtual environments, initially to 
support the execution of action variants under the influence 
of natural language instructions. This was the first time in 
VR that actions where conceptualised in some form of 
ontology, which was termed an “actionary”.  Kallmann and 
Thalmann [17] introduced the notion of smart objects in 
virtual simulations to associate typical behaviours 
following real-time interactions for instance with virtual 
agents. Their approach has been a first step towards the 
introduction of a more generic and abstract behaviour 
representation associated to the objects (as opposed to all-
out scripting), as well as a preoccupation with functional 
aspects, although not recurring to AI techniques strictly 
speaking.  
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Several research groups have recently explored semantic 
representations for virtual environments: Muller-Tomfelde 
et al. [28] used knowledge structures to facilitate the 
exploration of virtual environments. Latoschik et al. [20] 
have developed symbolic representations for virtual 
environments, initially as part of multimodal interfaces to 
VR. Kleinermann et al. [19] have introduced semantic 
representations for virtual environments to facilitate the 
design of virtual worlds. Kalogerakis et al. [18] proposed 
the use of ontologies to structure the contents of virtual 
worlds, using OWL graphs to represent 3D objects and 
scenes. 

From a different perspective, Lieberman et al. [25] have 
advocated the introduction of Common Sense 
representations in interactive systems. While Minsky [27] 
made a strong case for this, they have given several 
practical examples of the role of CS in supporting 
interactive systems [24], including an Augmented Reality 
kitchen [21] using a subset of Open Mind [30].  

In the field of AI-based behavioural simulation, Erignac [9] 
was the first author to introduce the use of Qualitative 
Simulation in virtual environments to simulate the 
behaviour of complex devices with which virtual humans 
had to interact. In previous work [7], we have explored the 
use of Qualitative Process Theory [12] to support 
Qualitative Simulation in virtual environments, mostly for 
reasoning with liquids and thermal exchanges. More 
recently, Zhou and Ting [36] have also adopted Qualitative 
Physics for object behaviour in tactical simulation. 

REPRESENTATIONAL ISSUES 

In essence, the introduction of knowledge layers in virtual 
environment constitutive of Intelligent Virtual 
Environments [2] can be characterised by the conflict 
between two representational logics. One corresponds to 
the graphical data structures representing the virtual 
objects, and the other to the knowledge representation for 
the same objects as well as the actions occurring in the 
virtual world.  

Graphical representations have evolved out of concerns for 
efficient display, rendering and the control of physical 
interaction (mostly collision between objects and between 
objects and volumes, from which most graphical events can 
be defined). The graphical data structures for a typical 
object (a glass) are represented on Figure 1. This 
representation comprises graphical data structures such as 
meshes (the core object which is displayed with a position 
and an orientation) and textures (elements of visual 
appearance that can also be dynamically modified to figure 
changes in state) grouped into “objects”. The relationships 
between various objects or between components of a 
complex object are actually graphic primitives such as 
base, which will determine the joint motion of an object in 
contact with the base and the base itself. A significant 
proportion of the representation is dedicated to physical 
parameters which are also used by the physical simulation 
system to compute object dynamics. The elements of 

visualisation are derived from meshes and textures both for 
static images and real-time animations. It should be noted 
that such graphical representations are not structured and do 
not support spatial or part-whole inferences, which have to 
be procedurally encoded in an object instance’s behaviour. 

Functional Representations and the integration between 
Objects and Actions Representations 

Our working hypothesis is that a successful representation 
should be able to articulate object representations with the 
actions and processes they are most likely to take part in, 
while preserving the possibility of generic inference.  

The description of object properties from the perspective of 
their use constitutes a specific research topic known as 
Functional Reasoning [11]. Bicici and Saint-Amant [3] 
have provided a valuable classification of the various 
approaches to functional reasoning by analysing the role 
assigned to shape, causality and physics in various 
approaches. Of particular interest is the fact that, while 
discussing Winston et al.’s work [35], they emphasised how 
shape information can be enriched with semantic 
properties, for instance the fact that a cup should also be 
described as “lift-able”. This is important in defining 
relevant levels of granularity for the object descriptions. 
Vaina and Jaulent [31] have introduced a representation 
scheme to support functional recognition, which they have 
referred to as a “compatibility model”. They consider that 
the functional categorisation of objects should make use of 
criteria which are specific to actions. Finally, Van Leeuwen 
et al. [32] have investigated from a psychological 
perspective the relations between affordances and the 
perception of tool function. All of this previous research 
has encouraged us to adopt a representation inspired from 
the object function, in which for instance physical states 
could be interpreted in functional terms. This is also in line 
with much of the contents of the “ontology for liquids” 
proposed by Hayes [13], in which much of the basic 
properties of liquid containers have been described 
originally.  

This symbolic representation (Figure 1), taking the form of 
a small semantic network, attempts at relating structure to 
function, on the basis of actions likely to affect the object. 
On the structural side, it describes the part-whole structure 
of the object and the elementary physical properties of its 
components. They are not all shown on the Figure 1 as they 
can be derived from the property of substances of which the 
object parts are made, etc. Structural properties such as 
part-whole relations support common sense inferences 
through the semantic graph, which can be triggered by the 
manipulation of object parts, for instance the fact that if the 
bottom of the glass is tilted, all parts supported by the base 
will also be tilted (including its internal_volume and 
opening). On the functional side, it attaches functional 
states to the object, more specifically object parts such as 
its internal_volume, which takes states such as FULL 
or EMPTY depending on the quantity of substance it 
contains. The specification of the type of content is also 
part of the functional description (OpenFluidContainer), 



although its does not preclude the possibility for the glass to 
contain other objects, such as small solids.  Filling and 
Emptying processes are not part of the object 
representation, but can be triggered by the existence of 
connecting paths between the object’s internal 
volume and the outside environment. These paths 
are established from the object structure and the physical 
states of each of its constituent parts. The container’s 
opening for instance enables only inwards path when 
VERTICAL but enables outwards paths when TILTED 
(this is a functional version of the notion “right way up” in 
Hayes’ ontology of liquids [14]). An important aspect of 
this representation is its connection to the graphical object 
of which it constitutes a semantic description. Elements in 
bold whose label bears an asterisk are actually grounded in 
the 3D world, as they correspond to graphical objects 
taking part in physical interactions.  Certain parts are linked 
to “virtual” (in the strongest sense of the word) objects, 
which correspond to certain functional parts, such as the 
opening of a container; these have an existence but are not 
strictly speaking physical objects. We have chosen to 
represent them explicitly in the virtual world to be able to 
capture certain physical interactions (although these are 
“invisible” objects) For instance, Opening#1 (Figure 1) 
is implemented in the graphical world as an invisible object 

attached to the top of the glass, whose position and 
collision information will promptly detect if any object has 
landed on itself, and is so blocking the glass’s opening. In 
our semantic representation, such an action will be 
interpreted by removing its Connected-To link to the 
outside. They are the points of entry into the semantic 
representation, those likely to be affected by 
transformations of the virtual world, and updated by the 
post-conditions of actions and processes. On the other hand, 
properties attached to those nodes can be propagated within 
the object representation through common sense inferences.  

Object representations also serve as a basis for scene 
representations. Several objects can be connected through 
semantic relations expressing their spatial arrangement 
enabling inference over the aggregate semantic network. 

SYSTEM OVERVIEW AND ARCHITECTURE 

The overall system architecture is designed to integrate 
knowledge representation and reasoning with real-time 
interaction and simulation. The former maintains a 
semantic interpretation of the world, while the latter 
updates the reference world (object creation, modification 
and destruction) and visualises such dynamic 
modifications. From an implementation perspective, it 

           
Figure 1: Graphical Representation versus Knowledge Representation



involves developing external modules on top of a 
commercial game engine (Unreal Tournament™) [23]. The 
only caveat is to avoid the idiosyncrasies deriving from the 
implementation of a given graphic environment: however 
the notion of event systems on which our approach relies is 
common in VR [16] and has also been used in previous 
work with a custom built 3D graphics system [6].  

The architecture re-uses the event-based approach we have 
developed previously to integrate AI-based behaviour in 3D 
worlds for qualitative and causal simulation [7] [26]. The 
system architecture is represented on Figure 2. The UT 
engine supports world visualisation and physical interaction 
with the world objects. Embedded in the UT engine is the 
Karma™ Physics engine which supports real-time 
simulation for all simple object dynamics and plays a 
particular role in the grounding of certain representations in 
the virtual world.  

On top of the UT engine, we have developed an Event 
Interception System (henceforth EIS), which is in charge of 
all discretisation and constitutes the main interface between 
the VR world and the semantic layer. It contains: i) an 
event interpretation module, analysing low-level events 

produced by the engine (for instance the bump(obj1, 
obj2)) for the collision between graphical objects) to 
trigger the recognition of actions and processes ii) an effect 
visualisation module, which executes the procedural 
consequences of high-level actions and processes 
“physically” triggering their effects in the virtual world.  

All software components of the top (semantic) layer are 
developed outside the engine as C++ modules 
communicating through sockets via the UT socket 
interface. Central to the semantic layer is the scene 
representation, which is composed of a set of object 
representations formalised as semantic networks. These 
objects representations and their relations will be updated 
as the world is modified and will also serve to carry out 
common sense inference about the situation. A separate 
module for common sense knowledge contains an inference 
engine that will update the object representations each time 
part of them has been altered by the post-conditions of an 
action or process. This updating will be based both on 
semantic propagation within the object representation and 
on the use of standalone common sense rules under 
declarative form. The behavioural engine is in charge of 
semantic action recognition, i.e. the instantiation of action 

 

 
Figure 2: System Architecture for the Integration of a Knowledge Layer in an Interactive 3D Environment 



representations from low-level events and the interpretation 
of object changes in conceptual terms.  It also co-ordinates 
the physical transformations of graphical objects with the 
modification of their semantic representations. 

ACTION REPRESENTATION, SIMULATION AND 
GROUNDING 

In I3D systems, there is a need to make sense of the 
environment and recognise actions as they occur, and also 
to apply specific actions to the world objects (which can for 
instance be planned by an autonomous agent). The relation 
between symbolic representations and the objects and 
events taking place in the virtual world can be seen as a 
particular case of grounding [34] [39]. Ideally, grounding is 
a circular process, coupling real-time physical simulation to 
the updating of symbolic representations and executing in 
the virtual world the physical transformation corresponding 
to the actions post-conditions.  

Action recognition and execution are not strictly 
symmetrical processes in terms of representation. Let us 
consider an action whose effects can be carried out entirely 
under the control of a Physics engine. An example of such 
action would be the TILTING of a glass (Figure 5). In the 
virtual world, a TILTING action can be triggered by a 
high-momentum impact on specific locations of the 
standing glass. The triggering events as well as the 
following motion of tilting can be entirely determined by 
the Physics engine. The subsequent physical simulation will 
provide all required state changes  in the grounding world 
as well as display them in real-time. In the resulting state, 
the glass will be laying horizontal and still on the table 
surface.  

The recognition of this type of grounded actions (i.e. 
actions that can take place on physical grounds without 
being enacted by an agent) can be achieved through the use 
of state-based action recognition described initially by 
Andre [1] and implemented in VR by Cavazza and Palmer 
[6]. This method of action recognition often relies on an 
underspecified representation of the action itself, where 
only certain instantaneous events are represented. The 
sequence of events is defined to be characteristic of the 
specific action to be recognised: parsing such a sequence of 
events enables to instantiate all the relevant elements of an 
action representation. For instance, to detect that an object 
has landed on a surface, it is sufficient to recognise its 
impact on the surface followed by a standing position on 
that surface (in practice this can be achieved by the 
recognition of successive impacts of decreasing 
momentum.  

For reasons of computational complexity which are easily 
understood, the virtual world cannot rely on an accurate and 
comprehensive simulation of all physical phenomena. 
Physical simulation is actually limited to solid dynamics, 
but does not include accurate simulation for continuum 
mechanics, fluid dynamics or thermodynamics.  
For those actions that require some level of discretisation 
because they cannot be entirely simulated at the physical 

level, the relationship between action application and 
recognition is somehow different. One such action is 
BREAKING, occurring for instance when a glass collides 
with a hard object (whether the glass itself or the object is 
moving). Its representation associates causes, in the form of 
pre-conditions and triggers and effects, in the form of 
procedures and post-conditions (Figure 3). The detection of 
the action actually corresponds to a semantic interpretation 
of the low-level physical events, in which causes and 
effects are associated within a semantic representation. In 
the instantiated action representation of Figure 3, the trigger 
is an impact event involving the glass, represented by a 
dynamic, time-stamped, predicate 
%Impact(Glass#1,Table#1 t0). Once our system 
has generated this impact event, the action recognition 
system verifies the validity of its pre-conditions, namely 
that the impact took place on a hard object (accessing 
physical properties of the object from its representation, 
such as Hard(Table#1). Upon successful instantiation 
of the action representation, its effects can be activated in 
the virtual world (with the corresponding updating of the 
knowledge representation). In our example, the post-
condition ~Shattered(Glass#1) will both trigger an 
animation and update the glass’s semantic representation, 
by propagating the shattered state to its Wall part (see 
Figure 1). In our formalism, such predicates that also 
activate an animation visualising objects alterations, are 
prefixed with a tilde (~). Here the activation of the 
~Shattered predicate triggers a sequence of animations 
that generates the glass fragments and particles. 
To summarise, we can say that fully grounded physical 
actions have different representations for execution and 
recognition, while discretised actions use a unique semantic 
representation which detects the physical conditions 
triggering the action (e.g. an impact in the case of a 
Breaking action) and executes its effects on the virtual 
objects. 
 

 
 

Figure 3:  The Action Representation Formalism 



COMMON SENSE REASONING 

Much of the semantics of VR is about scene structure, 
spatial relationships, possible actions and their 
consequences, and making sense of the world’s dynamic 
evolution. A proper interpretation of structure and 
transformations often requires common sense reasoning.  
There have been many different approaches to common 
sense reasoning in AI since Pat Hayes’ Naïve Physics 
Manifesto [13]. The current day situation can be 
summarised into two main approaches. One is the very 
large knowledge base approach, which has now evolved 
into ontological work, such as Cyc [22] and OpenMind 
[30]. The other could be termed a “deep knowledge” 
approach and is epitomised by Qualitative Reasoning [33] 
[12]. One major issue has always been the level of 
granularity and modularity of such knowledge units. 
Common sense knowledge can actually be embedded in 
action or process representations (for instance as pre-
conditions) or exist as independent knowledge (often 
presented as rules). While elements of commonsense are 
included in our action and process representations, we have 
chosen to restrict common sense inference sui generis to 

“rules” of generic nature that could be applied throughout 
object representation, possibly across object categories. 
Such rules would include the transitivity of inclusion along 
part-whole relations, the fact that an object is not free if 
another object is on top of it, that a glass object is 
“breakable” depending on its size and shape (a window or 
glass wall but not a marble), the fact that a wet object may 
not be flammable, etc. In other words “primitive” common 
sense is best kept separate under declarative form. In a 
further step, we could try to connect our functional 
representations to an external large-scale common sense 
ontology from which to automate the acquisition of such 
knowledge (as well as testing the compatibility of its 
granularity with our representation). 

EXAMPLE RESULTS 

The knowledge layer can be used to support common sense 
inferences in conjunction with qualitative simulation. In the 
configuration of Figure 4, a cardboard menu sits on top of 
the glass. Let us place a bottle cap on top of the menu. This 
cap is actually supported by the menu. The scene 
representation has been updated to reflect this (the actions 

 

   
 

Figure 4: Integrating Physical Simulation, Common Sense Reasoning and Qualitative Simulation (see text for 

explanations) 
 



detected when the cap was put on the menu are not 
represented on the Figure). Let us set the cardboard menu 
alight by approaching a flame: this will trigger a Burning 
QP.  The combustion process starts when a flammable 
object gets in contact with a Heat-Flow (e.g. a naked flame) 
generated by a Heat-Source (a lighter) itself manipulated 
interactively by a user (Figure 4-1).  In essence, the 
combustion process, simulated by our QP Engine (Figure 4-
2), decreases the amount-of-substance in the 
burning object until it disappears (when the corresponding 
qualitative variable reaches zero). The real-time 
visualisation of this process is the regular reduction of the 
object scale (a graphical parameter modifiable in real-time 
affecting an object’s size), while simultaneously generating 
and controlling two particle emitters, one simulating the 
flame and one the combustion smoke.  
The process termination is associated with a specific event 
confirming the disappearance of the burning cardboard 
piece: %Destroyed(Menu#2) triggered by the 
recognition of a DISAPPEARING action, as shown in 
Figure 4-3 (The DISAPPEARING action is a generic 

action recognising the consequences of processes altering 
an object’s existence, such as melting, burning, 
evaporating, which is kept external to the process 
simulation itself). In our formalism, predicates prefixed 
with % correspond to dynamic predicates (these are used 
for recognition of changing states, in particular object 
destruction or removal; they are not unlike a suppression 
demon in data-driven programming). The disappearance of 
the menu in the object representation leads to the update 
that the relation on (menu#2, caps#2) no longer 
holds.  
 
This inference is obtained through the common sense rule  
operating on the object representation (Figure 4-4), 
according to which if a supporting object is destroyed the 
object standing on top of it is no longer supported. The 
latter is represented through a %UndoOn(cap#2) 
predicate. This predicate can in turn activate the recognition 
of a FALLING action (Figure 4-5), being part of its pre-
conditions. The effects of FALLING include calling the 
Karma™ physics engine to simulate the actual fall of the 

 

 
Figure 5: Qualitative Simulation and Common Sense Reasoning (see text for explanations) 



cap (Figure 4-6) (using reference resolution to pass the 
internal identifier of the reference graphic object cap#2). 
In turn, the Physics engine will simulate the fall into the 
glass during which more low-level events are generated 
upon collision with the glass’s mesh. These events, named 
Kimpact(…), can be parsed into a LANDING action, 
which is defined through the recognition of a couple of 
impacts, followed by a still position. A further common 
sense inference, not represented in the figure, yields that the 
cap is eventually inside the glass, as it faced its opening 
and its size is smaller than it. This example illustrates again 
the interleaving between the various aspects of the 
simulation (Physical, Qualitative) and the inferences 
derived from the scene representation. One limitation here 
is that, unlike in our previous implementation, we are using 
slightly simplified QP, which are simply executed as 
durative actions (i.e. cannot be dynamically modified once 
they have been started).  
Another example, the tumbling glass (Figure 5), illustrated 
the integration between various levels of simulation 
(physical, qualitative) mediated by the semantic 
representation, as well as the overall system dynamics. This 
example illustrates the integration of physical interaction, 
action recognition, common sense inference and qualitative 
simulation. It shows how a simulation which is currently 
largely scripted in most I3D systems can be based on first 
principles, which will also support appropriate high-level 
descriptions of the events.  

As described in Figure 5-1, a glass containing a certain 
amount of liquid will tilt when being hit by another moving 
object (irrespective of the origin of that other object’s 
motion). The glass’s movement is directly managed by the 
Physics engine, which will calculate the glass’ trajectory, 
while displaying a real-time animation of its motion (Figure 
5-2). It can be recognised as a tilting action through the 
action recognition procedure, which instantiates the formal 
definition of a TILTING action from the low-level 
physical events captured by the EIS (translated into the 
dynamic predicate %Impact(Glass#1, t0)). As a 
result of a TILTING action recognition, the glass 
representation is finally updated according to the action’s 
post-conditions (Figure 5-3). The final position of the glass 
is passed to the object representations from which it can be 
inferred that 1) when the glass is tilted, its opening is tilted 
as well (state propagation through part-whole relationships 
in Figure 5-4)  2) Because TILTED corresponds to a 
functional position of the Glass#1 as an 
OpenFluidContainer, this establishes a new 
outwards path between the glass’ internal_volume 
and its opening. As a consequence, the dynamic 
predicate %out-path is instantiated (Figure 5-5). This 
type of inference is a direct consequence of our functional 
approach to object representation.  

Our representation gives a rationale to this, based on the 
notion of “paths” which determine how fluid flows can be 
established. The possibility of an out-path activates an 
Emptying QP [7], whose pre-condition detects such paths 
(Figure 5-6). The simulation of that QP creates a flow of 

liquid (Figure 5-7); during the simulation the amount of 
liquid in the glass is decreased (this being updated in the 
object representation until the glass’ internal volume 
reaches the EMPTY value, feeding back the simulation 
results into the object representation). 

CONCLUSIONS 

We have presented a first prototype exploring the 
implementation of Intelligent Virtual Environments in some 
depth, trying to address all relevant aspects within a single 
consistent framework. In this prototype, we have integrated 
work from several areas of Artificial Intelligence 
supporting Common Sense reasoning (mostly Qualitative 
Reasoning and Knowledge Representation), and have 
proposed an architecture for their real-time integration into 
VR.  

The emphasis has been on deep representations rather than 
large-scale ontologies and the prototype under development 
remains of moderate complexity with a total of 25 object 
categories and 40 actions and processes. In that sense, if 
metrics were to be used to measure its scale or complexity, 
these should rather be inspired from Faulkenheimer and 
Forbus [12] who reported that their few dozens of 
qualitative processes were formally equivalent to thousands 
of Horn clauses. This is still modest if compared with large 
Common Sense knowledge bases, yet allowed us to explore 
problems of deep representation in the context of dynamic, 
interactive systems. It is probably too early to assess the 
real-time performance of the system considering its scale. 
However recent results obtained with parts of this 
architecture have suggested that the use of AI techniques 
was still compatible with the response times of interactive 
systems [26].  

The real-time integration of knowledge representations in 
VR opens multiple applications in virtual world design, 
interpretation and user interaction. At the same time it 
constitutes a good experimental setting in which to address 
some traditional AI problems such as grounding, with the 
potential of supporting more fundamental work as well. 
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