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Abstract

We present a framework that retains ambiguity in feature

matching to increase the performance of 3D object recog-

nition systems. Whereas previous systems removed ambigu-

ous correspondences during matching, we show that ambi-

guity should be resolved during hypothesis testing and not

at the matching phase. To preserve ambiguity during match-

ing, we vector quantize and match model features in a hier-

archical manner. This matching technique allows our sys-

tem to be more robust to the distribution of model descrip-

tors in feature space. We also show that we can address

recognition under arbitrary viewpoint by using our frame-

work to facilitate matching of additional features extracted

from affine transformed model images. The evaluation of

our algorithms in 3D object recognition is demonstrated on

a difficult dataset of 620 images.

1. Introduction

Recognizing and estimating the 3D pose of an object

from a single image has many applications in computer vi-

sion, robotics, and augmented reality. Unlike many other

computer vision tasks such as object categorization and seg-

mentation, the application of 3D recognition to robotics and

manipulation requires a much higher standard of perfor-

mance. Consumers will not use a robot if there is only a

90 percent chance that their objects will be found and re-

trieved when they ask for it. Even with these higher stan-

dards, many current state-of-the-art 3D recognition systems

do not fair well under real-world conditions. In this pa-

per, we propose two algorithms that can be used to improve

many existing point-based systems regardless of the type

of features or method of matching used. We validate our

methods on a family of SIFT-based systems [2, 4, 9].

The general paradigm for 3D object recognition [2, 4,

21] is to first generate correspondences between image fea-

tures and model features, and then to use the 3D positions

associated with the matched model features to estimate the

pose of an object by enforcing geometric constraints. Given

Figure 1. Examples of recognized objects with our improvements.

The bottom row of images shows the closest views of the object

used to generate the 3D model.

a set of perfect correspondences between 3D points and 2D

projections, the problem of determining the pose of a cali-

brated camera has been extensively studied. The main prob-

lem that remains unsolved in 3D object recognition is the

problem of automatically generating enough reliable cor-

respondences. Even though techniques like RANSAC are

able to deal with incorrect correspondences, often there are

just not enough correspondences to begin with. If enough

correspondences are provided, recovering the pose is essen-

tially solved and we show that the various methods for re-

covering pose have very similar recognition performance.

In many of the current point-based 3D object recognition

systems [2, 4, 11], specific point-to-point correspondences

from 3D model to 2D image are obtained initially by match-

ing discriminative features. Much of the recent research in

local image features [12, 14] has been to design descriptors

that are as discriminative and robust as possible to obtain

point-to-point matches. In this paper, we claim that a small

amount of generalization by quantizing the descriptors can

significantly improve the robustness of matching and thus

the performance of specific object recognition.

One main issue that arises with manmade objects is that

there are inevitably locations on the object that have sim-

ilar local appearances. Features extracted from these lo-

cations have similar descriptors, and in the extreme case,

the descriptors may be exactly the same. Most current
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Figure 2. Quantization framework. Features are extracted from a

query image and then matched to a set of quantized model descrip-

tors. Each quantized model descriptor is associated with all of its

possible locations on the 3D model, which allows similar features

to be matched.

algorithms perform matching discriminatively; ambiguous

matches are often discarded because they are assumed to

arise from background clutter. This is exemplified by the

ratio test [12], which compares the distance to the closest

neighbor with the distance to the second closest neighbor.

Discriminative matching prevents features with similar de-

scriptors from being matched, even though these features

contain rich information about the pose of the object. The

presence of similar features is an inherent issue in match-

ing and no amount of tuning parameters or design of local

features can circumvent this problem.

In this paper, we argue that matching is more robust if

we do not commit initially to specific point-to-point corre-

spondences. Instead, if a match is ambiguous, we claim

that the image feature should be associated with a set of

possible locations on the model, retaining the ambiguity of

the correspondence until hypothesis testing. Figure 2 illus-

trates our proposed framework. Given a candidate pose of

an object, the correspondence ambiguity can be resolved as

the one which best fits the hypothesized pose. Finally, the

candidate pose with the greatest evidence after considering

multiple hypotheses is chosen as the pose of the object.

We propose to maintain feature ambiguity by quantizing

the features on a model. Each quantized feature is associ-

ated with a descriptor and all of its possible model locations.

These quantized features are still matched discriminatively,

but the quantization allows us to associate a feature on a

query image with multiple locations on a model. Because

retaining feature ambiguity increases the potential number

of outliers, we demonstrate an efficient way to handle these

additional correspondences.

Another issue that arises in the real world is that objects

in unstructured environments can appear in any orientation

and position, often significantly different from the images

used to train the model. Accounting for all possible view-

points is infeasible, yet a 3D recognition system must still

recover the object pose given a finite set of training images.

In the past, this has been addressed by using affine invariant

features [13], affine invariant patches [21] and view clus-

tering [11]. Here we take the approach of simulating novel

viewpoints [6, 8, 15, 18] and adding features extracted from

affine transformed training images to our model. One prob-

lem with this approach is that the number of features on

the model increases significantly, with many features having

similar descriptors. We show that our quantization frame-

work facilitates matching to these features and that handling

viewpoint in this way can significantly increase the perfor-

mance of 3D object recognition.

2. Preserving ambiguity by quantization

Vector quantization of features has been used widely in

the computer vision literature for categorization tasks such

as scene recognition [20] and object categorization [28].

Many of the algorithms used for these tasks fall in the realm

of the Bag of Words approach, where a dictionary of visual

features is learned through clustering and new images are

categorized by comparing histograms of quantized visual

words. In these cases, quantization is used as a way to gen-

eralize and be robust to intra-category variations.

Most related to our work are methods that employ geo-

metric reasoning on visual words [1, 26] for image retrieval

and category recognition. However, for the task of specific

3D object recognition, the prevailing view is to use highly

discriminative features. As a result, multiple features with

similar appearance on a model are rarely matched.

In this paper, we claim that these similar features are es-

sential to obtain reliable 3D object recognition. We intro-

duce ambiguity into the matching process by quantizing the

model features and associating each quantized descriptor

with potentially multiple locations on the model. When an

image feature is matched to a quantized feature, it is asso-

ciated with all the possible locations of that feature. During

hypothesis testing, the most likely correspondence given the

current pose can then be determined. Our framework allows

us to choose the most likely hypothesis given what we have

seen, and combines both ambiguous and unique features in

a unified framework.

2.1. Hierarchical meanshift quantization

In general, it is very difficult to choose the number of fea-

ture clusters a priori as different models have different num-

ber of features and degree of feature similarity. We choose

the mean shift algorithm because it clusters features based

on the similarity of the descriptors in feature space. The

bandwidth parameter of mean shift is a rough indication of

the desired intra-cluster variation and is more relevant to set

than the number of clusters.

In our implementation, we use a dual-bandwidth ap-

proach where features are quantized in a hierarchical man-

ner [17] using two levels of mean shift with bandwidths r1
and r2, such that r1 < r2. Clustering in this way allows

matching to be more robust to the distribution of descriptors



Figure 3. Example of quantized matching where (top) a query fea-

ture in green matches at a coarser level, but does not match at a

finer level by the ratio test and on (bottom) the vice versa is true.

in feature space. Our quantization scheme results in three

levels of quantized features, where the finest level l = 0
corresponds to the original features. Each quantized feature

ql
i at level l is then associated with a set of 3D positions on

the model corresponding to all the features in that cluster.

2.2. Discriminative hierarchical matching (DHM)

For the task of image retrieval, a common technique is

hierarchical matching on vocabulary trees [17] which as-

signs a visual word to every image feature. However, for the

task of object recognition, most image features arise from

background clutter. Assigning a visual word to every image

feature can increase the number of outlier correspondences

by orders of magnitude, making RANSAC intractable. We

propose to perform discriminative matching on each level

of the hierarchy to limit matches to background clutter.

Candidate correspondences are obtained by indepen-

dently matching the image features with each of the three

levels of features. A feature is matched on a particular level

if it satisfies the ratio test within that level. The matched

image feature is then associated with all the possible 3D lo-

cations of its corresponding quantized model feature. The

final set of correspondences is obtained by aggregating all

candidate correspondences at all levels, removing any du-

plicate point correspondences.

Figure 3 illustrates the reason for our choice of hierarchi-

cal clustering. In Figure 3 (top), the query feature in green

is equidistant to the centers of the two fine clusters (blue),

but it is significantly closer to the coarse cluster (red) on

the left than the coarse cluster on the right. At this stage,

it is impossible to disambiguate the correspondences in the

two fine clusters, so the quantized matching returns all the

candidate locations of the coarse cluster on the left for later

processing. Conversely in Figure 3 (bottom), the query fea-

ture is equidistant to the centers of the two coarse clusters,

but will match at the fine cluster level. If there were only

one level of clustering, one of these two situations would

result in no correspondence.

2.3. Viewconstrained RANSAC

Quantized matching drastically increases the number of

outliers as all potential locations on the model for a partic-

Figure 4. Example of tomato soup can recognized (left) at a view-

point significantly different from the closest model view (right).

ular quantized feature that do not correspond to the actual

location are incorrect. This is a significant issue as the num-

ber of iterations of RANSAC needed to guarantee a consis-

tent set of inliers increases dramatically with the number

of times a feature is repeated. If each feature is repeated

α times, then approximately αn times more iterations are

needed to guarantee the same level of performance from

RANSAC, where n is the sample size.

Prior to the advent of highly discriminative locally in-

variant features, such as SIFT, local features were mostly

shape-based and very ambiguous (e.g., corners, high cur-

vature points, curve inflections). Given that one-to-one

matching was infeasible, it was not uncommon for the co-

visibility [19] of model features to be used as a constraint to

reduce the search space. This constraint avoided attempting

to estimate an object’s pose from a set of features that were

not simultaneously visible on the model. In early literature

on the topic, methods such as interpretation trees [5], Hough

transforms [5], alignment [7] and grouping [10] were used

to address feature ambiguity.

In this paper, we introduce a modified version of

RANSAC, termed view-constrained RANSAC, to again ex-

ploit the co-visibility of model features. In practice, this is

implemented by maintaining the set of views for which each

point is visible when generating the 3D models. We will re-

fer to the set of cameras for which a point Pi is visible in

as its view set Vi. The view-constrained RANSAC algo-

rithm begins by choosing a correspondence Ci,j between

an image point pi and a model point Pj at random from the

set of candidate matches, C. Only points Pk with a view

set Vk that overlaps with the view set of the selected model

point Pj are retained. The view-constrained set of corre-

spondences Cvc(j) for a model point Pj is defined as

Cvc(j) = {Ci,k : Vj ∩ Vk 6= ∅ ∧ k 6= j} . (1)

The remaining n − 1 points needed to generate a pose

hypothesis are then selected at random without replacement

from the view-constrained set of points Cvc(j). The process

is repeated for a fixed number of iterations and the pose with

the greatest consistent evidence is selected.



Figure 5. Example detections from our challenging dataset. The images were taken in cluttered environments with different lighting

conditions and with the objects under various viewpoints and occlusions. The bottom two rows show the views used to generate the models

for two objects.

3. Viewpoint Change

In unstructured environments, objects may appear in an

image with a viewpoint significantly different from the im-

ages used to generate the 3D models. A naı̈ve solution to

this problem is to incorporate images of the object from

all possible viewpoints, although densely sampling the view

space would require a very large number of images.

A more tractable approach to account for viewpoint

change is to simulate novel viewpoints by applying affine or

perspective transformations to the model images [6, 8, 18].

Viewpoint simulation has been used to determine a key-

point’s repeatability [6] and to model a keypoint’s local ap-

pearance [8, 18]. Recently, Morel et al. [15] demonstrated

that directly matching features extracted from these sim-

ulated viewpoints significantly outperformed the state-of-

the-art affine invariant features [13] under large viewpoint

change. Matching is performed by extracting features from

a finite set of affine transformations of both model and query

images and then comparing all sets of features.

Our approach is inspired by Morel et al. and incorporates

features extracted from affine warped images onto the 3D

models. An affine transformation A can be decomposed as

A = λR(ψ)

[

t 0
0 1

]

R(φ), (2)

using Singular Value Decomposition (SVD), where R(ψ),
R(φ) are rotation matrices, λ > 0, and t ≥ 1. In this de-

composition, λ corresponds to the zoom and R(ψ) corre-

sponds to the planar rotation of the camera. For the case of

SIFT-based systems, we can ignore these terms as SIFT fea-

tures are both scale and rotation invariant. However, other

types of features may require sampling the whole space of

transformations. The remaining terms in the decomposition

correspond to the camera viewpoint, where t = 1
cos(θ) is the

tilt of the camera and φ is the longitude angle.

We consider tilts of t = {1,
√

2, 2} corresponding to

latitude angles of θ = {0, 45, 60} degrees in our imple-

mentation. For each t, we follow Morel et al. and sam-

ple the longitude angles φ by an arithmetic series φ =
{0, b/t, ..., kb/t} for b = 72 degrees and k = ⌊180 · t/b⌋.

Each pair {t, φ} specifies an affine transformation At,φ

which we use to transform a model image I:

It,φ(x, y) = I(At,φ(x, y)). (3)

From the affine transformed image It,φ, we extract SIFT

features and compute the locations of each keypoint pi =
A−1

t,φp
i
t,φ on the original image. We refer to these features

as simulated affine (SA) features.

A problem that arises with using SA features is that the

total number of features on the model may increase by an

order of magnitude or more. A typical model with SA fea-

tures contains tens of thousands of features, many of which

have similar descriptors. Pruning these features is very diffi-

cult because there is no clear metric as to when two features

are similar enough to remove one of them. Our quantiza-

tion framework facilitates matching to similar features and

results in a seamless integration of the SA features into a

recognition system.

4. Experimental Results

In order to validate our method’s performance in feature-

based object recognition, two sets of experiments were con-

ducted. The first set evaluates our algorithm’s ability to rec-

ognize objects in images, while the second set evaluates the

algorithm’s accuracy in recovering the full pose (3D posi-

tion and orientation) of objects in images. Given that our



Figure 6. 3D model of the tomato soup can from 25 images.

methods can be easily used to extend any point-based 3D

object recognition algorithm, we use three state-of-the-art

algorithms (Gordon and Lowe [4], EPnP [9], and Collet et

al. [2]) as our baseline systems. We incorporate the SA

features and quantization separately (SA, Q) and together

(SA+Q) to show their performance gains in complex scenes.

4.1. Data set

Many object recognition algorithms work very well in

controlled conditions, but fail when faced with real-world

scenes with strong illumination and viewpoint changes, oc-

clusions, clutter, and where many instances of the same ob-

ject might be present. Existing 3D recognition datasets [3,

16] have a large number of objects, but are mainly com-

prised of objects on monotone backgrounds. For evalua-

tion under a more natural setting, the dataset we collected

consists of common household objects in real, cluttered en-

vironments under different lighting conditions, occlusions

and viewpoints. Household objects and environments are

of importance in related fields such as robotics, due to ma-

jor renewed interest [22, 24] in enabling mobile manipula-

tors to perform useful tasks in unstructured human environ-

ments. Regular household objects often contain repeated

patterns, logos, text, and are often seen many at a time.

These issues cause most object recognition and pose es-

timation systems to not achieve success rates required for

robotic manipulation.

Our dataset contains 10 household objects and 62 im-

ages per object, for a grand total of 620 images. For each

object, three types of images were taken. 25 images con-

tain one instance of the object, and 25 images contain two

instances, both with their ground truth marked as regions

and ID within the image. Finally, 12 more images were

collected in a calibrated setup and their full 6D poses were

ground truthed. The full dataset is available online1 and a

few examples are shown in Figure 5.

4.2. Base systems

The 3D object recognition systems used as baselines in

our evaluation are those of Gordon and Lowe [4], EPnP [9],

and Collet et al. [2]. All of these systems use sparse 3D

models of objects with SIFT features for recognition and

1http://www.cs.cmu.edu/∼ehsiao/3drecognition/

share a common methodology which we summarize here.

The goal of these systems is to estimate a transformation

M = [R, t] of a 3D model with respect to the camera frame

for each object class instance in the image. This is accom-

plished by minimizing the sum of reprojection errors be-

tween the set of N projected 3D points P from the model

and the set of N 2D points in the image, p. The optimal

transformation M∗ is defined as:

M∗ = arg min
M

N
∑

i=1

d(pi,MPi)
2 (4)

The 3D models used in this paper are created with a stan-

dard Structure from Motion [25] algorithm from 25 images

taken at approximately equally spaced intervals in a circle

around each object, as shown in Figure 6. Every 3D point

on the model is associated with a corresponding SIFT de-

scriptor. Finally, proper alignment and scale for each model

are computed to match the real object dimensions.

When using SA features, we augment the basic 3D

model by first extracting SA features from each of the

model images. Then, using the estimated camera geometry,

we search for correspondences of each SA feature along the

epipolar lines in the nearby views. These correspondences

are used to triangulate the SA features onto the 3D model.

When incorporating quantization, we use quantized de-

scriptors (Section 2.1) and replace the ratio test with quan-

tized matching (Section 2.2) and RANSAC with view-

constrained RANSAC (Section 2.3).

4.2.1 Gordon and Lowe [4]

Gordon and Lowe introduced a fast 3D scene recognition

algorithm, which we modify to recognize objects. The al-

gorithm extracts SIFT features from the input image and

matches against each object model using the ratio test to

obtain a set of candidate 3D-2D correspondences P ↔ p.

Using RANSAC, a random subset of n points is chosen and

used to estimate a pose hypothesis by minimizing the re-

projection error with Levenberg-Marquardt. If the number

of points consistent with the pose hypothesis is higher than

a threshold, a new object instance is created and the pose

is refined using all consistent points. This procedure is re-

peated until the number of unallocated points is lower than

a threshold, or the maximum number of iterations has been

exceeded.

4.2.2 Enhanced PnP [9]

Enhanced PnP is a non-iterative, O(n) solution to the

PnP problem which does not require any initialization and

is much faster than standard iterative minimization tech-

niques. The EPnP 3D recognition system we created is

similar to that of Gordon and Lowe, but instead of using

Levenberg-Marquardt, we use the EPnP algorithm.
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Figure 7. Effect of different bandwidths on the average precision

for the orange juice carton using the Collet et al. system. We

vary the smaller bandwidth, r1, and choose the larger bandwidth

to be r2 = 1.5r1. There is no significant change in performance

for r1 ∈ [0.15, 0.30], and even over the entire range, we obtain

substantial improvement over the baseline system.

4.2.3 Collet et al. [2]

The algorithm introduced by Collet et al. improves on

the Gordon and Lowe method by combining RANSAC and

mean shift clustering on the set of 3D-2D correspondences.

This combination allows for a real-time solution of the cor-

respondence problem, even when there are many instances

of the same object present. After extracting 3D-2D corre-

spondences from a new image, the 2D locations p are clus-

tered using the mean shift algorithm. Each cluster of points

pk is then processed independently by running the Gordon

and Lowe pose estimation described in Section 4.2.1. Fi-

nally, all detected instances from different clusters with sim-

ilar estimated pose are merged together, and the instances

with the most consistent points survive.

4.2.4 Parameters

The parameters for our experiments were calibrated on im-

ages not in the dataset and were kept constant for every sys-

tem and every object. The mean shift cluster bandwidths

used for feature quantization were r1 = 0.2 and r2 = 0.3,

although the exact choice has little impact on the overall

performance of the system (Figure 7). For matching, we

choose a ratio test threshold of 0.8. We also restrict im-

age features to have at most 10 model correspondences in

the view-constrained RANSAC to maintain tractability. The

evaluation on this dataset was performed only once.

4.3. Object Detection

We first evaluated the performance of each system for

object detection. For each detection in an image, we project

all the points of the corresponding model onto the image

using the recovered pose and calculate the region A inside

the convex hull. We use the region overlap criterion [27]

A ∩Agt

A ∪Agt

> 0.5, (5)

Gordon and Lowe none SA Q SA+Q

Clam chowder can 0.36 0.56 0.46 0.79
Diet coke can 0.09 0.07 0.04 0.23
Juice box 0.37 0.44 0.44 0.71
Orange juice carton 0.28 0.44 0.33 0.53
Pot roast soup 0.32 0.18 0.53 0.79
Rice pilaf box 0.63 0.81 0.56 0.81
Rice tuscan box 0.50 0.66 0.47 0.62
Soy milk can 0.07 0.05 0.14 0.39
Soy milk carton 0.44 0.46 0.44 0.66
Tomato soup can 0.48 0.48 0.45 0.72

Average 0.35 0.41 0.39 0.62

EPnP none SA Q SA+Q

Clam chowder can 0.36 0.52 0.49 0.79
Diet coke can 0.08 0.07 0.05 0.23
Juice box 0.27 0.35 0.43 0.73
Orange juice carton 0.27 0.30 0.27 0.53
Pot roast soup 0.32 0.19 0.54 0.73
Rice pilaf box 0.60 0.71 0.41 0.81
Rice tuscan box 0.45 0.56 0.40 0.64
Soy milk can 0.04 0.08 0.17 0.39
Soy milk carton 0.28 0.39 0.52 0.64
Tomato soup can 0.40 0.55 0.46 0.75

Average 0.31 0.37 0.37 0.62

Collet et al. none SA Q SA+Q

Clam chowder can 0.37 0.43 0.78 0.92
Diet coke can 0.12 0.04 0.28 0.51
Juice box 0.33 0.44 0.66 0.87
Orange juice carton 0.31 0.48 0.39 0.61
Pot roast soup 0.32 0.21 0.67 0.81
Rice pilaf box 0.61 0.76 0.71 0.96
Rice tuscan box 0.49 0.60 0.51 0.80
Soy milk can 0.06 0.03 0.27 0.57
Soy milk carton 0.36 0.46 0.63 0.88
Tomato soup can 0.45 0.47 0.76 0.92

Average 0.34 0.39 0.57 0.78

Table 1. Average precision by object for the three base systems:

(top) Gordon and Lowe, (middle) EPnP, and (bottom) Collet et

al. We demonstrate the improvements of simulated affine features

(SA), quantization (Q), and the combination of the two (SA+Q).

between the region A and the ground truth segmentation

Agt to determine if an object is correctly detected.

Figure 8 shows the averaged Precision/Recall plots for

the three baseline systems. To summarize the performance

of all the objects for each baseline system, we use the Av-

erage Precision corresponding to the area underneath the

Precision/Recall curve. The results are shown in Table 1.

From the table, the performance of the baseline sys-

tems is very similar when none of our algorithms are in-

corporated. EPnP and the Gordon and Lowe system show

similar performance gains when augmented with the pro-

posed methods, suggesting that matching has a larger im-

pact on the performance of 3D recognition than the particu-

lar choice of pose estimation algorithm. Collet et al.’s sys-

tem, which combines RANSAC and mean shift clustering,

shows further improvement once SA features and quantiza-

tion are added. The use of mean shift clustering in conjunc-

tion with RANSAC reduces the outlier-inlier ratio in each

cluster, and makes RANSAC more tractable with the signif-

icant increase in correspondences added by our algorithms.

Some example detections are shown in Figure 5.
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Figure 8. Averaged Precision/Recall plots: (left) Gordon and Lowe, (center) EPnP, and (right) Collet et al. For each plot, we show the

improvements from simulated affine features (SA), quantization (Q) and the combination of the two (SA+Q).

The objects which show the most improvement, as ex-

pected, are the objects with repeated patterns (e.g., diet coke

can, soy milk can). Recognizing some of these objects is al-

ready very difficult, as they have particularly few features.

With repeated patterns on them as well, most systems are

unable to generate enough correspondences to estimate a

reliable pose. Our improvements on the Collet et al. system

increase the performance of the diet coke can by over four

times and that of the soy milk can by over nine times.

The remaining objects which do not have repeated pat-

terns also benefit significantly from the addition of SA fea-

tures and quantization, doubling the performance for almost

all the objects compared to the Collet et al. system. Objects

such as the juice box and the pot roast soup have large re-

gions where there is tiny text. Given that these regions look

similar locally, most systems cannot find enough unique

correspondences in these areas. Quantization addresses this

issue and uses these features for pose estimation.

Figure 9 shows example failures of the system. The first

two images are false positives due to a planar pose ambigu-

ity described and addressed in [23]. In the center image, the

system detects the repeated pattern on the object correctly,

but chooses the wrong side of the object because it fails to

incorporate matches from other sides of the object. Finally,

the last two images show examples where the objects were

not detected. In these images, the lighting conditions and

viewpoints are too different from the images used to gener-

ate the model and there are not enough correct matches to

estimate a pose.

4.4. Pose accuracy

In this section we evaluate the accuracy of the pose re-

covered from the recognition systems. To conduct this ex-

periment, we extrinsically calibrated a camera and ground

truthed the objects in 12 poses each. For 8 of the object

poses, we placed the object at 0.5 m from the camera and

rotated it standing upright at intervals of 45 degrees. The

remaining 4 poses were with the object lying on the table

and were rotated at 90 degree intervals.

We evaluate the pose for both rotation and translation

Correct detections (%) none SA Q SA+Q

Gordon and Lowe 63 80 69 88
EPnP 61 73 70 88
Collet et al. 65 75 74 92

Table 2. Detections (%) within 5 cm and 22.5 degrees of the true

pose. SA+Q gives significant improvement over the baseline.

Translation error (cm) none SA Q SA+Q

Gordon and Lowe 1.17 1.31 1.10 1.12
EPnP 1.19 1.20 1.15 1.13
Collet et al. 1.22 1.30 1.12 1.18

Rotation error (degrees) none SA Q SA+Q

Gordon and Lowe 4.59 5.25 4.77 5.17
EPnP 4.73 5.66 4.47 5.18
Collet et al. 4.84 5.04 4.87 5.31

Table 3. Translation error in cm (top) and rotation error in degrees

(bottom) for the correct detections. SA+Q approximately main-

tains the accuracy while improving the recognition rate.

error. We compute the translation error as the Euclidean

distance and the rotation error as the quaternion angle

2 arccos(qT qgt) from the ground truth pose. For this set of

experiments, we measure the translation error on the plane

of the table and consider the error of objects which were

detected within 5 cm and 22.5 degrees of the true pose.

Table 2 shows the percentage of correct detections for

each of the systems. Out of 120 total experiments per sys-

tem, the baseline systems retrieved less than two-thirds cor-

rectly. SA features and quantization boosted recognition

rate to close to 90 percent for each of the systems. It is

worth mentioning that some of the instances that were not

detected correspond to poses where only the repeated pat-

tern is visible; in these cases, it is impossible even for a

human to disambiguate.

Table 3 shows the average translation error in cm and

average rotation error in degrees. Despite the average rota-

tion error being slightly higher with our proposed methods,

this error of less than a degree is well within the uncertainty

of the manual ground truth. Importantly, we were able to

achieve a higher recognition rate while maintaining essen-

tially equivalent pose accuracy.



Figure 9. Examples of misdetection with Collet et al. and SA+Q. In the first two images, the point matches are on only one side of the

object, resulting in a planar pose ambiguity. For the third image, the system finds a repeated pattern on the wrong side of the object. In the

last two images, the system does not find the objects due to significant lighting and viewpoint changes from the model training images.

5. Conclusion

The main contribution of this paper is to show that not

committing to specific point-to-point correspondences un-

til the hypothesis verification step can significantly improve

the performance of recognition. We develop a framework in

which features are quantized and matched in a hierarchical

manner. To maintain the tractability of RANSAC, we pro-

pose a view-constrained RANSAC method to reduce the ra-

tio of potential outliers to inliers. We show that incorporat-

ing features from affine transformed images is a way to ad-

dress viewpoint change and that matching to these features

is facilitated by the quantization framework. Our results on

a difficult dataset demonstrate that quantization combined

with SA features can significantly improve the performance

of current state-of-the-art 3D recognition systems.
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