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Abstract The Anscombe-Aumann (AA) model, originally introduced to give a nor-

mative basis to expected utility, is nowadays mostly used for another purpose: to

analyze deviations from expected utility due to ambiguity (unknown probabilities).

The AA model makes two ancillary assumptions that do not refer to ambiguity:

expected utility for risk and backward induction. These assumptions, even if norma-

tively appropriate, fail descriptively. This paper relaxes these ancillary assumptions

to avoid the descriptive violations, while maintaining AA’s convenient mixture oper-

ation. Thus, it becomes possible to test and apply all AA-based ambiguity theories

descriptively while avoiding confounds due to violated ancillary assumptions. The

resulting tests use only simple stimuli, avoiding noise due to complexity. We demon-

strate the latter in a simple experiment where we find that three assumptions about

ambiguity, commonly made in AA theories, are violated: reference independence,
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universal ambiguity aversion, and weak certainty independence. The second, theo-

retical, part of the paper accommodates the violations found for the first ambiguity

theory in the AA model—Schmeidler’s CEU theory—by introducing and axiomatiz-

ing a reference dependent generalization. That is, we extend the AA ambiguity model

to prospect theory.

Keywords Ambiguity · Reference dependence · Certainty independence · Prospect

theory · Loss aversion

JEL Classifications D81 · D03 · C91

Keynes (1921) and Knight (1921) emphasized the need to develop theories for deci-

sion making when probabilities are unknown. This led Savage (1954) and others to

provide a behavioral foundation of (subjective) expected utility: if no objective prob-

abilities are available, then subjective probabilities should be used instead. However,

Ellsberg (1961) provided two paradoxes showing that Savage’s theory fails descrip-

tively, and according to some also normatively (Ellsberg 1961; Cerreia-Vioglio et al.

2011; Gilboa and Schmeidler 1989; Klibanoff et al. 2005). It led to the development

of modern ambiguity theories; i.e., decision theories for unknown probabilities that

deviate from expected utility.

Anscombe and Aumann (1963; AA henceforth) presented a two-stage model of

uncertainty to obtain a simpler foundation of expected utility than Savage’s.1 Gilboa

and Schmeidler (1989) and Schmeidler (1989) showed that the AA two-stage model

is well suited for another purpose: to analyze ambiguity theoretically. Since then, the

AA model has become the most-used model for this alternative purpose.

The AA model makes two ancillary assumptions—expected utility for risk and

backward induction (see Section 1)—that do not concern ambiguity.2 These assump-

tions have been justified on normative grounds but fail descriptively, as many studies

have shown (references in Section 1). They are made only to facilitate the theoretical

analysis of ambiguity by providing a convenient linear mixture operation. We show

how these ancillary assumptions can be relaxed to become descriptively valid while

maintaining the mixture operation. We thus make the AA model suited for descrip-

tive purposes while maintaining its analytical power. AA-based theories of ambiguity

can then be applied and tested descriptively while avoiding confounds due to vio-

lated ancillary assumptions. We call our modification of the AA model the reduced

AA (rAA) model.

We demonstrate the applicability of the rAA method in an experiment (Section 3).

This experiment is simple but, as we will see, suffices to falsify most current AA-

based ambiguity theories, due to reference dependence. The second, theoretical, part

of the paper (Section 4 and further) provides a reference dependent generalization of

1AA used a three-stage model, but one stage is omitted in modern usage. For empirical applications, this

omission was justified by Oechssler et al. (2016).
2Some papers relaxing these ancillary assumptions are discussed at the end of Section 7.
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Schmeidler’s (1989) Choquet expected utility to accommodate the empirical viola-

tions found in the first part. This result amounts to extending the AA model to cover

Tversky and Kahneman’s (1992) prospect theory. Unlike the second part of the paper,

the first part avoids using advanced theory so as to provide ready tools to test AA

theories for experimentalists. The two parts can be read independently, but are joined

in this paper to combine a negative empirical finding on some theories with a posi-

tive result on a new theory that solves the problems found. We give a one-sentence

description of the rAA method at the end of Section 2. A detailed outline of the paper

is at the end of the next section.

1 Background (substantive and ancillary assumptions) and outline

This section presents a basic version of the AA model so as to motivate the method

that we introduce in the next section. A formalized and general version of the AA

model will be presented in the theoretical part of the paper, starting in Section 4.

Figure 1a depicts a standard “Savage” act for decision under uncertainty. E1, . . . , En

denote mutually exclusive and exhaustive events. That is, exactly one will obtain,

but it is uncertain which one. Following AA, we assume that a horse race takes

place with n horses participating, and exactly one will win. Event Ei refers to horse

i winning. The act yields consequence xi if event Ei obtains. We mostly assume

that consequences are monetary, although they can be anything. U(xi) is the util-

ity of consequence xi . V denotes a general functional that represents preferences. It

is increasing in all its arguments. Savage (1954) considered the case where V gives

subjective expected utility. Nowadays, there is much interest in ambiguity theories,

where V can be any such theory, e.g., a multiple prior theory. Such theories are also

the topic of this paper.

In decision under risk, we assume probabilities to be known. Then choices are

between lotteries (probability distributions). Figure 1b denotes a lottery yielding xj

with probability pj . Following AA, we assume that a roulette wheel is spun to gener-

ate the probabilities. Besides the expected utility evaluation depicted, many deviating

models have been studied (Starmer 2000).

(a) (b)

Fig. 1 Traditional (one-stage) choice objects
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Fig. 2 An Anscombe-Aumann act and its evaluation

Figure 2 depicts an act in AA’s model. Both uncertainty and risk are involved. The

act is like a Savage act in Fig. 1a, but now consequences are lotteries, i.e., probability

distributions over “outcomes” xij . Uncertainty is resolved in two stages. First nature

chooses which event Ei obtains, resulting in the corresponding lottery. Next the lot-

tery is resolved, resulting in outcome xij with probability pij , j = 1, . . . , m.3 In

AA’s model, acts are evaluated as depicted. First, every lottery of the second stage is

evaluated by its expected utility. Next, an ambiguity functional V is applied to those

expected utilities as it was to utilities in Fig. 1a. The evaluation of the ambiguity by

the functional V is of central interest in the modern ambiguity literature. The evalua-

tion of the lotteries only serves to facilitate the analysis of ambiguity in the first stage.

The evaluation of each lottery in the second stage is independent of what happens

at the other branches in the figure. We can, for instance, replace each lottery by its

certainty equivalent derived “in isolation” in Fig. 1b, and then evaluate the resulting

ambiguous act as in Fig. 1a. That is, we are using backward induction here.

We list the two assumptions made, and add two more: (1) lotteries, being unam-

biguous, are evaluated using expected utility (EU); (2) backward induction is used to

evaluate the two stages; (3) there is no reference dependence, with gains and losses

treated the same; (4) there is universal ambiguity aversion. The last two assumptions

concern ambiguity and are, therefore, of central interest. They are called substantive.

Assumptions 1 and 2 define the AA model, with its two-stage structure. They only

serve to simplify the mathematical analysis and are, therefore, called ancillary.

The purpose of this paper is descriptive. We, therefore, wish to avoid descriptive

problems of the ancillary assumptions. As regards the first assumption, Allais’ (1953)

thought experiment provided the first evidence against EU for risk, later confirmed

by many empirical studies. It led to the popular prospect theory (Kahneman and

Tversky 1979; Tversky and Kahneman 1992). Surveys of violations of EU for risk

include Birnbaum (2008), Edwards (1954), Fehr-Duda and Epper (2012), Fox et al.

(2015), Schmidt (2004), Slovic et al. (1988), and Starmer (2000). In view of the many

violations of EU found, Assumption (1) is currently considered to be descriptively

3For simplicity of notation, we often assume that all lotteries in one act have the same number, m, of

outcomes. This can always be achieved by adding zero probability outcomes to some lotteries.
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unsatisfactory. Several authors argued that it is also normatively undesirable (Allais

1953; Machina 1989).

Assumption (2), backward induction, is a kind of monotonicity condition. If we

only focus on consequences that are sure money amounts (degenerate lotteries; Fig.

1a), then the condition is uncontroversial. However, it becomes debatable if conse-

quences are nondegenerate lotteries as in Fig. 2. Then the condition implies that the

decision maker’s evaluation of the lottery faced there, i.e., of the act conditional on

the event Ei that obtained, is independent of what happens outside of Ei . This is a

form of separability rather than of monotonicity (Bommier 2017 p. 106; Machina

1989 p. 1624), which may be undesirable for ambiguous events Ei . Although most

papers using the AA model do not discuss this assumption explicitly, several recent

papers have criticized it (Bommier 2017; Bommier et al. 2017 Footnote 7; Cherid-

ito et al. 2015; Machina 2014 p. 385 3rd bulleted point; Saito 2015; Schneider and

Schonger 2017; Skiadas 2013 p. 63; Wakker 2010 Section 10.7.3).

Dynamic optimization principles such as backward induction that are self-evident

under expected utility become problematic and cannot all be satisfied under non-

expected utility (Machina 1989). Several authors have therefore argued against

backward induction for nonexpected utility on normative grounds.4 Many studies

have found empirical violations of backward induction.5 We conclude that both ancil-

lary assumptions are descriptively problematic and, according to several authors, also

normatively problematic. Our rAA model therefore aims to avoid the problems just

discussed.

We now turn to a detailed outline of the paper. Section 2 explains the rAA model

informally, showing how to test AA theories without being affected by violations of

the ancillary assumptions. In particular, no two-stage uncertainty as in Fig. 2 occurs

in the rAA model, and we only use stimuli as in Fig. 1. An additional advantage of

our stimuli is that they are less complex, reducing the burden for subjects and the

noise in the data. Dominiak and Schnedler (2011) and Oechssler et al. (2016) tested

Schmeidler’s (1989) uncertainty aversion for two-stage acts, and found no clear rela-

tions with Ellsberg-type ambiguity aversion. This can be taken as evidence against

the descriptive usefulness of two-stage acts.

Section 3 illustrates our approach in a simple experiment. Unsurprisingly, we find

that losses are treated differently, with more ambiguity seeking, than gains (reference

dependence). We have thus tested and falsified the substantive Assumptions 3 and

4. Many studies have demonstrated reference dependence outside of ambiguity, and

several have done so within ambiguity.6 Our experiment shows it in a simpler way

and is the first to have done so for the AA model. It may be conjectured that AA the-

ories could indirectly model the reference dependence found. This conjecture holds

4See Dominiak and Lefort (2011), Eichberger and Kelsey (1996), Karni and Schmeidler (1991), Machina

(1989), Machina (2014 Example 3), Ozdenoren and Peck (2008), and Siniscalchi (2011).
5See Cubitt et al. (1998), Dominiak et al. (2012), and Yechiam et al. (2005).
6See Abdellaoui et al. (2005), Baillon and Bleichrodt (2015), de Lara Resende and Wu (2010), Dimmock

et al. (2015), Du and Budescu (2005), and Kocher et al. (2018).
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true for the smooth model (Klibanoff et al. 2005) and other utility-driven theories of

ambiguity.7 However, we prove that it does not hold true for most commonly used

AA theories, because weak certainty independence, a necessary condition for most

theories,8 is violated. Baillon and Placido (2017) also tested this condition and also

found it violated. Generalizations of these theories are therefore desirable. We turn

to those in the next, theoretical, part of the paper, with definitions and basic results

in Section 4 and the reference dependent generalization of Schmeidler (1989) in

Section 5. Faro (2005, Ch. 3) provided an alternative ambiguity model with reference

dependence.

Our generalization of Schmeidler’s model can accommodate loss aversion, and

ambiguity aversion for gains combined with ambiguity seeking for losses, as in

prospect theory. In many applications of ambiguity (asset markets, insurance, health)

the gain-loss distinction is important, and descriptive models that assume reference-

independent universal ambiguity aversion cannot accommodate this. As regards our

finding of violations of weak certainty independence, reference dependence is the

only generalization needed to accommodate these violations. Weak certainty inde-

pendence remains satisfied if we restrict our attention to gains or to losses. Section 6

analyzes loss aversion under ambiguity. A discussion, with implications for existing

ambiguity theories, is in Section 7. Section 8 concludes.

A model-theoretic isomorphism of the rAA model with the full AA model is in

Appendix E. Its implications can be stated in simple terms for experimentalists, with-

out requiring a study of its formal content: Although the rAA model is a submodel

of the full AA model, every ambiguity property that can be defined in the full AA

model can be tested in the rAA model using the method explained in the next section.

No information on ambiguity is lost by restricting to the rAA model. A simple test

such as the one in Section 3 can be devised for every ambiguity condition other than

weak certainty independence.

7See Chew et al. (2008), Kahneman and Tversky (1975 pp. 30-33), Nau (2006), Neilson (2010), and

Skiadas’ (2015 source-dependent theory). These models still focus on normative universal ambiguity

aversion. They cannot model the empirically prevailing ambiguity seeking for unlikely events joint with

ambiguity aversion for likely events (Zeckhauser and Viscusi 1990; reviewed by Camerer and Weber 1992,

and Trautmann and van de Kuilen 2015), or the kinks in preferences that are often found (Ahn et al. 2014).

Dobbs (1991) also proposed a general recursive utility-driven theory of ambiguity and emphasized the

importance of different attitudes for gains than for losses, which he demonstrated in an experiment. His

approach thus is close to ours. Viscusi and O’Connor (1984) similarly found prevailing ambiguity seeking

for losses except when they were unlikely, in which case ambiguity aversion was prevailing.
8See Chambers et al. (2014): dispersion aversion; Maccheroni et al. (2006): variational model; Saponara

(2017); Siniscalchi (2009): vector theory; several multiple priors theories (Chateauneuf 1991 and Gilboa

and Schmeidler 1989: maxmin expected utility; Gajdos et al. 2008: contraction model; Ghirardato et al.

2004, also their α(f ) model); Grant and Polak (2013); Jaffray (1994): α-maxmin theory; Kopylov (2009):

choice deferral; Skiadas (2013): scale-invariant uncertainty aversion; Strzalecki (2011): multiplier pref-

erences. Exceptions are Chateauneuf and Faro (2009), Chew et al. (2008), Hayashi and Miao (2011),

Klibanoff et al. (2005), and Skiadas (2013 source-dependent theory). Further, the violation that we found

involved only binary acts, implying that every model agreeing with CEU on this subdomain is violated too

(Ghirardato and Marinacci 2001: biseparable preference; Luce 2000 Ch. 3: binary rank-dependent utility;

tested by Choi et al. 2007).



J Risk Uncertain

(a) (b)

Fig. 3 Relating a general two-stage act of the AA model to a one-stage (“rAA”) act

The first, empirical part of this paper, preceding Section 4, makes empirical studies

of the AA model possible, providing an easy recipe. It is accessible to readers with no

mathematical background. We postpone formal definitions and results to the second,

theoretical part, in Section 4 and further. Given the negative finding in the first part,

with violations of most existing AA ambiguity theories, the second part presents a

positive result: the first reference-dependent AA theory.

2 The reduced AA model and the AA twin of the decision maker

This section explains the reduced AA model informally, so that it can easily be used

by experimenters. Appendix E gives a formal presentation. Figure 3a depicts a two-

stage AA act as in Fig. 2.

We do not use two-stage acts when empirically measuring the preferences of the

decision maker. We only consider one-stage acts as: (1) in Fig. 3b, where all second-

stage lotteries are degenerate and only uncertainty about the horses matters, or: (2)

in Fig. 4, where the first-stage uncertainty, not depicted, is degenerate and only the

risks of the roulette wheel matter. In Fig. 4, we avoid degenerate lotteries by only

considering lotteries that give the worst outcome, −20 in our case, with a probability

of at least 0.2, and give the best outcome, 10, with a probability of at least 0.2.

The preference relation of the decision maker over the domain of one-stage acts

just described (Figs. 3b and 4) is denoted �. This domain and � are called the

reduced AA (rAA) model. We assume that EU (expected utility) holds for risky

choices � in the rAA domain. Most violations of EU occur when tails of distributions

are relevant, but on the RAA domain the tails are fixed and play no role. Hence, EU

is empirically plausible here, and we assume it. Further explanation and references

are in Section 7. As for the ancillary assumption of backward induction, it is vacuous

on the rAA domain.
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Fig. 4 Defining a conditional certainty equivalent

In theoretical analyses of the AA model, two-stage acts do play a role. To capture

them in our rAA method, we do not consider the actual preferences of the decision

maker over them, but instead we consider a preference relation �∗ of what we call the

AA twin of the decision maker. The asterisk indicates that these preferences do not

need to agree with the actual empirical preferences of the decision maker, but belong

to her idealized AA twin. This �∗ agrees with � on the rAA domain, but extends it

to the whole AA model, and is required to satisfy the AA conditions (EU for risk and

backward induction). As we explain next, �∗ exists and is uniquely determined this way.

Consider Fig. 4. Because the stimuli come from the rAA domain, the indifference

also holds for ∼∗ instead of ∼. Because �∗ satisfies EU, the ∼∗ indifference is

maintained if we remove the “common-consequence” upper and lower 0.2 branches,

and then the “common-ratio” 0.6 probabilities. That is, for each i, CAi for sure is ∼∗

equivalent to the lottery at branch Ei in Fig. 3a:

CAi ∼∗ (pi1 : xi1, . . . , pim : xim), (1)

using the obvious notation for lotteries. By backward induction (CE substitution),

the act in Fig. 3a is ∼∗ indifferent to the act in Fig. 3b, which is again in the rAA

domain governed by �. This way, the ∼∗ indifference class of every two-stage AA

act is uniquely determined and, hence, so is �∗. We can infer the whole relation �∗

this way. We summarize the procedure, for any preference relationship �∗:

(1) Every act from rAA is left unaltered because �∗ agrees with � on the rAA

domain.

(2) For every lottery, its CA certainty equivalent is defined through Eq. 1 and Fig. 4.

(3) Every two-stage act is replaced by a one-stage act as in Fig. 3.
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Point (2) means that CAs are �∗ certainty equivalents. Stating the rAA method in

one sentence:

We can find out any AA preference �∗ from rAA preferences � by using the

substitution in Fig. 3.

We can thus apply all techniques from the AA model to analyze �∗ and infer prop-

erties of the uncertainty attitude of �∗ on horse acts using only � preferences on the

rAA domain as empirical inputs. The uncertainty attitude—which may deviate from

subjective expected utility—of the AA twin �∗ is identical to that of �. Thus, all

results from the AA literature immediately apply to �.

In applications, if only few CAs are to be measured, then we can measure each

one separately as in Fig. 4. If there are many, we can carry out a few measurements

as in Fig. 4, derive the EU utility function from them, and use it to determine all CAs

that we need. Two drawbacks of the rAA method must be acknowledged. First, the

stimuli used for measuring risk attitudes in Fig. 4 are made more complex by the

mixing in of the best and worst outcomes. Second, when testing mixture conditions

from the full AA model, we have to modify every two-stage act into an rAA act as

just described.

The following section gives an illustration of the rAA method, showing how it

can be used to test AA theories experimentally. We test weak certainty independence

there, a preference condition necessary for many AA theories.

3 Experimental illustration of the reduced AA model and reference
dependence

This section demonstrates the rAA model in a small experiment. First, we present

a common example. The unit of payment in the example can be taken to be money

or utility. In the experiment that follows, the unit of payment will be utility and not

money, so that the violations found there directly pertain to the general AA model.

Because the rAA model is a submodel of the full AA model (but large enough to

recover the latter entirely), any violation of a preference condition found from � in

the rAA model immediately gives a violation of that preference condition for �∗ in

the full AA model.

Example 1 (Reflection of ambiguity attitudes) A known urn K contains 50 red (R)

and 50 black (B) balls. An unknown (ambiguous) urn A contains 100 black and red

balls in unknown proportion. One ball will be drawn at random from each urn, and

its color will be inspected. Rk denotes the event of a red ball drawn from the known

urn, and Bk, Ra , and Ba are analogous. People usually prefer to receive e 10 under

Bk (and 0 otherwise) rather than under Ba and they also prefer to receive e 10 under

Rk rather than under Ra . These choices reveal ambiguity aversion for gains.

We next multiply all outcomes by −1, turning them into losses. This change of

sign can affect decision attitudes. Many people now prefer to lose e 10 under Ba

rather than under Bk and also to lose e 10 under Ra rather than under Rk . That is,

many people exhibit ambiguity seeking for losses.
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The above example illustrates that ambiguity attitudes are different for gains than

for losses, making it desirable to separate these, similar to what has been found for

risk (Tversky and Kahneman 1992). This separation is impossible in most current

ambiguity theories. We tested the above choices in our experiment. Subjects were

N = 45 undergraduate students from Tilburg University. We asked both for prefer-

ences with red as the winning color and for preferences with black as the winning

color. This way we avoided suspicion about the experimenter rigging the composition

of the unknown urn (Pulford 2009).

We scaled utility to be 0 at 0 and 10 at e 10. That is, the winning amount was

always e 10. We wanted the loss outcome to be −10 in utility units for each subject,

which required a different monetary outcome α for each subject. Thus, under EU as

assumed in the AA model and as holding for the AA twins of the subjects, we must

have, with the usual notation for lotteries (probability distributions over money),

0 0 5: 10 0 5: (2)

One simplifying notation for lotteries: we often rewrite (p : α, 1 − p : β) as αpβ.

The indifference displayed involves a degenerate (nonrisky) prospect (e 0), and those

are known to cause many violations of the assumed EU.9 We therefore use the mod-

ification in Fig. 4. We write R = (e100.5(−e20)), and rather elicit the following

indifference from our subjects, as in Fig. 4, using the common probabilistic mixtures

of lotteries, and mixing in R with weight 0.4:

0 4 0 0 4 100 5 (3)

Under EU as holding for the AA twin, the latter indifference also holds for ∼∗ and is

equivalent to the former, but the latter indifference is less prone to violations of EU,

so that our subjects agree with their AA twins here.

To elicit the indifference in Eq. 3 from each subject, we asked each subject to

choose between lotteries (replacing α in Eq. 3 by −j ),

0 2: 10 0 6: 0 0 2: 20 “ ” 0 2: 10 0 3: 10 0 3: 0 2: 20 “ ”

for each j = 0, 2, 4, . . . , 18, 20. If the subject switched from risky to safe between

−j and −j − 2, we defined α to be the midpoint between these two values, i.e.,

α = −j − 1. We then assumed indifference between the safe and risky prospect with

that outcome α instead of −j in the risky prospect. We used the monetary outcome

α, depending on the subject, as the loss outcome for this subject. This way the loss

outcome was −10 in utility units for each subject (as for their AA twin).10 Details of

the experiment are in the Online Appendix.

We elicited the preferences of Example 1 from our subjects using utility units,

with the gain outcome e 10 giving utility +10, and the loss outcome α giving utility

−10. Combining the bets on the two colors, the number of ambiguity averse choices

was larger for gains than for losses (1.49 vs. 1.20, z = 2.01, p < .05, Wilcoxon test,

two-sided), showing that ambiguity attitudes are different for gains than for losses.

We replicate strong ambiguity aversion (z = 3.77, p < .01, Wilcoxon test, two-

sided) for gains, but we cannot reject the null of ambiguity neutrality (z = 1.57, p >

9See Bruhin et al. (2010), Chateauneuf et al. (2007), and McCord and de Neufville (1986).
10Section 6 discusses how our measurement of utility incorporates loss aversion under risk.



J Risk Uncertain

.10, Wilcoxon test, two-sided) for losses.11 Our experiment confirms that attitudes

towards ambiguity are different for gains than for losses, suggesting violations of

most ambiguity models used today. The following sections will formalize this claim.

4 Definitions, notation, classical expected utility, and Choquet expected
utility for mixture spaces

This section provides definitions and well-known results. Proofs are in Ryan (2009).

We present our main theorems for general mixture spaces, which covers the tra-

ditional two-stage AA model, our rAA model, and also some other models. By

Observation 5 in the Appendix, all results proved in the literature for the traditional

two-stage AA model also hold for general mixture spaces. M denotes a set of con-

sequences, with generic elements x, y. M is a mixture space: it is endowed with a

mixture operation xpy : M ×[0, 1]×M → M , also denoted px + (1 −p)y, satisfy-

ing (i) x1y = x [identity]; (ii) xpy = y1−px [commutativity]; (iii) (xpy)qy = xpqy

[associativity]. The first example below was popularized by Schmeidler (1989) and

Gilboa and Schmeidler (1989).

Example 2 (Two-stage AA model) D denotes a set of (deterministic) outcomes, and

M consists of all (roulette) lotteries, which are probability distributions over D taking

finitely many values. The mixture operation concerns probabilistic mixing.

Example 3 M = IR and mixing is the natural mixing of real numbers.

Our rAA model provides another example (Appendix E). S denotes the state space.

It is endowed with an algebra of subsets, called events. An algebra contains S and

∅ and is closed under complementation and finite unions and intersections. An act

f = (E1:f1, ..., En:fn) takes values fi in M and the Ei’s are events partitioning the

state space. The set of acts, denoted A, is endowed with pointwise mixing, which

satisfies all conditions for mixture operations. Hence, A itself is also a mixture space.

A constant act f assigns the same consequence f (s) = x to all s. It is identified with

this consequence.

Preferences are over the set of acts A and are denoted �, inducing preferences �

over consequences through constant acts. Strict preference ≻ and indifference ∼ are

defined as usual. A function V represents � if V : A → IR and f � g ⇔ V (f ) ≥

V (g). If a representing function exists then � is a weak order, i.e., � is complete (for

all acts f and g, f � g or g � f ) and transitive. � is nontrivial if (not f ∼ g) for

some f and g in A.

Continuity holds if, whenever f ≻ g and g ≻ h, there are p and q in (0, 1) such

that fph ≻ g and fqh ≺ g. Hence, continuity relates to the mixing of consequences

11Testing is against the null of one ambiguity averse choice in two choice situations. The exact distribution

of subjects choosing the ambiguous option never, once, or twice is (28, 11, 6) for gains, and (21, 12, 12)

for losses.
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and does not refer to variations in states of nature. In the two-stage AA model, con-

tinuity relates to probability (as part of consequences). An affine function u on M

satisfies u(xpy) = pu(x) + (1 − p)u(y). In the two-stage AA model, a function is

affine if and only if it is EU (defined in Appendix E; it follows from substitution and

induction).

Monotonicity holds if f � g whenever f (s) � g(s) for all s in S. It is non-

trivial if the f (s)’s are nondegenerate lotteries as in Example 2. Monotonicity then

implies that the decision maker’s evaluation of f (s), i.e., of f conditional on state s,

is independent of what happens outside of s. It was discussed in Section 1.

The following condition is the most important one in the axiomatization of affine

representations and, hence, of EU.

Definition 1 Independence holds on M if

x ≻ y ⇒ xpc ≻ ypc

for all 0 < p < 1 and consequences x, y, and c.

Theorem 1 (von Neumann-Morgenstern) The following two statements are equiva-

lent:

(i) There exists an affine representation u on the consequence space M .

(ii) The preference relation � when restricted to M satisfies the following three

conditions: (a) weak ordering; (b) continuity; (c) independence.

In (i), u is unique up to level and unit.

Uniqueness of u up to level and unit means that another function u∗ satisfies the

same conditions as u if and only if u∗ = τ + σu for some real τ and positive σ .

Affinity, independence, and Theorem 1 can be applied to any mixture set other than

M , such as the set of acts A. Formally, our term AA model refers to Example 2

plus the preference conditions considered so far in this section, being weak order-

ing, continuity, monotonicity, and independence on M , implying an affine (i.e., EU)

representation on M . It is a two-stage model. It does not further restrict ambiguity

attitudes, i.e., the preference relation over acts, and is assumed in most papers on

ambiguity nowadays. We now turn to two classic results.

Anscombe and Aumann’s subjective expected utility. A probability measure P on

S maps the events to [0, 1] such that P(∅) = 0, P(S) = 1, and P is additive (P(E ∪

F) = P(E) + P(F) for all disjoint events E and F ). Subjective expected utility

(SEU) holds if there exists a probability measure P on S and a function u on M , such

that � is represented by

SEU : f �→

∫

S

u(f (s))dP . (4)

Theorem 2 (Anscombe and Aumann) The following two statements are equivalent:

(i) Subjective expected utility holds with a nonconstant affine u on M .
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(ii) The preference relation � satisfies the following conditions: (a) nontrivial weak

ordering; (b) continuity; (c) monotonicity; (d) independence.

The probabilities P on S are uniquely determined and u on M is unique up to level

and unit.

If we apply the above theorem to Example 3, we obtain subjective expected value

as in de Finetti (1937; Wakker 2010 Theorem 1.6.1). Thus, two classical derivations

of subjective probabilities, by Anscombe and Aumann (1963) and by de Finetti

(1937), are based on the same underlying mathematics.

Schmeidler’s Choquet Expected Utility. A capacity v on S maps events to [0, 1], such

that v(∅) = 0, v(S) = 1, and E ⊃ F ⇒ v(E) ≥ v(F ) (set-monotonicity). Unless

stated otherwise, we use a rank-ordered notation for acts f = (E1:x1, · · · , En:xn),

i.e., x1 � · · · � xn is implicitly understood. Let v be a capacity on S. Then, for any

function w: S → R, the Choquet integral of w with respect to v, denoted
∫

wdv, is

∫ ∞

0

v({s ∈ S : w(s) ≥ τ })dτ +

∫ 0

−∞

[v({s ∈ S : w(s) ≥ τ }) − 1]dτ. (5)

Choquet expected utility holds if there exist a capacity v and a function u on M such

that preferences are represented by

CEU : f �→

∫

S

u(f (s))dv. (6)

Two acts f and g in A are comonotonic if for no s and t in S, f (s) ≻ f (t) and

g(s) ≺ g(t). Thus, any constant act is comonotonic with any other act. A set of acts

is comonotonic if every pair of its elements is comonotonic.

Definition 2 Comonotonic independence holds if

f ≻ g ⇒ fpc ≻ gpc

for all 0 < p < 1 and comonotonic acts f , g, and c.

Under comonotonic independence, preference is not affected by mixing with con-

stant acts (consequences) (with some technical details added in Lemma 3). Because

constant acts are comonotonic with each other, comonotonic independence on A still

implies independence on M .

Theorem 3 (Schmeidler) The following two statements are equivalent:

(i) Choquet expected utility holds with nonconstant affine u on M;

(ii) The preference relation � satisfies the following conditions: (a) nontrivial weak

ordering; (b) continuity; (c) monotonicity; (d) comonotonic independence.

The capacity v on S is uniquely determined and u on M is unique up to level and

unit.
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If we apply the above theorem to Example 3, we obtain a derivation of Choquet

expected utility with linear utility that is alternative to Chateauneuf (1991, Theorem

1). Cerreia-Vioglio et al. (2015) provide a recent survey of applications.

Comonotonic independence implies a condition assumed by most models for

ambiguity proposed in the literature.

Definition 3 Weak certainty independence holds if

fqx � gqx ⇒ fqy � gqy

for all 0 < q < 1, acts f, g, and all consequences x, y.

That is, preference between two mixtures involving the same constant act x with

the same weight 1 − q is not affected if x is replaced by another constant act y.

This condition follows from comonotonic independence because both preferences

between the mixtures should agree with the unmixed preference between f and g

(again, with some technical details added in Lemma 3). Grant and Polak (2013)

demonstrated that the condition can be interpreted as constant absolute uncertainty

aversion: adding a constant to all utility levels does not affect preference. For a

detailed analysis see Skiadas (2013).

5 Reference dependence in the AA model

Example 1 violates CEU, as we explain next. In the gain preference 10Bk
0 ≻ 10Ba 0,

the best outcome (= consequence) 10 is preferred under Bk , implying the strict

inequality v(Bk) > v(Ba). In the loss preference 0Ba (−10) � 0Bk
(−10), the best

outcome 0 is preferred under Ba , implying the opposite inequality v(Ba) ≥ v(Bk).

A contradiction has resulted. This reasoning does not use any assumption about the

utilities (10 and −10 in our case) of the outcomes other than that they are of different

signs (with u(0) = 0). For later purposes, we show that even weak certainty indepen-

dence is violated. In the proof of the following observation, we essentially use the

linear (probabilistic) mixing of outcomes typical of the AA model.

Observation 1 Example 1 violates comonotonic independence and even weak

certainty independence.

Example 1 has confirmed for the AA model what many empirical studies have

found for other models: ambiguity attitudes are different for gains than for losses

(reviewed by Trautmann and van de Kuilen 2015), violating CEU and most other

ambiguity models. Hence, generalizations incorporating reference dependence are

warranted. This section presents such a generalization. As in all main results, the

analysis will be analogous to Schmeidler’s analysis of rank dependence in Cho-

quet expected utility as much as possible. Given this restriction, we stay as close as

possible to the analysis of Tversky and Kahneman (1992).

In prospect theory there is a special role for a reference point, denoted θ . In our

model it is a consequence that indicates a neutral level of preference. It is often the
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status quo of the decision maker. In Example 1, the deterministic outcome 0 was

the reference point. Under the certainty equivalent condition in the AA model, we

can always take a deterministic outcome as reference point. Sugden (2003) empha-

sized the interest of nondegenerate reference points. Many modern studies consider

endogenous reference points that can vary (Köszegi and Rabin 2006). Our axioma-

tization concerns one fixed reference point. Extensions to variable reference points

can be obtained by techniques as in Schmidt (2003).

Other consequences are evaluated relative to the reference point. A consequence

f (s) is a gain if f (s) ≻ θ , a loss if f (s) ≺ θ , and it is neutral if f (s) ∼ θ . An

act f is mixed if there exist s and t in S such that f (s) ≻ θ and f (t) ≺ θ . For

an act f , the gain part f + has f +(s) = f (s) if f (s) � θ and f +(s) = θ if

f (s) ≺ θ . The loss part f − is defined similarly, where all gains are now replaced

by the reference point. Prospect theory allows different ambiguity attitudes towards

gains than towards losses. We therefore use two capacities, v+ for gains and v− for

losses. It is more natural to use a dual way of integration for losses. We thus define

the dual of v−, denoted v̂−, by v̂−(A) = 1 − v−(Ac) for events A.

Prospect theory (also called cumulative prospect theory in the literature) holds if

there exist two capacities v+ and v− and a function U on consequences with U(θ) =

0 such that � is represented by

PT : f �→

∫

S

U(f +(s))dv+ +

∫

S

U(f −(s))dv̂−. (7)

We call U in Eq. 7 the (overall) utility function. There is a basic utility u and a loss

aversion parameter λ > 0, such that

U(x) = u(x) if x ≻ θ (8)

U(x) = u(x) = 0 if x ∼ θ (9)

U(x) = λu(x) if x ≺ θ. (10)

For reasons explained later, we call λ the ambiguity-loss aversion parameter (see

Section 6). Because U(θ) = 0, we now add the scaling convention that also u(θ) = 0.

For identifying the separation of U into u and λ, further assumptions are needed.

We consider a new kind of separation based on the AA model and the mixture space

setup of this paper. Wakker (2010 Chs. 8 and 12) discusses other separations in other

models. The parameter λ is immaterial for preferences over consequences M , affect-

ing neither preferences between gains or losses, nor within. Thus, loss aversion in

our model does not affect preferences over M (consequences), that is, over lotteries

(risk) in the AA model. It only concerns ambiguity.

For later purposes, we rewrite Eq. 7 as

PT =

n
∑

i=1

πiU(f (i)) (11)
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with decision weights πi defined as follows. Assume, for act (E1:x1, ..., En:xn), the

rank-ordering x1 � · · · � xk � θ � xk+1 � · · · � xn. We define

for i ≤ k : πi = π+
i = v+

(

∪i
j=1Ej

)

− v+
(

∪i−1
j=1Ej

)

; (12)

for i > k : πi = π−
i = v−

(

∪n
j=iEj

)

− v−
(

∪n
j=i+1Ej

)

. (13)

For gain events, the decision weight depends on cumulative events that yield better

consequences. For loss events, the decision weight similarly depends on decumula-

tive events that yield worse consequences. CEU analyzed in the preceding section is

the special case of PT where v− is the dual of v+ and λ in Eq. 10 is 1.

We next turn to preference conditions that characterize prospect theory. We gener-

alize comonotonicity by adapting a concept of Tversky and Kahneman (1992) to the

present context. Two acts f and g are cosigned if they are comonotonic and if there

exists no s in S such that f (s) ≻ θ and g(s) ≺ θ . Note that, whereas for any act g

and any constant act f , f is comonotonic with g, an analogous result need not hold

for cosignedness. Only if the constant act is neutral, is it cosigned with every other

act. This point complicates the proofs in the Appendix. A set of acts is cosigned if

every pair is cosigned. We generalize comonotonic independence to allow reference

dependence:

Definition 4 Cosigned independence holds if

f ≻ g ⇒ fpc ≻ gpc

for all 0 < p < 1 and cosigned acts f , g, and c.

� is truly mixed if there exists an act f with f + ≻ θ and θ ≻ f −. Double

matching holds if, for all acts f and g, f + ∼ g+ and f − ∼ g− implies f ∼ g. In a

different context, Wakker and Tversky (1993) showed that more general conditions

can be used. Our aim here is not to adapt those to the AA model, but we stay as close

as possible to Tversky and Kahneman (1992) and use their double matching and true

mixedness to achieve maximal comparability and accessibility. We now present the

main theorem of this paper.

Theorem 4 Assume true mixedness. The following two statements are equivalent:

(i) Prospect theory holds with U as in Eqs. 8–10.

(ii) The preference relation � satisfies the following conditions: (a) nontrivial

weak ordering; (b) continuity; (c) monotonicity; (d) cosigned independence; (e)

double matching.

The capacities are uniquely determined and the global utility function U is unique

up to its unit.

Tversky and Kahneman (1992 Theorem 2) provided a behavioral foundation of

prospect theory in a Savagean-like framework, where outcomes are monetary with



J Risk Uncertain

no probabilities or multiple stages involved. They thus avoided the ancillary assump-

tions of the AA model. As a price to pay, they did not have the convenient mixture

structure typical of the AA model, making measurements and analyses of behavioral

properties more difficult. They used conditions similar to (a)-(c) that are standard

in most behavioral foundations, and also condition (e). Their main axiom, sign-

comonotonic tradeoff consistency, had to be more complex than our main axiom (d).

Several generalizations were provided for the Savagean framework, mainly weaken-

ing true mixedness and double matching, with extensions to multiattribute outcomes,

connected topological outcome spaces, and nonsimple prospects, but always using

a complex sign-comonotonic tradeoff consistency (Bleichrodt and Miyamoto 2003;

Bleichrodt et al. 2009; Köbberling and Wakker 2003; Kothiyal et al. 2011; Wakker

2010 Theorem 12.3.5; Wakker and Tversky 1993). Closest to our theorem is Schmidt

and Zank’s (2009) result, who used linear utility with respect to monetary outcomes,

as in Example 3. Our paper provides the first axiomatization of PT for the AA model.

The difference between the aforementioned results and ours is similar to that between

Savage (1954)/Wakker (2010 Theorem 4.6.4) versus Anscombe and Aumann (1963),

or Gilboa (1987)/Wakker (1989) versus Schmeidler (1989).

We give the proof of the following observation in the main text because it is

clarifying.

Observation 2 Example 1 can be accommodated by prospect theory.

Proof To see that the observation holds, choose, in Example 1, v+(Bk) > v+(Ba),

v+(Rk) > v+(Ra), v−(Bk) > v−(Ba), and v−(Rk) > v−(Ra). Remember here

that large values of v− correspond with low values of its dual capacity as used in the

Choquet integral.

We can take v− different than v+, letting v− accommodate ambiguity seeking in

agreement with empirical evidence.

Observation 3 For the preference relation � restricted to consequences, there

exists an affine representation u if and only if � satisfies nontrivial weak ordering,

continuity, and cosigned independence.

For consequences, cosigned independence means that independence in Definition

1 is restricted to cases where the consequences x, c, y are all better or all worse than

the reference point.

6 Measurements and interpretations of ambiguity loss aversion

This section considers a number of interpretations of the ambiguity-loss aversion

parameter λ in Theorem 4 and Eqs. 8–10. We first show how λ can be directly

revealed from preference. This direct measurement is typical of the AA model with

its mixture operation, and cannot be used in other models.
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Observation 4 For all f in A, x+, x− ∈ M , and λ ∈ R, if f ∼ θ , f + ∼ x+ ≻ θ ,

and f − ∼ x− ≺ θ , then x+
1

1+λ

x− ∼ θ .

In other words, with f, x+, and x− as in the observation, we find p such that

x+
p x− ∼ θ , and then solve λ from 1

1+λ
= p (λ =

1−p
p

). The condition in the theorem

is intuitive: The indifference x+
1

1+λ

x− ∼ θ shows that, when mixing consequences

(lotteries in the AA model), the loss must be weighted λ times more than the gain

to obtain neutrality. Under ambiguity, however, f combines the preference values of

x+ and x− in an “unweighted” manner (see the unweighted sum of the gain- and

loss-part in Eq. 7), leading to the same neutrality level. Apparently, under ambiguity,

losses are weighted λ times more than when mixing consequences (risk in the AA

model). In the AA model, with consequences referring to lotteries and decision under

risk, λ indicates how much more losses are overweighted under ambiguity than they

are under risk. Thus, λ purely reflects ambiguity attitude.

In the smooth ambiguity model (Klibanoff et al. 2005), ambiguity attitudes depend

entirely on the outcomes faced (in the domain of its second-order ambiguity-utility

transformation function ϕ), and sign dependence is a special case of such a depen-

dency. The smooth model can accommodate extra loss aversion due to ambiguity in

the same way as our parameter λ does: through a kink of its ϕ at 0. The smooth

model differs from our model because we capture other aspects of ambiguity attitudes

through functions operating on events, rather than on outcomes.

For a first prediction on values of λ, we consider an extreme view on loss aversion

for the AA model. It entails that all loss aversion shows up under risk, and that no

additional loss aversion is expected due to ambiguity. This interpretation is most nat-

ural if loss aversion only reflects extra suffering experienced under losses, rather than

an overweighting of losses without them bringing disproportional suffering when

experienced. That is, this extreme interpretation ascribes loss aversion entirely to the

(utility of) consequences. Then it is natural to predict that λ = 1, with no special role

for ambiguity. We display the preference condition axiomatizating this prediction and

showing how the prediction can be tested:

Neutral ambiguity-loss aversion holds if λ = 1 in Observation 4.

A less extreme interpretation of ambiguity-loss aversion is as follows: There is loss

aversion under risk, which can be measured in whatever is the best way provided in

the literature.12 For monetary outcomes with a fixed reference point as considered in

this paper, loss aversion will generate a kink of risky utility at that reference point. As

an aside, in our model loss aversion under risk does not imply violations of expected

utility and is fully compatible with our AA model, simply giving a kinked function

u. Ambiguity can give extra loss aversion and it can amplify (λ > 1) or moderate

(λ < 1) it. The following preference condition characterizes λ:

12Many studies have discussed ways to measure loss aversion under risk (Abdellaoui et al. 2007). This

debate is outside the scope of this paper.
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Nonneutral ambiguity-loss aversion. For all f in A, x+, x− ∈ M , and λ ∈ R, if

f ∼ θ , f + ∼ x+ ≻ θ , and f − ∼ x− ≺ θ , then x+
0.5x

− ≻ θ if and only if λ > 1,

and x+
0.5x

− ≺ θ if and only if λ < 1.

Abdellaoui et al. (2016) measured loss aversion under risk and ambiguity separa-

tely and found them to be the same. Baltussen et al. (2016) also found them to be the

same in one treatment (outside the “limelight”), but not in the other (in the limelight).

In the two-stage AA model, some consequences are outcomes and others are

lotteries. Reference dependence in this paper takes lotteries as a whole, and their

indifference class determines if they are gains or losses. This is analogous to the

way in which Schmeidler (1989) modeled rank dependence, which also concerned

lotteries as a whole. Another approach can be considered, both for reference depen-

dence and rank dependence, where outcomes within a lottery are perceived as gains

or losses and are weighted in a rank dependent manner. Here, as elsewhere, we fol-

lowed Schmeidler’s approach. Tversky and Kahneman (1981, p. 456 penultimate

paragraph) recommended this approach for reference dependence. In the rAA model,

subjects are never required to perceive whole lotteries in a reference or rank depen-

dent manner, but we implement it ourselves, and subjects only see the CAs that we

inserted. Hence, the above issue is no problem for us.

7 Discussion

Kreps (1988 p. 101) wrote about the non-descriptive nature of two-stage acts in the

AA model:

imaginary objects. . . . makes perfectly good sense in normative applications

. . . But this is a very dicey and perhaps completely useless procedure in descrip-

tive applications. . . . what sense does it make . . . because the items concerned

don’t exist? I think we have to view the theory to follow [the traditional two-

stage AA model] as being as close to purely normative as anything that we do

in this book.

A pragmatic objection can be raised against the rAA model. The mixture operation

of outcomes is not as easy to implement as in the original AA model. Now a mixture

is not done by just multiplying probabilities, but it requires observing an indiffer-

ence. But such observations are easy to obtain, as our experiment demonstrated. They

concern stimuli that are easier to understand for subjects than two-stage acts.

We next analyze to what extent we have succeeded in avoiding violations of EU

in the rAA model. Because we always assign a non-negligible probability (0.2 in our

experiment) to the best outcome and to the worst outcome, for the preferences that

we consider, the nonlinear processing of probability typical of nonEU is only relevant

in the middle of the domain, bounded away from p = 0 and p = 1. The common

empirical finding is that deviations from linearity mostly occur at the boundaries

(Baucells and Villasis 2015; Starmer 2000; Tversky and Kahneman 1992; Viscusi
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and Evans 2006; Wakker 2010 p. 208).13 Hence, the deviations from EU are weak

for the stimuli in the rAA model. We recall here that loss aversion is incorporated in

u, as a kink at zero.

Some papers considered relaxations of the four assumptions of the AA model

listed in Section 1. Dean and Ortoleva (2017 Footnote 7) suggested using the rAA

domain, but did not elaborate on it and still used the second ancillary assumption

of AA (backward induction). They did however relax the first ancillary assumption

of EU. Their axioms used an endogenous utility midpoint operation, which serves a

purpose similar to our substitution of CAis in Fig. 4. They are, to our best knowledge,

the first who succeeded in using the AA model without assuming EU in the second

stage. Borah and Kops (2016) analyzed the AA model theoretically on a restricted

domain similar to ours. In a theoretical study, Bommier (2017) did consider two-stage

AA acts, but he neither assumed EU for risk nor backward induction, instead using a

sort of dual forward-induction type optimization. He analyzed ambiguity aversion as

defined in his setting, but did not consider reference dependence.

8 Conclusion

To date, the AA ambiguity model could only be used for normative purposes (Kreps

1988 p. 101). We have made it suitable for descriptive purposes. We demonstrated

how the two major descriptive problems (violations of EU for risk and of backward

induction) can be resolved through a reduced AA model (rAA). The rAA model

introduces an imaginary AA twin �∗ for a real decision maker �, where every �∗

relationship can be derived from an rAA � relationship through Fig. 3. Next, we can

apply any AA theorem available in the literature to �∗, and its conclusions regarding

ambiguity attitudes are valid for the real decision maker �. In a simple experiment

we showed how the rAA model can be implemented and how the AA model can be

tested in general. A formal model-theoretic isomorphism showed that the rAA model

maintains the full analytical power of the AA model.

We conducted the first empirical test of a preference condition in the AA model

that is not confounded by violations of the ancillary assumptions. This test suf-

ficed to falsify two assumptions of the majority of AA ambiguity theories today:

weak certainty independence and reference independence—the latter often assumed

implicitly. We benefited from an additional advantage of the reduced AA model: it

only needs one-stage stimuli and those are easy to understand for subjects.

To accommodate the violations found, we introduced a reference dependent

generalization of the first decision model of ambiguity that received a behav-

ioral foundation: Schmeidler’s (1989) Choquet expected utility. Our generalization

amounts to extending the AA model to prospect theory. We provided a behavioral

foundation. Topics for future research include the development of reference depen-

dent generalizations of the many other ambiguity theories in the literature, and

empirical tests of such models. We hope that our paper will advance descriptive

applications of ambiguity AA theories, having removed the major obstacles.

13As a technical point, if probability weighting is more (or less) steep in the interior for losses than for

gains, this can be captured by ambiguity-loss aversion.
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Appendices: Proofs and an isomorphism

Appendix A: Preparation

Several results in the ambiguity literature (e.g., Schmeidler 1989), were formulated

for the two-stage AA model, and not for general mixture spaces as we use them.

These results can routinely be transferred to acts for general mixture spaces. For

example, this can be inferred by verifying that all those proofs remain valid for gen-

eral mixture spaces, as do the proofs provided by Ryan (2009). Another way to see

this point is as follows.

In all our results, Theorem 1 (or Observation 3) gives an affine representation u on

M . We replace all consequences by their u values (effectively, collapsing indifference

classes of consequences), endowing those with the natural mixture on real numbers.

By monotonicity, we thus collapse indifference classes of acts. The newly constructed

space is a two-stage AA model, with the utility function on consequences being the

identity function. All preference conditions defined in this paper are preserved under

the transformation used. Hence, we can use the existing theorems in the literature.

They give the corresponding theorems on the underlying general mixture space. We

have thus shown:

Observation 5 All cited preference foundations for AA theories hold for general

mixture spaces.

Appendix B: Proof of Observation 3: cosigned expected utility

A nonloss is a consequence that is a gain or is neutral, and a nongain is a consequence

that is a loss or is neutral. We first derive a preparatory lemma.

Lemma 1 Assume that the preference relation �, restricted to consequences, satis-

fies weak ordering, continuity, and cosigned independence. If x and y are nonlosses,

then so are all xpy for 0 ≤ p ≤ 1. If x and y are nongains, then so are all xpy for

0 ≤ p ≤ 1.

Proof Assume the conditions in the lemma. We consider the case of nonlosses x, y.

Assume, for contradiction, xqy ≺ θ for some q. Continuity readily implies existence

of a largest p < q such that xpy ∼ θ and a smallest r > q such xry ∼ θ . Define x′ =

xpy and y′ = xry. Then x′ and y′ are neutral but, by continuity, every x′
p′y

′ must

be a loss. The set of x′
p′y

′ (0 ≤ p′ ≤ 1) is cosigned, implying that von Neumann-

Morgenstern independence holds here without a cosignedness restriction. x′ ≻ x′
1/3y

′

and independence imply that their 0.5 − 0.5 mixture is strictly preferred to x′
1/3y

′

http://creativecommons.org/licenses/by/4.0/
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(take c = x′
1/3y

′ in the definition of cosigned independence), implying that x′
2/3y

′ ≻

x′
1/3y

′. In contradiction with this, y′ ≻ x′
2/3y

′ and independence imply that their 0.5−

0.5 mixture is strictly preferred to x′
2/3y

′, implying x′
1/3y

′ ≻ x′
2/3y

′. A contradiction

has resulted.

We now turn to the proof of Observation 3. Necessity of the preference con-

ditions is obvious. We hence assume these preference conditions and derive an

affine representation. We assume the vNM axioms (the axioms in Theorem 1) for

� over consequences with, however, independence weakened to sign-independence:

x ≻ y ⇒ xpz ≻ ypz only if either all consequences are nonlosses or they all are

nongains. By true mixedness, there exist consequences α and β with α ≻ θ ≻ β, and

we will use these consequences in the following derivation.

Lemma 1 implies that the set of nonlosses is a mixture set (closed under mixing).

On this set, all vNM axioms are satisfied, and an affine representing functional u+

is obtained. We normalize u+(θ) = 0, u+(α) = 1. We similarly obtain an affine u−

on nongains. To extend the representation and its affinity to mixed consequences, we

define an as-if gain preference relation �+ over consequences, including losses, as

follows. It agrees with � for gains, as we will see, and affinity extends it to losses:

x �+ y if there exists p < 1 such that αpx � αpy � θ . We first show that the choice

of p in the definition of �+ is immaterial.

Lemma 2 If x �+ y then αpx � αpy for all p > 0 for which both mixtures are

nonlosses.

Proof Consider αpx, αpy, αrx, and αry, and assume that all are nonlosses. Assume

p > r . Then αpx is a mixture of αrx and α, and αpy is a mixture of αry and α,

where both mixtures use the same weights ((1 −p)/(1 − r) and (p − r)/(1 − r)). By

the affine representation for nonlosses, the preference between αpx and αpy is the

same as between αrx and αry.

The above lemma shows that �+ indeed agrees with � for nonlosses (take p = 0).

To see that it establishes an affine extension for losses, we briefly show that �+

satisfies all usual vNM axioms, also on losses. Completeness, transitivity, nontriv-

iality, and independence all readily follow from the definition of �+ by taking a

mixture weight p in its definition so close to 1 that this same mixture weight p can

be used for all consequences concerned in the axioms. This also holds for continu-

ity, where, applying it to � and αpf , αpg, and αph with p sufficiently close to 1,

implies it for �+, f , g, and h. All vNM axioms are satisfied for �+, giving an affine

representation, denoted u+ of �+ and, hence, also of � on all nonlosses.

We similarly define an as-if loss preference relation: x �− y if there exists p < 1

such that θ � βpx � βpy. We similarly obtain an affine representation, denoted u−,

of �− that agrees with � for all nongains. u+ and u− both represent � on the set of

neutral consequences. We show that this overlap is big enough to ensure that the two

representations are identical.

We can set u+(θ) = 0 = u−(θ). By continuity, we can take 0 < p < 1 such

that αpβ ∼ θ . Because u− represents � for losses, u−(β) < u−(θ) = 0, and
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hence u−(α) > 0. We normalize u−(α) = u+(α) = 1. Indifferences αqγ ∼ θ for

losses γ , and the affine representations, imply that u+ = u− for losses γ . Thus,

u+(β) = u−(β). This and indifferences δrβ ∼ θ imply that u+ = u− for gains δ

too. Hence, u+ = u− everywhere, and u+ = u−. Consequently, both these functions

represent � on nonlosses and on nongains. They also represent preferences between

gains and losses properly, assigning positive values to the former and negative values

to the latter. We have thus obtained an affine representation u+ = u− of �, implying

all the vNM conditions for consequences without sign restrictions. We denote u =

u+ = u−. This completes the proof of Observation 3.

Appendix C: Proof of Theorem 4

We first show that the implications in the definitions of independence can be reversed.

We use the term strong (comonotonic/cosigned) independence to refer to these

reinforced versions.

Lemma 3 Assume that � is a continuous weak order. Then the reversed implications

in Definitions 1, 2, and 4 also hold.

Proof Assume the conditions in the lemma and the implication of the definition con-

sidered. Consider three acts f, g, h. If f, g, h are comonotonic (or cosigned), then so

is the mixture set of all their mixtures, by Observation 3. In each case, independence

therefore holds on the mixture set considered without a comonotonicity/cosignedness

restriction, and we have the usual axioms that imply expected utility and the reversed

implications of Lemma 3.

NECESSITY OF THE PREFERENCE CONDITIONS IN THEOREM 4; i.e., (i) implies

(ii): We assume (i), PT, and briefly indicate how cosigned independence is implied.

The other conditions are routine. Consider cosigned f, g, c. We may assume a com-

mon partition E1, . . . , En such that the consequences of the acts depend on these

events. Because of cosignedness we can have

h1 � · · · � hk � θ � hk+1 � · · · � hn (14)

for all h equal to f , g, or c, or a mixture of these acts. For example, if for i there

exists a h′ from {f, g, c} with h′
i a gain, then all his are nonlosses and i ≤ k. If

hj ≻ hi for a h′ from {f, g, c}, then hj � hi for all three acts, and j < i. Thus,

we can use the same decision weights (Eqs. 12 and 13) for all three acts and for all

their mixtures. It implies that PT (fpc) = pPT (f ) + (1 − p)PT (c), with the same

equality for g instead of f . This implies cosigned independence.

SUFFICIENCY OF THE PREFERENCE CONDITIONS IN THEOREM 4 ((ii) implies

(i)). In Observation 3 we derived expected utility for consequences if only cosigned

independence is assumed. In agreement with the definition of prospect theory, we

normalize expected utility for consequence θ such that u(θ) = 0 and for some con-

sequence (existing because of true mixedness) α̌ ≻ θ such that u(α̌) = 1. Let a

nonloss act be an act g such that g(s) is a nonloss for every s. A nongain act is
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defined similarly. By Lemma 1, the set of nonloss acts is closed under mixing, and so

is the set of nongain acts. By Schmeidler’s Theorem 3, there exists a CEU functional

CEU+ =
∫

S
u(g+(s))dv+ on the nonloss acts g+ that represents � there CEU− is

similar.

By true mixedness, there exists a truly mixed act. By monotonicity, we can replace

all nonloss consequences of the act by its maximal consequence, and all loss conse-

quences by its minimal consequence, without affecting its true mixedness. The act

now only has two consequences and can be written as γF β with γ ≻ θ ≻ β. (γ

abbreviates good (or gain) and β abbreviates bad.) By continuity, we assume that

γF β ∼ θ , by either improving (by mixing with θ ) β or worsening (by mixing with θ )

γ . γF β will be used for calibrating the PT functional, and is called the calibration

act.

We now define a functional PT + on nonloss acts and a functional PT − on non-

gain acts, and a prospect theory functional PT that is the sum of those two. Next we

show that PT represents preference. More precisely, we define

PT (f ) = PT +(f +) + PT −(f −) = CEU+(f +) + λCEU−(f −), (15)

where λ > 0 is such that PT (γF β) = 0. Thus, PT (γF β) = PT +(γF θ) +

PT −(θF β), and λ = −CEU+(γF θ)/CEU−(θF β). We define c as the PT value of

the gain part of γF β; i.e.,

c = PT +(γF θ) > 0. (16)

This c is minus the PT value of the loss part of γF β; i.e., PT −(θF β) = −c.

PT represents preference on all nonloss acts, and also on all nongain acts. Because

it also compares nonloss acts properly with nongain acts (this holds for every λ > 0),

it is representing on the union of these, which is the set of all nonmixed acts. We call

an act f proper if PT (f ) = PT (g) for some nonmixed act g with f ∼ g. To prove

that PT is representing, it suffices, by transitivity, to show that all acts are proper,

and this is what we will do. That is, we use the nonmixed acts for calibrating PT

relative to preferences. We start with a set of binary acts cosigned with the calibration

act: AF is defined as the set of all acts δF α with δ � θ � α.

Lemma 4 All acts in AF are proper.

Proof In this proof we only consider acts from AF . All these acts are cosigned,

implying that we can use cosigned independence for all mixtures. We choose particu-

lar nonmixed acts. For any act f we find a nonmixed equivalent g defined as follows.

Let x be a consequence such that with g = xF θ we have PT (g) = PT (f ). By conti-

nuity of PT , such an x always exists. Thus, g is a nonmixed binary act with the same

PT value as f , but it is in AF and is cosigned with f and θ . We will demonstrate

properness on AF by showing that each act is equivalent to a nonmixed equivalent.

CASE 1 [acts with PT value zero]: Let PT (f ) = 0. Define a = PT +(f +) =

−PT −(f −) ≥ 0. θ is a nonmixed equivalent of f . We show that f ∼

θ .

CASE 1.1: a ≤ c (c as in Eq. 16). PT +(f +) = a
c
PT +(γF θ). By CEU for

nonlosses, f + ∼ (γF θ)a/cθ . Similarly, f − ∼ (θF β)a/cθ . By double
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matching, f ∼ (γa/cθ)F (βa/cθ) = (γF β)a/cθ ∼ θ (the last indifference

by cosigned independence). By transitivity, f ∼ θ and f is proper.

CASE 1.2: a > c. We consider a mix of f with θ , fpθ . From the defini-

tion of the PT functional we have PT (fpθ) = pPT (f ) = 0 and

PT +(fpθ)+) = −PT −((fpθ)−) = pa. We choose p so small that

0 < pa < c. From Case 1.1 we have fpθ ∼ θ . By strong cosigned

independence, this implies f ∼ θ . f is proper.

CASE 2 [acts with positive PT value]: Let PT (f ) > 0. By continuity and

the definition of PT , there exists a consequence δ between θ and

the maximal consequence in f such that PT (δF θ) = PT (f ) > 0.

δF θ is a nonmixed equivalent of f . Define a+ = PT +(f +) and

a− = −PT −(f −). Then PT (δF θ) = a+ − a−.

CASE 2.1: a+ ≤ c (hence a− < c). Write b+ = a+/c and b− = a−/c.

PT +(f +) = b+PT +(γF θ) and PT −(f −) = b−PT −(θF β).

Then it follows from CEU for gains that f + ∼ (γF θ)b+θ . For the

loss part of f , we similarly have f − ∼ (θF β)b−θ . By double match-

ing, f ∼ (γb+θ)
F
(βb−θ). We now isolate a symmetric component

with absolute prospect theory value a− for the gain part and the loss part

(this was the step most difficult to find in this paper): (γb+θ)
F
(βb−θ) =

(γF β)b−

[

(γ b+−b−

1−b−
θ)

F
θ

]

∼ (θ)b−

[

(γ b+−b−

1−b−
θ)

F
θ

]

∼

(γ(b+−b−)θ)
F
θ = f ∗. From PT (f ∗) = c(b+ − b−) = a+ − a− =

PT (δF θ) and CEU for nonlosses it follows that f ∗ ∼ δF θ . By

transitivity, f ∼ δF θ . f is proper.

CASE 2.2: a+ > c. We mix f and δF θ with θ to obtain f↓ = fpθ and (δF θ)↓ =

(δF θ)pθ . We define a+
↓ = PT ((fpθ)+), which is pa+, and a−

↓ =

PT ((fpθ)−), which is pa−. We choose p so small that a−
↓ < a+

↓ <

c. From prospect theory we have PT (f↓) = PT ((δF θ)↓), which, by

Case 2.1, implies f↓ ∼ (δF θ)↓. Because f , δF θ , and θ are cosigned,

fpθ ∼ (δF θ)pθ implies f ∼ δF θ . Again, f is proper.

CASE 3 [Acts with negative PT value]: Let PT (f ) < 0. This case is similar to

Case 2.

We have demonstrated that all acts in AF are proper.

We next show that all acts are proper. Consider a general act g, and event E such

that g yields nonlosses on E and losses on Ec.

CASE 1: There exists a matching act f ∈ AF such that PT +(f +) = PT +(g+)

and PT −(f −) = PT −(g−). Hence, PT (f ) = PT (g), and from CEU

for nonlosses and for nongains we have f + ∼ g+ and f − ∼ g−. From

double matching, f ∼ g. Because f and g have the same PT value

and are equivalent, and f is proper, it follows that g is also proper.
CASE 2. There exists no matching act f ∈ AF for g as in Case 1. We mix

act g with θ to obtain an act g↓ = gpθ . We choose p so small that

we find a matching act f↓ ∈ AF , i.e., PT +(f +
↓ ) = PT +(g+

↓ ) and

PT −(f −
↓ ) = PT −(g−

↓ ). Thus, PT (f↓) = PT (g↓), and Case 1 implies

f↓ ∼ g↓.
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Let g̃ = xEθ be the nonmixed equivalent of g. Let g̃↓ = x′
Eθ sim-

ilarly be the nonmixed equivalent of g↓. We have PT (g↓) = PT (g̃↓),

and because of Case 1 this implies g̃↓ ∼ g↓. Because g, g̃, and θ are

cosigned, gpθ ∼ g̃pθ implies g ∼ g̃. Thus, g is proper. We have proved

sufficiency of the preference conditions.

UNIQUENESS RESULTS Uniqueness of v+ (v−) follows from Schmeidler’s The-

orem 3 applied to nonloss (nongain) acts. It is obvious that the unit of utility can

be multiplied by any positive constant. We show that no other change is possible.

Restricting attention to nonloss consequences shows, by Schmeidler’s theorem, that

u, when restricted to nonlosses, is unique up to a unit, given that the scale u(θ) = 0

is fixed. Similarly, restricting attention to nongain consequences shows that u, when

restricted to nongains, is unique up to a unit that, a priori, might be different than for

gains. However, the equivalence γF β ∼ θ shows that the unit of losses is joined with

that of gains, and a change of one implies the same change of the other. Hence, only

one unit of utility is free to choose.

Appendix D: Remaining proofs

Proof of Observation 1 (20Bk
0) 1

2
(0) ≻ (20Ba 0) 1

2
(0) and (20Bk

0) 1
2
(−20) �

(20Ba 0) 1
2
(−20) violate weak certainty independence, but are exactly the preferences

in Example 1 under the AA model. To see the latter point, the left mixture in the first

preference, for example, yields 20 1
2
0 = 10 under event Bk .

Proof of Observation 4 PT (f ) = CEU+(f +) + λCEU−(f −) = u(x+) +

λu(x−) = PT (θ) = 0 implies u(x+) = −λu(x−). Then for g = x+
px− ∼ θ ,

PT (g) = pu(x+) + (1 − p)u(x−) = p(−λ)u(x−) + (1 − p)u(x−) = 0, implying

−λp + 1 − p = 0 ⇔ p = 1
1+λ

.

Appendix E: An isomorphism between our reduced and the full AA model

This appendix formally shows that the procedure described in Section 2, consider-

ing only a subdomain of the preferences (formalized through an rAA model) as used

in the experiment, is model-theoretically isomorphic to the full AA model. The rAA

model thus contains all information of the complete model, and we can indeed use

all techniques of the full AA model despite our restricted domain. We first present

the usual AA model formally. We assume Example 2. Generic notation: α, β, xi, yi

for outcomes; x = (p1:x1, . . . , pm:xm), with the obvious interpretation, for lotter-

ies. General acts are also called (two-stage) acts because there are two stages of

uncertainty.

Preferences over lotteries induce preferences over outcomes through degenerate

lotteries. A certainty equivalent (CE) of a lottery is an outcome that is equivalent to

that lottery. Under EU, it agrees with the CA of the lottery. The certainty equiva-

lent condition means that there exists a unique certainty equivalent for each lottery.

Uniqueness can always be achieved by collapsing indifference classes of outcomes.
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A function u on L is expected utility (EU) if u((p1:x1, . . . , pm:xm)) =
∑m

i=1 piu(xi)

and it represents � on L. This is equivalent to affinity of u. We use the same symbol

u for the function defined on X and its expectation defined on L. We sometimes call

u on L the risky utility function. We defined the (two-stage) AA model in the main

text by EU maximization over lotteries (w.r.t. u) plus backward induction, which is

equivalent to monotonicity under the following richness, which is assumed in this

appendix:

Assumption 1 A nontrivial weak order � is given on the set A of acts, with a best

outcome B and a worst outcome W . The CE condition is satisfied.

The best and worst outcomes are defined by B � α � W for all outcomes α. They

simplify utility scalings and relations between different models.

An act f is one-stage if all lotteries f (s) are degenerate; i.e., f assigns outcomes

rather than nondegenerate lotteries to all states (upper panel in Fig. 5). Then all rel-

evant uncertainty has been resolved in the first stage. A lottery, identified with the

corresponding constant act, is sometimes also called a one-stage lottery (left panel in

Fig. 5). Now all relevant uncertainty is resolved in the second stage.

The AA assumptions of EU on L and of monotonicity are called ancillary assump-

tions. They imply that a function representing preferences over acts must be of the

form

V (EU ◦f ) (17)

with V nondecreasing.14 Further assumptions, in addition to the ancillary assump-

tions and the common assumptions of weak ordering and nontriviality, concern the

function V , i.e., the aggregation of uncertainty over S, and they concern ambiguity.

They are of central interest, and we call them substantive assumptions.

We next discuss the experiment in Section 3 formally. The experiment concerns

the two-stage AA model with: (a) S = {Ra, Ba}; (b) bets on the ambiguous urn

are acts; (c) bets on the known urn are fifty-fifty lotteries (also some other lotteries

are used); (d) B = 10, W = −20. We used EU to analyze risky choices. We only

used a subpart of the two-stage AA model, the rAA model, in two respects. First,

all acts and lotteries presented to subjects were one-stage (upper and left panel in

Fig. 5). We obtained all desired utility levels at the second stage using consequences

that are outcomes, i.e., degenerate lotteries. Yet we could indirectly infer mixtures

of consequences under the two-stage AA model if necessary. For example, we could

derive, for the AA twin,

(Ra :0, Ba:0) ∼∗ (Ra :10, Ba:0)0.5(Ra :α, Ba :0) = (Ra :(100.5α), Ba :0), (18)

14We first apply monotonicity with indifferences to show that the representing function is a function V of

EU ◦f , and then monotonicity in full force to show that V is nondecreasing.
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Fig. 5 The reduced AA model
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because we elicited CE(100.5α) = 0. The second respect in which we only used a

subpart of the two-stage AA model is that we never used degenerate lotteries when

eliciting risky preferences. We next formalize our reduced form of the AA model,

called the rAA model.

The first modification [focusing on one-stage acts and lotteries]. For each two-

stage act f , each lottery f (s) is replaced by CE(f (s)) (arrow in Fig. 5). This

replacement is not done by the decision maker, but by the researcher. We inferred

Eq. 18 this way.

The rAA model preserves the underlying mixing of outcomes of the two-stage

AA model by temporarily returning to the underlying lotteries for a mix. We use a

notation β = α′pγ = pα +′ (1 − p)γ , where the first prime preceding the subscript

probability p indicates that the mixture operation here is different from the original

(probabilistic) one in the two-stage AA model, and the second prime following the

+ sign indicates the same. The two mixture operations are isomorphic though, and

lead to the same indifference class. Informally, we take any lotteries x, z with α =

CE(x), γ = CE(z), we take y = xpz, and then get β as CE(y). Because of EU on

L, it does not matter which x and z we take in this process, and the operation is well

defined. Always

β = α′pγ = pα +′ (1 − p)γ = u−1(pu(α) + (1 − p)u(γ )). (19)

This holds irrespective of the particular choices x and z. We use Eq. 19 as the for-

mal definition of the new mixture operation. The mixture operation is most easily

observable from:

CE(αpγ ) = α′pγ. (20)

That is, we take x = α and z = γ . An example is Eq. 2 which showed that 0 =

10′0.5α.

The second modification [avoiding degenerate lotteries for risky preferences]. In

the first modification, we put deterministic outcomes central for the analysis of

ambiguity by focusing on one-stage acts. Violations of SEU for such acts, due to

ambiguity, are our substantive interest. In the second modification considered now,

concerning the analysis of risk through one-stage lotteries, we avoid degenerate

lotteries, staying away from the upper left box in Fig. 5.

We define R = B0.5W , and take some fixed 0 < µ < 1 (0.4 in Section 3). For

each lottery x, we define x′ = Rµx. Under the ancillary assumptions of the AA

model, EU holds on L, and then a CE-indifference β ∼ y is not affected if we bring

in µR, as in

Rµβ ∼ Rµy, i.e., β ′ ∼ y′. (21)

In general, indifferences are not affected under EU if we add or remove primes from

all the lotteries. We call β in Eq. 21 the conditional CE of y, denoted β = CA(y). We

used this procedure in Eqs. 2 and 3. The CA condition means that there exists a unique

CA for each lottery x ∈ L. Given existence, uniqueness can always be achieved by

collapsing indifference classes.15

15Skiadas (2013) restricted the AA model to a fixed n-tuple of probabilities. If these all exceed µ and if

constant roulette lotteries are excluded, then our second modification is satisfied.
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The two modifications combined. The rAA model results from combining the

two modifications. Every two-stage act f in the two-stage AA model is replaced

by CA(f ), defined by replacing every f (s) by CA(f (s)), and turning every two-

stage act into an equivalent one-stage act (arrow in Fig. 5). We carried out the first

modification, but with primes added to Eq. 20 because of the second modification.

We call the rAA model derived from the two-stage AA model as just described the

corresponding rAA model. Conversely, from every rAA model the uniquely deter-

mined corresponding two-stage AA model can be recovered, mostly by deriving

preferences between two-stage acts from their CA images. We summarize the rAA

model formally.

Definition 5 The reduced AA (rAA) model holds if the following definitions and

conditions are satisfied. Assume S, D, L as before. B and W are the best and worst

outcomes, R = W0.5B, and 0 < µ < 1 is fixed. For each lottery x, we have x′ =

Rµx, and L′ ⊂ L is the set of all lotteries x′. OA contains (a) all one-stage acts, and

(b) L′. Thus, all elements of OA are one-stage. Preferences � are defined only over

OA. Preferences over L′ are represented by EU, the expectation u of a function on D

also denoted u. Preferences over outcomes agree with those over constant acts, and

are represented by u on D. Monotonicity holds. Conditional certainty equivalents,

denoted CA, are defined as in Eq. 21, and are assumed to uniquely exist for every

x ∈ L (the CA condition).16

The mixture operation on outcomes is defined through Eq. 19, and can, for

instance, be revealed from indifferences through the following analog of Eq. 20:

CA(αpγ ) = α′pγ. (22)

We summarize some useful relations between the corresponding reduced and two-

stage AA models.

Observation 6 Assume the Richness Assumption 1. Then there is a one-to-one

correspondence between two-stage and reduced AA models (based on the maps

f → CA(f ) and x → x ′), and the preferences of one model uniquely determine

those of the other. The rAA model is a substructure of the corresponding two-stage

AA model, and its preferences agree with the restriction of the two-stage AA model

preferences.
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