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Abstract. This paper introduces new techniques and correct complexity analyses for

impossible differential cryptanalysis, a powerful block cipher attack. We show how the

key schedule of a cipher impacts an impossible differential attack, and we provide a

new formula for the time complexity analysis that takes this parameter into account.

Further, we show, for the first time, that the technique of multiple differentials can be

applied to impossible differential attacks. Then, we demonstrate how this technique

can be combined in practice with multiple impossible differentials or with the so-called

state-test technique. To support our proposal, we implemented the above techniques

on small-scale ciphers and verified their efficiency and accuracy in practice. We apply

our techniques to the cryptanalysis of ciphers including AES-128, CRYPTON-128,

ARIA-128, CLEFIA-128, Camellia-256 and LBlock. All of our attacks significantly

improve previous impossible differential attacks and generally achieve the best memory

complexity among all previous attacks against these ciphers.

Keywords. Block ciphers, Impossible differential attacks, Multiple differentials, Key

schedule, Implementations, AES, CRYPTON, ARIA, CLEFIA, Camellia, LBlock.

1. Introduction

Impossible differential cryptanalysis is a very powerful attack against block ciphers

introduced independently by Knudsen [18] and Biham et al. [3]. The idea of these attacks

is to exploit impossible differentials, which are differentials occurring with probability

zero. The general approach is then to extend the impossible differential by some rounds,

possibly in both directions, guess the key bits that intervene in these rounds and check
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whether a trial pair is partially encrypted (or decrypted) to the impossible differential. In

this case, we know that the guessed key bits are certainly wrong and we can remove the

subsequent key from the candidate key space. Impossible differential attacks have been

successfully applied to a large variety of block ciphers, based both on the SPN and the

Feistel construction. In some cases, they yield the best cryptanalysis against the targeted

cipher; this is the case for the standardized Feistel cipher Camellia [10,25], for example.

Furthermore, impossible differential attacks were for a long time the most successful

attacks against AES-128 [27,29,39].

Recently, a generic complexity analysis of impossible differential attacks against

Feistel ciphers was presented [10]. Thanks to this generalized vision, several flaws in

previous attacks were detected and many new attacks were proposed. Our work is the

natural extension of the analysis given in [10] that inspired since its publication new

results and analyses (e.g., [4,5,11,23,32,38]). The techniques introduced in this paper

correct, complete and improve the techniques and analyses given in [10]. We further

show how to combine all of these concepts in practice to mount optimized impossible

differential attacks. In our applications, and in contrast to [10], we consider SPN ciphers.

It is important to recall here that the time complexity formula of [10] is a lower-bound

approximation. This approximation is most of the times met in practice, but as shown

in [11], some counter-examples may exist. So, as already pointed out in [10], we insist

here on the fact that the exact complexity of each attack needs to be carefully computed.

1.1. Our Contributions

The main contributions of this paper.

Correction of the time complexity approximation taking into account the role of the key

schedule. The first contribution of this paper is related to the role that the nature of

the key schedule plays in an impossible differential attack. Indeed, if the key schedule

is nonlinear and has sufficiently good diffusion, then it is usually not trivial to translate

guessed information on a subkey into information on the master key. In this case, the

key schedule can be seen as a black box between the first and last subkeys. We show that

this implies a new term must be taken into account in the time complexity evaluation.

This remark results in a more accurate estimate of the time complexity and then leads

to a correction of the time complexity formula provided in [10].

New technique for improving data complexity: Multiple differentials (Not to confuse

with the technique of multiple impossible differentials introduced in [27]). Our second

contribution is to apply the technique of multiple differentials to impossible differential

attacks, in order to reduce the data complexity. While this idea seems quite natural,

these two techniques had never been combined before. Applying this idea, sometimes

in combination with multiple impossible differentials, leads to improved attacks against

many ciphers as we prove through some concrete applications.

Experimental verifications of the introduced techniques Our third contribution is to

experimentally verify the theoretical complexities of our techniques and those of [10].

More precisely, we have implemented the state-test technique and the use of multiple
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(impossible) differentials with toy examples. In the state-test case, we show that the es-

timated complexity gain matches the real gain. With respect to the multiple (impossible)

differentials, we have performed several experiments, leading to the following important

conclusions:

– When the wanted probability of keeping a random partial key as candidate is around

1/2 (implying a certain needed number of pairs), the use of any multiple output

(impossible) differential will lead to a data complexity matching the formulas. In

the case of multiple input (impossible) differentials, the obtained complexities will

match the theoretical complexities only if the amount and form of needed pairs allow

to optimally exploit the plaintext structures and will be slightly reduced otherwise.

– When the wanted probability of keeping a random key is much smaller, e.g., if we

only want to keep the correct secret key at the end of the attack, the corresponding

amount of pairs will be slightly increased if multiple (impossible) differentials are

considered (whether they are input or output ones), as a direct consequence of the

higher number of key bits being involved. This previously unknown side effect

will also imply a divergence with respect to the formulas. This divergence can be

summed up to the previous one in the case of non-optimal input configurations.

To the best of our knowledge, this is the first time these techniques have been imple-

mented.

Multiple impossible differentials vs. simple impossible differentials We provide a dis-

cussion on the comparison of an attack that exploits multiple impossible differentials

with an attack with similar parameters but that exploits only one impossible differential.

An interesting question that arises in this type of situations is whether there are cases

where an attack using a single impossible differential provides better complexities than

an attack exploiting multiple impossible differentials. To answer this question, we pro-

vide in Sect. 5 an application against the block cipher ARIA-128 and we demonstrate

that while the data complexity is always worse in the single case, the time complexity

of an attack with a single impossible differential can sometimes be slightly better.

Application to various block ciphers We apply our techniques to a variety of block

ciphers. Our goal is to demonstrate the practical combination of our techniques with

some of those of [10] (such as the state-test technique, for example). This is a technical

task which was not correctly treated in [10]. Table 1 shows the complexities of all of our

attacks together with a summary of the best known cryptanalyses on the targeted ciphers.

As the table shows, the techniques of this paper permitted us to improve the attacks

of [10] against the Feistel ciphers LBlock, CLEFIA-128 and Camellia-256 (without

FL layers and whitening keys). In fact, most of the attacks that we provide improve

on the memory complexities of the best known attacks. We also improve on the best

known impossible differential attacks against three SPN block ciphers, namely AES-

128, CRYPTON-128 and ARIA-128. While other types of cryptanalysis have led to

more powerful attacks on these three ciphers, our techniques still yield an interesting

improvement on previous impossible differential attacks. Each of these applications

illustrates a different combination of our methods. Only our application against 7-round

AES-128 will be treated in full here (the other applications are sketched more briefly).
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Table 1. Summary of best single-key attacks against AES-128, CRYPTON-128, ARIA-128, CLEFIA-128,

Camellia-256‡ andLBlock.

Algorithm Rounds Data (CP) Time Memory (blocks) Technique Refs.

AES-128 [14] 7 2106.2 2110.2 290.2 ID [29]

7 2105 2105 + 299 290 MITM [13]

7 297 299 298 MITM [13]

7 2121 2121 + 283 274 MITM § [12]

7 2113 2113 + 275 282 MITM § [12]

7 2113.1 2113.1 + 2105.1 274.1 ID Sect. 4

7 2105 2106.88 274 ID Sect. 4

CRYPTON-128 [24] 7 297 297.2 2100 Trunc. Diff. [17]

7 2121 2121 + 2116.2 2119 † ID [30]

7 2114.92 2114.92 + 2113.7 288.5 ID Sect. 4

8 2126 2126.2 2100 Trunc. Diff. [17]

ARIA-128 [19] 6 2113 2121.6 2113∗
ID [21]

6 2121 2121 + 2112 2121∗
ID [37]

6 2120.5 2120.5 + 2104.5 2121∗
ID [21]

6 2120 2120 + 296 2120∗
ID [22]

6 2111 2111 + 282 271 ID Sect. 4

7 2105.8 2105.8 + 2100.99 279.73 LC [26]

CLEFIA-128 [34] 13 2111.02 2122.26 282.6 ID ⋄ [10]

13 2114.58 2116.16 283.16 ID ⋄ [10]

13 2114.4 2114.4 280 ID Sect. 4

13 299 299 280 Trunc. Diff. [20]

14 2100 2108 2101.3 Trunc. Diff. [20]

Camellia-256‡[1] 14 2120 2250.5 2120 ID [25]

14 2118 2220 2173 ID ⋄ [10]

14 2117.7 2215.7 2166.7 ID Sect. 4

LBlock [36] 23 259 275.36 274 ID [10]

23 263.87 274.30 260 ZC [6]

23 255.5 272 265 ID Sect. 4

∗ Estimated memory requirements since not given in the original papers.

⋄ Incorrect result not taking into account the key schedule.

† Complexity estimated in [28].

‡ Without whitening keys and FL layers.

§ Additional trade-offs of the attacks in [12] provided by P. Derbez (private communication)

This attack has the best memory complexity among all known attacks against AES-128

(though its time complexity does not improve on the best). This attack gives a perfect

illustration of how to practically combine almost all of the techniques introduced in this

paper.

The rest of the paper is organized as follows: Sect. 2 presents our new techniques and

remarks on impossible differential attacks. The role of the key schedule is discussed, the

combination of multiple differentials and impossible multiple differentials is presented,

and a corrected formula for estimating the time complexity of an attack is given. Section 3

is dedicated to the implementation of the introduced techniques on toy ciphers. Finally,

Sect. 4 presents our attacks against AES-128, CRYPTON-128 and ARIA-128.
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2. Impossible Differential Cryptanalysis

We provide here the basic principles of an impossible differential attack and introduce

the notation that will be used throughout this paper.

2.1. An Overview of Impossible Differential Cryptanalysis

We start by recalling the framework introduced in [10].

An impossible differential attack against an n-bit block cipher, parametrized by a key

K of length K , starts with the discovery of an impossible differential composed of an

input difference DX that propagates after rD rounds to an output difference DY with

probability zero. After this, one extends this differential rin rounds backward to obtain a

difference that we will denote Din and rout rounds forward to obtain a difference called

Dout. The log2 of the size of a set D will be denoted by Δ.

The two appended differentials are used to eliminate the candidate keys that encrypt

and decrypt data to the impossible differential. Indeed, if for a candidate key both dif-

ferentials Din → DX and Dout → DY are satisfied, then this key is certainly wrong as

it leads to an impossible differential and must therefore be rejected.

DX

DY

Din

Dout

rin

rout

rD

(cin, kin)

(cout, kout)

Two important quantities in an impossible differential attack are the total number of

key bits that intervene in the appended rounds and the number of bit-conditions that

must be satisfied in order to get DX from Din and DY from Dout. We will therefore let

kin (resp. kout) denote the number of key bits that have to be guessed during the first

(resp. last) rounds, and |kin ∪ kout| the entropy of the involved key bits when considering

relations due to the key schedule. Similarly, cin (resp. cout) will denote the number of

bit-conditions to be verified during the first (resp. last) rounds.

We continue by briefly reminding the way to determine the number of pairs needed

for the attack.

The probability that for a given key, a pair of inputs already satisfying the differences

Din and Dout verifies all the (cin + cout) bit-conditions is 2(cin+cout). In other words, this

is the probability that for a pair of inputs satisfying the difference Din and whose outputs

satisfy the difference Dout , a key from the possible key set is discarded. Therefore, by

repeating the procedure with N different input (or output) pairs, the probability that a
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trial key is kept in the candidate keys set is

P = (1 − 2−(cin+cout))N .

There is not a unique strategy for choosing the amount of input (or output) pairs N . This

choice principally depends on the overall time complexity, which is influenced by N ,

and the induced data complexity. Different trade-offs are therefore possible. A popular

strategy generally used by default is to choose N such that only the right key is left after

the sieving procedure. This amounts to choose P as

P = (1 − 2−(cin+cout))N <
1

2|kin∪kout |
.

However, as shown in [10], a different approach can be applied helping to reduce

the number of pairs needed for the attack and to offer better trade-offs between the

data and time complexity. More precisely, it is permitted to consider smaller values

of N . By proceeding like this, one will be probably left with more than one key in the

candidate keys set and will need to proceed to an exhaustive search among the remaining

candidates, but the total time complexity of the attack will probably be much lower. In

practice, one will start by considering values of N such that P is slightly smaller than 1
2

so to reduce the exhaustive search by at least one bit. So N should be chosen such as

P = (1 − 2−(cin+cout))N ≈ e−N×2−(cin+cout )

<
1

2
. (1)

We remind here that the quantity N determines the memory complexity of the attack.

The data complexity of an attack can be determined by the following formula given

in [10].

CN = max

{

min
Δ∈{Δin,Δout}

{
√

N2n+1−Δ
}

, N2n+1−Δin−Δout

}

, (2)

where Δin is the number of active bits in Din (log2 of the dimension of the input space)

and Δout is the number of active bits in Dout.

Finally, we remind the analysis of the time complexity presented in [10]. We recall

again that the formula provided is a lower-bound approximation of the time complexity.

This is due to the fact that each of the terms of this formula represents the minimum

complexity of the operations that should be done in order to accomplish each step.

By following the early abort technique, the attack consists in storing the N pairs and

testing out step by step the key candidates, by reducing at each time the size of the

remaining possible pairs. The time complexity is then determined by three quantities.

The first term is the cost CN , that is the amount of needed data [see Formula (2)] for

obtaining the N pairs, where N is such that P < 1/2. The second term corresponds

to the number of candidate keys 2|kin∪kout |, multiplied by the average cost of testing the

remaining pairs. For all the applications that we have studied, this cost can be very closely

approximated by
(

N + 2|kin∪kout | N
2cin+cout

)

C ′
E, where C ′

E is the ratio of the cost of partial

encryption to the full encryption. Finally, the third term is the cost of the exhaustive

search for the key candidates still in the candidate keys set after the sieving. By taking
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into account the cost of one encryption CE, the approximation of the time complexity is

given by

CT =

(

CN +

(

N + 2|kin∪kout |
N

2cin+cout

)

C ′
E + 2K P

)

CE. (3)

Obviously, as the attack complexity should be smaller than that of exhaustive search,

the quantity CT should be smaller than 2K CE. In Sect. 2.5, after discussing the role

of the key schedule in an impossible differential attack and after presenting our new

techniques, we provide a corrected time complexity formula that takes all of the above

into account.

In all of the applications that we provide at the end of this paper, we aim to derive

different possible trade-offs for the time, data and memory complexity of an attack. For

this reason, we introduce a parameter ε offering this possibility. More precisely, we take

N = 2cin+cout+ε. The data and time complexity formulas are subsequently modified.

Different values of ε provide different complexity trade-offs.

In [10], it was said that Din and Dout were obtained by allowing the differences DX and

DY to propagate with probability 1 in the backward and forward directions, respectively.

However, we point out here that this restriction is not necessary. In the case of Feistel

constructions, it is a common technique to propagate the DX and DY differences with

probability 1, as one usually does not have the choice of doing this in a different manner.

However, in the case of SPN ciphers using AES-type matrices for diffusion, considering

probabilistic propagation clearly makes sense as it considerably increases the number of

possibilities for extending the impossible differential and therefore offers more flexibility

to the attacker for finding the best parameters for the cryptanalysis. If we take for example

the case of AES, there are usually many possibilities for extending an active state after

theMixColumns operation. An attacker can thus choose among all these possible cases

and take the transitions that provide the best parameters for her attack.

This remark has important consequences for the data complexity of some attacks.

Indeed, as seen by the formulas given in [10], if we allow only transitions DX → Din and

DY → Dout of probability 1, then the equalities Δin − cin = ΔX and Δout − cout = ΔY

are true by Bayes’ theorem. Thus, the minimal data complexity, given by CN , is in

this case 2n+1−ΔX −ΔY , meaning for example that if only one impossible differential is

considered, the attack on some ciphers will not work, without the use of any special

techniques, because of a lack of data. This is the case for impossible differential attacks

against the block cipher Simon, for example, where ΔX = ΔY = 0. Indeed, as can

be seen in [10], both DX and DY in the attack against Simon have only one bit active;

therefore, the log2 of both these quantities is zero. This then leads to CN ≥ 2n+1,

implying that the attack does not work. If the probability for choosing the input and

output differences is not 1, then this does not hold anymore and more flexibility is

available for choosing the different trade-off parameters.
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2.2. On the Key Schedule Seen as a Black Box

The first contribution of this paper is to reveal that the nature of the key schedule has an

impact on the complexity of an impossible differential attack. Indeed, if the cipher’s key

schedule is strongly nonlinear, the first few subkeys have necessarily a very complicated

relation with the subkeys of the last rounds. Note that the link between the nature of

the key schedule and the complexity of the underlying attack has been independently

reported by Derbez [11].

In the context of impossible differential attacks, in general one has to guess key bits

that belong to subkeys that have a gap of some rounds between them. If the key schedule

is complex, then it is not possible to directly translate the information guessed on the

subkey bits into the same amount of information on the master key. For this reason, one

has to complete the missing bits to some of the partially known subkeys of the first or

of the last rounds until we have enough bits to compute through the key schedule (or

its inverse). Once this is done, one can verify if this way of completing the missing bits

was correct by checking if the result matches with the previously known key bits of the

subkeys found on the other side of the impossible differential.

Usually, the part of the key schedule that connects the subkeys of the first rounds to

the subkeys of the last rounds can be seen as a black box, and the computation above

should be taken into account in the estimation of the time complexity. Before providing

the new term that has to be taken into account in such a situation, we briefly define a

classification of the key schedules and give the resulting key bit guessing techniques that

should be adopted. We further introduce two new notations, kA and kB , which permit

us to partition the key bits to be guessed into two separate groups according to the three

following cases:

Linear or almost linear key schedules In such a case, it is possible to directly translate

the kin and kout bits of the first and last rounds in the same number of bits of the master

key by using the key schedule. Therefore, we set kA = |kin ∪ kout| and kB = 0. For

example, the block cipher LBlock has a key schedule of this type, and this was exploited

in the attack provided in [9].

Complex key schedule of AES type In cases where it is very complicated to connect

the kin bits of the first rounds to the kout bits of the last rounds, we simply set kA = kin

and kB = kout. The block ciphers AES, CRYPTON and ARIA belong to this group.

Complex key schedule of MISTY1 or Camellia type This category also includes ciphers

with highly nonlinear key schedules; however, the partition of the key bits into first and

last round bits is not always relevant. For example, Camellia-128’s key schedule can be

seen as dividing subkeys into two groups, where on the one hand the relation between

subkeys of the same group is very easy to compute, but on the other hand it is very

complicated to connect subkeys of different groups. The difference with the previous

type of key schedule is that these two groups do not exactly correspond to kin and kout.

Therefore, in such a case kA will represent the subkey bits of one group, while kB the

subkey bits of the other group. The block cipher CLEFIA has also a key schedule of this

type.

We are now ready to introduce the term taking into consideration the black box

phenomenon that has to be added to Eq. (3): min(2K−kA , 2K−kB ) · P · 2kA+kB · CK S,

where CK S is the key schedule cost. The quantities K − kA and K − kB correspond to
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the number of missing key bits that have to be completed. The above term can be simply

rewritten as

min(2K+kA , 2K+kB ) · P · CK S .

This term, multiplied by max(2−kA , 2−kB ) · 1
CK S

, gives the number of candidate keys

to test.

To conclude this paragraph, we emphasize that the remark presented in this section

had never been pointed out before and was not taken into consideration in [10]. Indeed,

in many previous attacks, even if the key schedule of the analyzed cipher becomes

highly nonlinear through the rounds, it was wrongly supposed that one guessed word of

a subkey could directly be seen as one guessed word of the master key.1 Of course, the

classification given above does not take into account every possible key schedule that

one can imagine. One can think of key schedules not fitting any of the above categories.

However, in concrete constructions, we have not encountered such cases and we believe

that the key schedules used in practice lie in one of the above classes.

2.3. Multiple Differentials in Impossible Differential Cryptanalysis

Multiple differential cryptanalysis [31] is a generalization of differential cryptanalysis

in which several input and output differences are considered simultaneously. We show

here that this technique can be successfully combined with impossible differential crypt-

analysis to reduce the data complexity of an attack. To the best of our knowledge, the

idea of combining these two techniques had never been considered before. Furthermore,

as we demonstrate in the next section, this method can also be combined with multiple

impossible differentials [10,35] to further reduce the amount of data that an attacker

requires.

The idea here is to consider several input differences Din and several output differences

Dout, all of them corresponding to the same pair of differences (DX ,DY ) as depicted in

Fig. 1. This method recalls the idea from [16], where multiple differentials were applied

to rebound-type distinguishers.

Considering multiple differentials provides the attacker with more input/output dif-

ferences Din,Dout, meaning that there are more choices for the input/output patterns of

a pair. Indeed, in a chosen-plaintext attack, a plaintext pair will be kept if the truncated

difference of the corresponding ciphertexts is among the multiple output differences

Dout, leading to more choices than in an attack with a single Dout. As we realized during

our experiments, the input case is a bit more complicated to deal with, but globally it can

be seen in the same way. Therefore, less data are needed to construct the pairs for the

attack; this is the reason why this method helps to reduce the overall data complexity.

We define here two new variables, min and mout, corresponding to the number of

input/output multiple differentials taken into account for a single impossible differential.

1Obviously, we can imagine key schedules where a subkey does not necessarily provide any additional

information on subsequent ones, and in this case our formula cannot be applied in the state. However, we have

not encountered such type of key schedule in none of our various applications, as we can imagine that such

key schedules have bad implementation properties.
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Fig. 1. Multiple inputs and multiple outputs.

Following the same reasoning as in [10] where the data complexity of an attack using

multiple impossible differentials was given as a function of the data complexity, CN of a

standard attack with the same parameters, we deduce that the new data complexity CN ′ is

CN ′ =
CN

minmout
. (4)

We show in the sequel how to correctly deal with the situation where different sets of

key bits are related to the different Din,Dout differences. However, we note here that our

analysis only considers multiple input and output differences of equal Hamming weight.

Otherwise, the individual complexities might be non-equivalent, and in that case, the

differential with the highest complexity becomes the leading term without therefore

improving the final complexity.

2.4. Multiple Differentials with Multiple impossible Differentials

The idea of multiple impossible differentials, first introduced by Tsunoo et al. [35] and

later formalized in [10], is to simultaneously consider several impossible differentials

(DX ,DY ). This technique reduces the data complexity of the attack compared to a

cryptanalysis that only exploits one impossible differential. This is due to the fact that

using multiple impossible differentials implies less bit-conditions to be verified (as one

has more choice), and the number of bit-conditions directly affects the number of pairs

N and thus the amount of data, as can be seen in Eq. (2).

We introduce the idea of using multiple differentials and multiple impossible dif-

ferentials together to further reduce the amount of data. If nin is the number of input

differences DX and nout the number of output differences Dout, then the reduced data

complexity by combining both techniques is

C ′
N =

CN

ninnoutminmout
. (5)

This formula is directly derived from Eq. (4) and from the formula for the data complexity

given in [10] for multiple impossible differentials.
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In practice, whether the different differentials come from several impossible differ-

entials (DX ,DY ) or from several input and/or output differences (Din,Dout) will not

change the way the complexity of the attack is affected, and we treat both types equally.

For simplicity, we use multiples to refer to both multiple impossible differentials and

multiple differentials. Applications of the above are provided in Sect. 4.

2.5. Putting it All Together

Multiples and black box key schedules When considering several multiples, there can be

different patterns for the groups of key bits of size kA or kB involved in the attack. In

some cases, these groups will be disjoint, but this will not always be so. For the sake of

simplicity, we concentrate on the case of output multiples (the analysis of input multiples

is similar). We let M = ninnoutminmout denote the total number of multiples. We let

kinv
B denote the number of kB bits that are involved in at least one of these differentials

(i.e., the union of all the sets of kB bits), and kint
B = M × kB − kinv

B the total number of

redundant bits from kB when we suppose that all the key bits are affected from all the

differentials at the same time. In this case, the term to take the black box phenomenon

into account is:

2K−kinv
B · (P1/M · 2kA+kB )M · 2−kint

B · 2−kint
A · CK S = 2K · P · 2kinv

A · CK S . (6)

This previous term, multiplied by 2−kinv
A · 1

CK S
, gives the number of candidate keys to

test, while the last term of the complexity stays 2K · P · CE. We omit the min here, since

we can choose the roles of kA and kB . Several applications of this situation are provided

in Sect. 4.

Given these formulas, the combination of both the state-test and the multiple (impossi-

ble) differentials is now straightforward. Combining everything, the new time complexity

formula that we propose is

CT =

(

CN +

(

N + 2kA+kB
N

2cin+cout

)

C ′
E + 2K · P · 2kinv

A · C ′
K S + 2K · P

)

CE, (7)

where C ′
K S is the ratio of the cost of the key schedule compared to the full encryption.

Our application against AES-128 gives an illustration of such a combination.

Multiples and state-test The aim of the state-test technique, introduced in [10], is to

eliminate some candidate keys without having to consider all of the possibilities for the

involved key bits. This can be done, for example, by considering the value x of a word

of size s of the internal part of the state needed to verify if a condition is satisfied in

the second round. Typically, with a constant c from the diffusion layer and an invertible

Sbox S, we would have x = x ′ +cS(Pi + Ki )+ K j , where x ′ is an already known value

that we have computed with the knowledge of the plaintexts/ciphertexts and the already

guessed key bits. The s-bit variable Pi , corresponds to the fixed part of the state, i.e., it

has the same value for all the considered pairs. The variables Ki and K j correspond to

the not yet guessed nor determined involved parts of the key, of size s each. We easily

see that if instead of guessing both variables Ki and K j we directly guess the value

x + x ′, then we can perform the rest of the attack in a similar way, with a complexity
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reduced by s bits, as the number of guesses is reduced by this amount. Each guess of

x + x ′ will imply a disjoint set of possibilities for Ki and K j , and considering all the

values of x ′ + x will provide all possible combinations of Ki and K j . The attack is

performed as before, where now we will determine the candidate values for x + x ′. Note

again that this is only possible because the value of Pi is fixed. This simplified version

of the state-test technique combined with a simplified vision of multiple (impossible)

differentials eases their combination. Consider a simple attack, i.e., implying a single

impossible differential, performed with Ns number of pairs. Let Ps be the proportion of

candidate keys that we obtain, and let CNs be the data complexity of the corresponding

attack. The number of remaining key candidates is 2|kin∪kout | · Ps2K−|kin∪kout | = 2K · Ps .

Now, suppose that we repeat this attack T times in parallel for different sets of data,

possibly involving different key bits. While the parameters of the repeated attacks are the

same as for the first one, the number of candidate keys left2 will be (2|kin∪kout |·Ps)
T ·2−kint ,

where kint is the total number of redundant bits from K when we consider all the key

bits affected by all the multiple differentials together. The data complexity in this case

is T · CNs , for a proportion of keys Ps
T , and the time complexity is about T · CTs . It

is easy to see that when we perform a multiple instead of a parallel repetition, we are

following a similar procedure, but we can reuse the data. Therefore, the data complexity

of this multiple attack will be smaller, while the time and memory complexities will a

priori stay the same.

Combining the above representations of the state-test and multiple impossible dif-

ferentials techniques, together with the new formula that correctly takes into account

the key schedule when using multiple differentials, is now straightforward. The attack

against AES-128 gives a detailed illustration of how these two methods can be combined.

3. Verification of the Improvement Techniques

In this section, we detail the implementation experiments that we performed in order

to verify the improvement techniques introduced both in this paper and in [10]. To the

best of our knowledge, this is the first time that the state-test technique and the multiple

(impossible) differential techniques have been implemented and therefore validated. We

emphasize the importance of implementation as the only means of corroborating the

theoretical approaches.

Multiple differentials

The scope of the first implementation experiment is to get a clear idea of the accuracy of

the equations given in Sect. 2, and in particular Formula (5), when working with multiple

(impossible) differentials.3 For doing so, we considered a toy cipher corresponding to a

6-round Feistel network using blocks of n = 32 bits and whose round function has an

2See the previous section for a more complete description when the key schedule is seen as a black Sbox.

3When implementing an attack that takes advantage of multiple differentials, one fatally needs to append

many rounds to the impossible differential in order to get a significant number of differentials. This leads then

to a significant increase in the complexity of the implemented attack. For this reason, we have only considered

in our experiments multiple impossible differentials. However, due to the similarity of these two notions, we

conjecture that the conclusions of this section can be applied to both types of differentials.
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SP structure. This round function is therefore composed of 3 operations: a bitwise key

addition, the parallel application of a 4-bit Sbox (same as for PRESENT [8]) and finally

the application of a MDS linear transformation P (same as for LED [15]).

For the sake of simplicity, we considered independent round keys. We used a 4-round

impossible differential, with an input difference of the form DX = (0, 0, 0, 0|a, 0, 0, 0)

(with a a non-null nibble) and an output difference DY = (x, y, z, 0|0, 0, 0, 0), where

x , y and z are nibbles free of conditions.4 We add one round before and after this

differential and end up with the following parameters: Din = (a, 0, 0, 0|P(b, 0, 0, 0))

with a and b nibbles free of conditions, leading to Δin = 8, cin = 4 and Dout =

(P(u, v, w, 0)|(x, y, z, 0))) (all nibbles free of conditions) leading to Δout = 24, cout =

12.

To start with, we consider a simple attack against the above toy cipher exploiting

only one impossible differential and we suppose that our goal is to discard half of the

candidate keys after the attack. According to Eq. (1), we need N pairs satisfying both

Din and Dout, where N is such that

P = (1 − 2−(cin+cout))N = (1 − 2−16)N <
1

2
.

This leads to N > 215.47. We verified experimentally that the above formula is accurate

by launching 10 tests on our toy cipher. Indeed, the experiment showed that we need in

average 223.44 pairs satisfying Din to eliminate half of the candidate keys. This means

that we have 223.44−n+Δout = 223.44−8 = 215.44 pairs satisfying both Din and Dout. In

the sequel of our implementation experiments, we are interested in the evolution of the

number of necessary pairs N when more than one impossible differential is used.

Furthermore, in the following experiments, we verify the accuracy of Formula (5)

in the case of input multiples, in the case of output multiples, and in the case that the

probability of keeping a key is not one half, but is equal to the inverse of the number of

possible (involved) keys.

We first describe the simplest experiments, where we considered a probability of not

discarding a key being 1/2, i.e., where half of the possible keys are eliminated after the

attack.

Using multiple outputs We are interested here in the evolution of the quantity of re-

quired pairs if we use multiple impossible differentials for the second half of the differ-

ential, i.e., if we exploit the 4 possible patterns (of same Hamming weight) for DY : DY =

(x, y, z, 0|0, 0, 0, 0), (x, 0, y, z|0, 0, 0, 0), (x, y, 0, z|0, 0, 0, 0) and (x, y, z, 0|0, 0, 0, 0)

(see Fig. 2).

In such a case, if we have N pairs satisfying both Din and one out of the 4 possible Dout ,

the probability to not discard a key is not modified, as the conditions remain unchanged

for all the 4 output possibilities, and is equal to P = (1 − 2−16)N , which indicates that

if we want to divide by 2 the number of possible keys, the required amount of pairs

satisfying both Din and (one of the) Dout is unchanged. On the other hand, since more

output differences are valid, we need to encrypt less pairs satisfying Din to find N pairs.

4The impossibility of this differential comes from the MDS property of P .
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Fig. 2. Attack configuration with 2 Din and 4 Dout .

Table 2. Necessary amount of pairs N satisfying Din in order to eliminate half of the candidate keys (average

on 10 tests) and associated CN .

Number of considered Dout 1 2 3 4

Theoretical value of log2(N ) + n − Δout 23.5 22.5 21.9 21.5

Experimental value of log2(N ) + n − Δout 23.4 22.4 21.8 21.6

Theoretical value of log2(CN ) 16.5 15.5 14.9 14.5

Experimental value of log2(CN ) 16.5 15.4 14.8 14.6

To decrease the data complexity, we use structures of size 28 that cover all possible values for a and b

Indeed, if nout output differences are considered, we need to encrypt only a fraction of

n−1
out pairs satisfying Din (see Fig. 2).

The results of our experiments are given in Table 2. One can remark that these results

correspond to what was predicted by theory.

Using multiple inputs and combination with multiple outputs We consider here the

case of several input differentials Din, and as we will see, the situation is now slightly

different. The probability of eliminating a key remains unchanged, so we still require

the same amount of pairs N satisfying (one of the) Din and Dout.

The experiments we did on our toy cipher meet this theory. More precisely, we gen-

erated random pairs, alternatively following the first and the second Din, and counted

how many pairs are necessary to divide the set of possible keys by 2. It resulted that we

need (average on 10 tests) 222.5 pairs in each Din if we use a single Dout. This quantity

decreases to 221.5, 221.0 and 220.6, respectively, for 2, 3 and 4 Dout.

The gain from the multiple inputs would come from the fact that we can create pairs

following one of the Din in a clever way, by carefully selecting the plaintexts we encrypt.

For instance, if we use 2 differentDin, a nice choice would be to choose a random plaintext

p and to encrypt the 216 messages given by:

{p ⊕ (a, 0, 0, 0|P(b, 0, 0, 0)) ⊕ (0, c, 0, 0|P(0, d, 0, 0)), a, b, c, d ∈ G F(24)}

With such a set, we are able to make 215 × 28 = 223 pairs satisfying each of the

entering pattern, i.e., 224 pairs satisfying one of the Din, while this amount of encryption

would have given only 223 pairs if only one Din was exploited.
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Fig. 3. Efficient structure to exploit two Din .

We can visualize such a structure as a two-dimensional array: Each line is made of 28

plaintexts that form a structure for the first Din, and each column makes a structure for

the second Din (see Fig. 3).

If we require a multiple of 224 pairs satisfying one of the Din, the data gain should

be of one half. However, if we require less pairs, building structures is not that obvious

and the real gain could be smaller. If we consider 2 possible Din, a solution would be to

create a structure similar to the one in Fig. 3 with 2ℓ1 ≤ 28 lines and 2ℓ2 ≤ 28 columns,

which would allow to build approximately 2ℓ1+2ℓ2−1 pairs satisfying the first Din and

2ℓ2+2ℓ1−1 pairs satisfying the second one. The aim is then to be able to build the needed

amount of pairs satisfying one of the Din (2ℓ1+2ℓ2−1 + 2ℓ2+2ℓ1−1) while minimizing

the number of encryptions (2ℓ1+ℓ2 ). We have therefore verified that the given equations

cannot always be met with respect to the multiples considered in the input, and the loss

with respect to this will depend on the best way of building the structures. Some results

show that, in the generic case with nin differentials, the best configuration for having the

smallest loss is to take maximal values for the first ℓi while not exceeding the needed

N , and then complete the next one with the needed amount, while considering 1 for the

others. This implies that using all the structures associated with a 1 will not improve

the data complexity, as it will be useless, and the best possible improvement is achieved

when considering as many different Din as the various ℓi different from 1 that we have.

Choosing N in order to keep only the correct key The situation becomes quite different

if we are interested in keeping only the correct key. In this case, for a simple attack with

one Din and one Dout, Eq. (1) becomes

P = (1 − 2−(cin+cout))N <
1

216
,

since 4 nibbles of the key intervene in the attack. This theoretic formula gives that N

has to be bigger than 219.47. We launched 10 experiments and were able to confirm this

quantity in the non-multiple case; the average obtained is of 227.5 pairs satisfying Din.

When considering several possible Dout, the number of possible involved key bits is

going to be slightly increased, but this increase is enough to affect the data complexity.

This was not taken into account in [10] nor in our theoretical formulas and should be

kept in mind. As can be seen in Table 3, this has a small but clear effect in the data needs,

allowing to gain slightly less than what predicted.

For the sake of completeness, we have considered the case where the probability of

not discarding a key is as small as necessary to only keep one key, and we consider at
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Table 3. Necessary amount of pairs following the unique Din in order to keep only the right key (average on

10 tests) and associated CN .

Number of considered Dout 1 2 3 4

Experimental value of log2(N ) + n − Δout 27.5 26.9 26.4 26.0

Experimental value of log2(CN ) 20.5 19.9 19.4 19.0

To decrease the data complexity, we use structures of size 28 that cover all the values for a and b

Table 4. Necessary amount of pairs satisfying one of the two Din in order to keep only the right key (average

on 10 tests) and associated CN .

Number of considered Dout 1 2 3 4

Experimental value of log2(N ) + n − Δout 27.9 27.2 26.7 26.3

Experimental value of log2(CN ) 20 19.2 18.8 18.4

In this case, taking complete structures allows to reduce the necessary amount of encryptions, as predicted by

theory

the same time 2 different Din and up to 4 different Dout. We see in Table 4 how the side

effect of a higher number of involved key bits is a bit stronger here than in Table 3, as

with two Din, this number is increased. We do not see here the effect of the non-optimal

structures constructed with the Din, as in this particular case, the amount needed is big

enough to optimally exploit such structures. Therefore, the obtained experimental values

for CN nearly match the theoretical ones.

State-test technique We describe here the experiments we performed to validate the

state-test technique. For this purpose, we used a slightly modified version of CLEFIA [34]

in which we drop the word-size from 8 bits to 4 bits, adapting the internal functions to

fit this new size. As depicted in Fig. 4, we attack 6 rounds of such a CLEFIA with a 4-

round impossible differential and the same 2-round input differential used in the attacks

of [10].

For practical reasons, we suppose that the subkey RK1 has already been guessed. We

then applied the state-test technique on the value of the nibble denoted by x in Fig. 4

to recover one nibble of the subkey RK0 and one nibble of RK2. We performed this

experiment for 23 randomly chosen keys, using different amounts of data, as described

in Table 5. This experiment consists in counting the average number of Sbox evaluations

as well as the number of times we abort to try a candidate key, i.e., the number of false

positives, until we recover the right key. For comparison, we provide the correspond-

ing quantities in the case of a traditional cryptanalysis—that is, without applying the

state-test technique. We have therefore been able to verify that the state-test technique

considerably improves the time complexity of the attacks, as predicted.

4. Applications

We start by providing a brief overview of the importance and impact of each of our

applications and a comparison with previous attacks. Table 6 provides the techniques

and improvements that are applied in each case, the parameters used as well as the attack
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Impossible differential

Fig. 4. Reduced version of CLEFIA used to verify the correctness of the state-test technique. The number 2

on the rightmost word of the ciphertext means that at least two nibbles have a nonzero difference.

complexities. The formulas and techniques that we provide allow for a straightforward

application on several ciphers. Thanks to our complexity estimates, we manage to im-

prove on many of the previous attacks. As we have seen in Sect. 3 and as can be seen in

the attack against AES-128, these estimations accurately meet the attack complexities.

AES-128 We provide a complete description of one of our attacks that entirely match

the complexity estimations. We chose to detail this attack because it involves the appli-
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Table 5. Comparison of the average number of partial encryptions and the number of candidate keys with

and without the state-test technique.

# Pairs of data With the state-test technique Without the state-test technique

Sbox evaluations Candidate keys Sbox evaluations Candidate keys

24 183.50 14.125 9096.375 216.25

25 516.50 5.125 19,328.125 73.875

26 626.75 1.25 17,311.00 9.375

27 835.25 1.00 18,381.125 7.625

28 1278.75 1.00 20,942.125 5.50

The results correspond to an average over 23 randomly generated keys

Table 6. Summary of the details concerning the new applications.

Algorithm Parameters Improvements Complexity

Δin Δout c K B.B. Ch. S.T. Mult. ε Data Time Mem.

AES-128 56 32 68 112 yes no 8 4 6.1 2113.1 2113.1 + 2105.1 274.1

64 32 68 112 yes no no 4 6 2105 2106.88 274

CRYPTON-128 32 64 81.8 112 yes no no 6 · 23 6.7 2114.92 2114.92 + 2113.7 288.5

ARIA-128 48 32 64 80 yes no no no 5.9 2118.9 2118.9 + 280.9 269.9

48 32 64 80 yes no no 29 7 2111 2111 + 282 271

CLEFIA-128 48 48 80 122 yes 5 16 12 5 2114.4 2114.4 280

Camellia-256‡ 128 56 168 219 yes 9 16 8 7.7 2117.7 2117.7 + 2115.7 2166.7

LBlock 48 32 72 73 negl. 7 8 26 2.5 255.5 272 265

B.B. stands for the black box key schedule term. Ch. for Choosing Δin , Δout , cin and cout as presented in [10],

where the value provided is the gain in bits for the memory requirements. S.T. stands for state-test, and the

amount given is the number of bits that have to be fixed in the plaintext, corresponding to a reduction of the

number of involved key bits. Mult. stands for multiple differentials and impossible differentials, and the value

given is M as described in Sect. 2.5. ‡ Without FL layers and whitening keys

cation of the state-test technique, the use of multiples and the consideration of the black

box term. Another application to AES using multiples and taking the black box term

into account gives a data complexity of 2105 CP, a time complexity of 2106.88CE and a

memory complexity of 274 words. This new attack provides a previously unknown trade-

off, and the complexities are comparable to those of the best attacks on 7-round AES.

Two attacks on AES often cited as the best known are given in Table 1. If we compare

their results with our second attack, even though our time complexity is slightly higher,

the data complexity is the same and our memory complexity is much better. Given the

importance of AES, these new trade-offs, comparable to the best attacks, are interesting.

CRYPTON-128 We consider several multiples and use nin = 4, nout = 4 and mout =

6. As pointed out previously, the multiple impossible differentials that correspond to

the same key bits in the extended rounds can be seen as a reduction in the number of

bit-conditions, which provides a better memory in the overall complexity while giving

exactly the same other complexity parameters.

ARIA-128 In this case, the proposed attacks are far from being the best, still they result

in the best impossible differential attacks against this cipher. Still, this application is a
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very illustrative example because of the many multiples that can be considered, and it

provides the perfect scenario for comparing the use of multiples with the use of a single

impossible differential. We discuss the advantages, disadvantages, and how far we can

go with this type of attack.

Camellia-256 without FL/FL−1 layers and whitening keys We improve on the previous

attack from [10] (which covers the highest number of rounds, starting from the first one),

by efficiently combining the state-test technique with multiple impossible differentials.

Consequently, we are able to consider more fixed bits for the state-test technique. In

addition, we take into account the black box term corresponding to the complex key

schedule. This was not done in the previous best cryptanalysis, and therefore, we provide

the corrected complexity of the full key-recovery attack. The most important parameters

of this application are given in Table 1.

CLEFIA-128 We applied the state-test technique, the use of multiples and the cor-

rect way of choosing Δout and cout to CLEFIA-128 in a similar way to our attack on

Camellia-256. We check carefully what happens with the key bits, and we can apply the

state-test technique when fixing 16 input bits. We also take into account the black box

term corresponding to the key schedule. Finally, we obtain the improved and corrected

complexities given in Table 1.

LBlock In this case, we consider the same starting parameters as in [10]. We can

improve the 23-round attack on LBlock by applying the state-test technique with 8 bits

fixed on the plaintexts, which could not be done without combining it with multiple

impossible differentials. While the techniques we used here were already presented

in [10], the attack proposed there on LBlock was much worse because the techniques

were not applied in combination. The parameters used are given in Table 1.

4.1. AES-128

We give here a detailed description of our attack against AES-128. We do not recall here

the specifications of the AES algorithm but refer to the design paper [14]. To ease the

description of the attack, we number the bytes of the 4×4 AES state from 0 to 15, where

byte 0 is the byte on the top left corner, byte 1 is the one in the second row from the top

and in the leftmost column, and so on.

Previous attacks During the last 15 years, the security of AES-128 has been extensively

analyzed. Among the many different types of attacks considered, impossible differential

attacks have long led to the best cryptanalysis. Today, the most successful cryptanalysis

of AES-128 is a meet-in-the-middle attack [13] reaching 7 out of 10 AES rounds.

In this work, we use improved impossible differential attacks to considerably improve

not just the previous impossible differential attacks, but also the memory complexity of

the best known attacks against 7-round AES-128 [13], maintaining a similar time com-

plexity. We then provide comparable attacks with new, previously unknown trade-offs.

To determine the impossible differential providing the best complexity trade-off for the

attack, we carried out an exhaustive search for finding 4-round impossible differentials.

For all of them, the application of the MixColumns of the last round was omitted. For

this search, we considered two different types of impossible differentials, covering what

we believe to be all impossible differentials on 4 rounds.
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4.1.1. Search of 4-Round Impossible Differentials of AES

We provide here some details of our automated search of 4-round impossible differen-

tials for AES. To perform our search, we considered two types of 4-round impossible

differentials. The first type includes differentials where we computed one round in the

forward direction and three rounds in the backward direction and applied the miss-in-

the-middle technique after the first round. An impossible differential of this type was

used in the attack of Mala et al. [29]. The second type includes differentials with two

rounds in the forward and two rounds in the backward direction, with the miss-in-the-

middle technique applied after two rounds. An impossible differential of this kind is for

example used in the attacks of Bahrak et al. [2], Lu et al. [27] and Zhang et al. [39].

We divided then the impossible differentials found into equivalent classes, where each

class contained those differentials where both DX and DY had the same active columns

and where each of the four columns had the same Hamming weight. The reason for this is

that the first operation taking place when expanding the impossible differential backward

and forward isMixColumns (or its inverse). As a consequence, the exact position of the

active bytes in one column does not alter the attack, only the Hamming weight of each

column matters. After this, by taking one representative differential of each class, we

checked by an automated program which impossible differential leaded to an attack with

the lower possible complexities. For this, we generated all possible differentials from DX

and DY , by taking into account all possibilities after each MixColumns operation or its

inverse. For each possible attack, we computed the data, memory and time complexities

in order to choose the impossible differential that offered the best trade-off among these

three quantities.

The conclusion made after this automated search is that the impossible differential

providing the best complexity trade-offs for attacking 7 rounds of AES is the one pointed

out by Mala et al. in [29]. This impossible differential is such that there are at least three

active bytes in the first and the third column of DX , while the other two columns stay

inactive and such that there is exactly one active byte in DY . This impossible differential

permits on the one hand to take into account in the best way the key schedule of AES-

128, rending the number of the key bits that have to be guessed quite reasonable, while

on the other hand it permits to minimize the data complexity (Fig. 5).

However, we would like to point out that the above impossible differential is not the one

leading to the lowest number of key bits that one has to guess. The impossible differential

whose DX has at least three active bytes in the leftmost column and DY is formed by

exactly one active byte can be extended in a way where only 104 bits have to be guessed

during the attack, while at least 112 bits are needed with the impossible differential

of [29]. However, the induced attack leads to worse data, time and memory complexities

than the attack we propose using the differential of [29]. This remark disproves the claim

stated in [33] saying that the time complexity of an impossible differential attack only

depends on the number of key bits that need to be guessed (Fig. 6).

Parameters of the basic attack Since our attack is based on the best previous impossible

differential attack of Mala et al. [29], we recall here some of its characteristics.

Their attack is based on several impossible differential paths on rD = 4 rounds. These

differ in the pattern of DX , which can take 4 different forms, each having 3 active bytes

in columns 1 and 3, but in different positions. One of these patterns is represented in
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Fig. 5. A 4-round impossible differential of AES. A square with a dot symbolizes an active byte, while an

empty square stands for inactive bytes. The number 3 on the last three columns after the application of the

first MixColumns says that at least 3 of the 4 bytes of each column will be active after the application of this

operation.

DX DY

Fig. 6. A 4-round impossible differential of AES that requires as low as 104 key bits to be guessed during an

attack against 7-round AES-128.

Fig. 7. Its inactive bytes of columns 1 and 3 are in the positions 0 and 10, but other

possibilities are 1 and 11, 2 and 8, and finally 3 and 9. The differentials used in [29] are

represented in black in Fig. 7. According to our notations, the parameters of the attack

described in [29] are: Δin = 64,Δout = 32, cin = 46, cout = 22, kin = 80, kout = 32.

Now, we detail how the application of our techniques leads to a reduced time and

memory complexity compared to the Mala et al. attack. First, notice that to conduct this

attack, we need to guess four bytes in Round 7 (K 0
7 , K 7

7 , K 10
7 and K 13

7 ), while also the

following 12 bytes of the first two rounds: K 0
0 , K 2

0 , K 5
0 , K 7

0 , K 8
0 , K 10

0 , K 13
0 , K 15

0 , K 0
1 ,

K 2
1 , K 8

1 and K 10
1 . However, a study of the AES-128 key schedule reveals that the value

of K 0
1 (resp. K 2

1 ) can be directly computed from the values of K 0
0 and K 13

0 (resp. of K 2
0

and K 15
0 ), explaining thus why kin is only 80 and not 96.

When applying the generic formulas (3) and (2), with the above parameters, we obtain

N = 268+ε and CN = 2101+ε, where ε is a crucial variable that appears in particular

in the expression of the probability P of keeping an incorrect key as a candidate: P ≈

2−1.442·2ε
. Note that different values of ε lead to different time/data/memory trade-offs.

Since the key schedule of 7-round AES-128 is nonlinear and has a relatively good

diffusion after several rounds, we treat it as a black box and then add the potentially

expensive term (6) discussed in Sect. 2.2 to the final time complexity of the attack.

4.1.2. Combining the State-Test Technique with Multiple Differentials

The first change we introduce to the attack of [29] is to consider several 4-round im-

possible differentials that differ in the pattern of DY , resulting in four output differences
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Fig. 7. Impossible differential cryptanalysis of 7-round AES-128. The two circled bytes of subkey K1 come

for free by exploiting the key schedule relations. The four colors used for Rounds 6 and 7 correspond to the

four output multiple differentials considered.

in Round 7, each corresponding to a different anti-diagonal. The involved bits of K7

form a partition of K7, as depicted in Fig. 7. Our second improvement is the use of the

state-test technique. In order to apply the state-test technique, we have to slightly modify

the differential of the first rounds used in [29] in order to render one of the previously

active bytes of Din inactive (namely byte 7). We provide a detailed explanation of this

in the description of Step 3 of our attack.

To enhance the complexities of our attack, we use the early abort technique together

with two precomputed tables:

Table T1 This table contains all the possible values for the differences lying in the

main diagonal of the state after the first SubBytes operation. To compute these values,

we start from the 216 possible differences of the third column of the state after the

MixColumns layer in Round 1 and invert the two linear operations MixColumns and

ShiftRows.

Table T2 Following the same reasoning, we compute the possible values for the dif-

ferences in bytes 2, 8 and 13 of the internal state after the first SubBytes operation.

Contrary to the previous case, we have an additional condition. Indeed, byte 11 of the

state outputting the ShiftRows layer is inactive, meaning that only 28 differences are

possible.
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Fig. 8. The four lists L1, L2, L ′
3 and L4 that will be created during the attack. The size of each list as well as

the way they are sorted can be visualized.

The precomputed tables require a total memory space of 216 + 28 words, which is

negligible in comparison with the memory used to store the N pairs.

We now describe the online part of our attack.

Step 1. This step consists in guessing the 32 key bits corresponding to the first diag-

onal of K0 (i.e., K 0
0 , K 5

0 , K 10
0 , K 15

0 ). Starting from CN = 2107+ε plaintexts, we extract

the 268+ε pairs that meet the input difference Din and one of the four possible output

differences Dout and store them in a list L1. We sort this list according to the value of

the plaintext difference in the 32-bit diagonal (bytes 0, 5, 10 and 15), creating then 232

sublists of 236+ε pairs. We then realize a first guess on the 32 bits of the first diagonal

of K0 (i.e., K 0
0 , K 5

0 , K 10
0 , K 15

0 ) and follow the next process for each sublist. First, we

confront the fixed diagonal plaintext difference with the 216 possible output differences

of Table T1, and we use the difference distribution table (DDT) of the Sbox to check if

the transitions are possible. If they are, we derive the possible values entering the Sboxes.

Due to a well-known property of invertible Sboxes, there is one value derived in average

for each transition, so we expect 216 values for each sublist. We then combine these

values with the previous 32-bit guess on K0 to deduce the corresponding value of the

plaintext diagonal. After that, we look into L1 and remove the sublists corresponding

to plaintexts that have a diagonal value different from the ones compiled. Out of the

232 possible diagonal values, only 216 are kept, so a proportion of 2−16 pairs remains.

Note that this sieve corresponds to the probability of having two non-active bytes at the

leftmost column after the application of MixColumns in the first round (Fig. 8).

At this point, there are N1 = 268−16+ε = 252+ε remaining pairs that we store in a

list named L2 sorted by the difference in the bytes 2, 8 and 13. Each one of the 224

differences indexes a sublist of 228+ε pairs.

Step 2. This step is very similar to Step 1 and consists in guessing the bytes K 2
0 , K 8

0 , K 13
0

of the subkey K0. We study each of the 224 sublists together with the 28 differences con-

tained in table T2 to deduce possible values for the inputs of the active Sboxes. As

explained before, there will be one such value in average. We then realize a guess of

the corresponding bytes of K0 (K 2
0 , K 8

0 , K 13
0 ) and deduce by XOR the possible values

for the related bytes of the plaintext. The plaintexts of the sublist that are different from

those 28 candidates are eliminated, resulting in a 2−16 sieve. After this step, the num-

ber of remaining pairs is N2 = 252−16+ε = 236+ε. Once again, this filter corresponds

to the probability to have two non-active bytes at the third column after the applica-

tion of the MixColumns operation of the first round. The complexity up to here is
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232+24+36+ε = 292+ε lookup tables. We can compute now for free the values of K 0
1 and

K 2
1 from the guesses already realized on K0.

Step 3. We then repeat the following procedure for each of the 236+ε pairs left. Starting

from the known values of byte 0 and 2 outputting the MixColumns operation of Round

1 and of the two subkey bytes of K1, we compute the values of the two corresponding

bytes after the SubBytes operation of Round 2. After the application of ShiftRows,

those two bytes are not in the same column anymore, but are in places 0 and 10. The first

column contains then two active bytes, including one which is unknown in position 2, so

there are 28 possible values for the difference of this column. However, since we know

that after passing through MixColumns the difference should follow a specific pattern

with only three active bytes, the number of possibilities for the unknown byte is restricted.

Indeed, if the position of the inactive byte is fixed in DX , only one possibility remains.

However, since here we consider four possible patterns, there are four possibilities, that

we denote by δi
10, i = 0, . . . 3, each one corresponding to a non-active position. The

same reasoning holds for the difference in the third column of the state outputting the

ShiftRows operation of Round 2, in which the known byte difference is in position

10 and the unknown one is byte 8. We denote by δi
8, i = 0, . . . , 3 the four possibilities

for this last one. Since the pattern of the first column leads to a unique possibility for the

third column, we have only four possible values for δi
10 and δi

8 given fixed differences in

bytes 0 and 2 at the output of the SubBytes operation. Since we know the difference

transitions of the active Sboxes in positions 8 and 10 of Round 2, we can refer to the

DDT to obtain the values that permit these transitions. Once again, there is on average

one value for each transition, which we denote, according to their positions, by x8 and

x10 (see Fig. 7). The new list obtained, named L ′
3, is of size 4 · 236+ε = 238+ε.

The next natural step for continuing the attack is to confront those values with the ones

obtained from the plaintext. Indeed, the expression of byte 8 at the entry of SubBytes

of Round 2 is 2S(P8 + K 8
0 )+ 3S(P13 + K 13

0 )+ S(P2 + K 2
0 )+ S(P7 + K 7

0 )+ K 8
1 , and

the one of byte 10 is S(P8 + K 8
0 ) + S(P13 + K 13

0 ) + 2S(P2 + K 2
0 ) + 3S(P7 + K 7

0 ) +

K 10
1 , where S is the AES Sbox and where the multiplication is realized in G F(28).

So to compare it with the four values obtained previously, we would need additional

key guesses of the values of K 7
0 , K 8

1 and K 10
1 . However, instead of guessing those 3

bytes, we use the state-test technique which allows to decrease the time complexity

by a factor of 28. The general idea behind this is to study together the pairs that lead

to the same values of S(P7 + K 7
0 ) + K 8

1 and of 3S(P7 + K 7
0 ) + K 10

1 . To do so, we

first compute the known values 2S(P8 + K 8
0 ) + 3S(P13 + K 13

0 ) + S(P2 + K 2
0 ) and

S(P8 + K 8
0 ) + S(P13 + K 13

0 ) + 2S(P2 + K 2
0 ) and then XOR them, respectively, to the

4 possible values of x8 and x10. These two quantities that we denote by z1 and z2 are

equal to z1 = S(P7 + K 7
0 ) + K 8

1 and z2 = 3S(P7 + K 7
0 ) + K 10

1 . We use the couple

(z1, z2) to sort the list L ′
3 into 216 sublists of 238−16+ε elements. We continue the attack

with the sublist L4 of size N3 = 222+ε pairs. The complexity up to this point is of

232+24+16+22+ε = 294+ε simple operations.

Step 4. In this final step, we study the last round of the differential attack. To do so, we

divide L4 into 4 sublists of size 220+ε, each one corresponding to a fixed output pattern.

This list is sorted first by Dout and then by value. We then perform the last guess of the

attack on the 32 bits of K7 and check whether the impossible differential is satisfied. If

none of the pairs satisfy it, then the partially guessed key bits are returned as a candidate
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value for the secret subkey bits. We keep four lists of independent possible values for

each of the 32 output key bits, each of size 232 · 2−1.442·2ε−2
. This quantity depends on

(ε − 2) instead of ε since we have lists that are four times smaller. The time complexity

up to the creation of these lists is 232+24+16+32+ε = 2104+ε memory accesses.

An important aspect of the attack is to obtain lists that are small enough that the

cost of merging them is not higher than the cost that we have paid so far. This issue

arises because we have no way of knowing if the guessed input key bits and the guessed

output key bits form a match unless we complete the remaining part of the state (see

Sect. 2.2). The cost of merging these four lists is given directly from the equation

in 2.5: 2−1.442·2ε
24(72+32)2−3·72 · CK S = 2−1.442·2ε+72+128, where CK S is the cost of

the application of the key schedule, and the number of candidates that will remain is the

previous term multiplied by 2−kin and by 1/CK S = 2128−1.442·2ε
.

Computing C ′
E. We estimate C ′

E by following the common practice of counting the

number of Sbox applications computed in the bottleneck part of the attack (the penulti-

mate of the previous procedure) compared to the number of Sbox applications in the full

cipher (as done for instance in [7]). Our computations give C ′
E = 2−5.12, since we are

comparing four Sbox applications to the total of 16 · 7 + 28 = 140 Sbox applications

used in 7 rounds of AES. Finally, we deduce that CK S/CE = 2−3.6.

This attack has data complexity CN = 2107+ε CP, time complexity

2104+ε · 2−5 + 2−1.442·2ε+72+128 · 2−3.6 + 2128 · 2−1.442·2ε

CE,

and memory complexity N = 268+ε words. The best time complexity is obtained by

taking ε = 6.1, leading to a data complexity of 2113.1 CP, a time of 2105.1 + 2113.1 CE

and a memory complexity of 274.1 words.

4.2. CRYPTON-128

This example aims at showing the application of multiple differentials, combined with

multiple impossible differentials in impossible differential cryptanalysis.

CRYPTON is an involutive 128-bit block cipher designed by Lim [24] that was a

candidate of the AES competition. This block cipher can be parametrized by a key of

128, 192 or 256 bits. The number of rounds is fixed to 12.

Similarly to AES, an internal state of CRYPTON can be seen as a 4 × 4-byte matrix.

Each round is composed by the following four operations:

– γ : a nonlinear operation, that uses 8 × 8-bit involutive Sboxes applied in parallel

on the bytes of the internal state.

– π : a linear byte-wise transformation, that executes a 4×4-byte matrix, with branch

number 4, on each column of the state.

– τ : a byte transposition of columns into rows with respect to the anti-diagonal of the

internal state.

– σ : a byte-wise key addition, identical to the AddRoundKey operation of AES.

It must be noted that the encryption process of CRYPTON starts by applying σ with the

first subkey. Finally, after performing the 12 rounds, the output transformation τ ◦π ◦γ ,

i.e., an actual round without the key addition step σ , is applied to the state.
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Fig. 9. Impossible differential attack against CRYPTON-128.

4.2.1. Previous Cryptanalysis and Our Contributions

The best previous impossible differential attack against CRYPTON-128 is an impossible

differential attack published by Mala et al. [30]. This 7-round cryptanalysis has a data

complexity of 2121 CP, a time complexity of 2116.2CE and a memory complexity of 2119

words.

4.2.2. Description of the Attack

In this section, we show how to improve all complexity parameters of this attack. For

doing this, we jointly use the techniques of multiple differentials and of multiple impos-

sible differentials, for both the first and the last appended rounds. More precisely, we

exploit input and output differentials of two types, namely differentials having different

DX ,DY , leading to different impossible differentials, while also multiple differentials

having a different Din,Dout, as discussed in Sects. 2.3 and 2.4. In the same way as for

AES, we performed an exhaustive analysis of all 4-round impossible differentials for

CRYPTON. We analyzed in an automated way all such impossible differentials, up to

equivalent classes, to find out the one that led to the optimal complexities for an attack.

In this way, we were able to confirm that the type of impossible differentials used in [30]

is the best choice. An impossible differential of this kind has a single active byte in DX

and exactly two active bytes in a single column of DY and can be visualized in Fig. 9.

This impossible differential covering the Rounds 2–5 is then extended one round

backward and two rounds forward, in exactly the same way as done in [30]. One such

extension is visualized in Fig. 9. We skip here most of the details of the attack, as all

basic parameters are identical to those of [30]. Instead, we provide details of the multiple

(impossible) differentials used. We remind here that we call multiples all the differentials

that correspond either to multiple differentials or to multiple impossible differentials.
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Input multiples We use in total 4 input multiples, as shown in Fig. 10. These four

differentials correspond to min = 4 different Din, described by a different single active

column. Each Din corresponds to one DX , each one composed of a single active byte in

the last column of the state. However, it would have been possible to take into account

four times more DX that what we actually use, by considering further any other column

with a single active byte. This is depicted in Fig. 9 by a ×4 symbol. Nevertheless,

for the sake of simplicity and for being in line with previous analyses, the multiple

impossible differentials whose conditions do not depend on any key will be instead taken

into account by decreasing cin. In this application, this ×4 parameter is counted in the

probability of passing the application π of the first round, that we take to be p = 2−22

instead of p = 2−24, as shown in Fig. 9. Note, however, that both approaches are

equivalent.

Output multiples We consider here nout = 4 differences DY . Each DY corresponds to

one column with the lower two bytes active. Each DY gives us then
(

4
2

)

= 6 possibilities

after the application of π in Round 5 for choosing two active bytes within it, leading to

mout = 6 differences Dout. We come finally with the number of nout×mout = 4×6 = 24

output multiples in total. These differentials are visualized in Fig. 10. As explained for

the case of input multiples, we could have alternatively considered 4×6 differences DY ,

by taking also into account the six possible positions for the two active bytes. However,

by following the same approach as before, we integrate this ×6 factor by decreasing

instead cout by a factor of log2 6.

The remaining parameters of the attack (see Fig. 9) are Δin = 32,Δout = 64, cin =

24 − log2 4 = 22, cout = 14.38 − log2 6 + 48 = 59.8, kA = 32, kB = 80.

Therefore, by using the formula (5), the data complexity is CN = 2108.22+ε CP. The

memory complexity, given by the number of pairs N , is 2cin+cout+ε = 281.8+ε. Finally,

as the cost of the key schedule computed similarly to AES is CK S = 2−3.6, C ′
E is 2−5

and in this application kinv
A = 128, the time complexity given by the formula (7) is

2112+ε2−5 + 2256−1.442·2ε
2−3.6 + 2128−1.442·2ε

CE. By taking ε = 6.7, we obtain thus a

data complexity of 2114.92 CP, a time complexity of 2113.7 CE and a memory complexity

of 288.5 128-bit words.

We can see by the above description that we considerably improve all complexity

parameters of the previous best impossible differential attack against CRYPTON-128

(Fig. 11).

5. ARIA-128

ARIA [19] is a 128-bit block cipher designed in 2003 by Kwon et al. and established as

a Korean Standard in 2004. ARIA-128 has 12 rounds, and each round is composed of 3

operations. The first operation is the Key Addition (ARK) that simply XORs the 128-bit

round key to the state. The second operation is the Substitution Layer (SL) that consists

in the parallel application of 4 different Sboxes on every byte of the state. Finally, the

Diffusion Layer (DL) is defined by a 16×16 involutory binary matrix ensuring a branch

number of 8 and is omitted in the last round. We refer to the design paper [19] for more

details.
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Din DX

Input multiples Output multiples

DY

Dout

×4

×4

×4

×4

×6

×6

×6

×6

Fig. 10. Multiples for the attack against CRYPTON-128. The ×4 factor symbolizes that 4 more differences

DX can be taken into account for each depicted state, by activating another byte in the same row as the one

shown. Equally, we can consider six times more differentials than the ones shown, by choosing different

positions for the two active bytes in each column.

5.1. Improved 6-Round Impossible Differential Attack Using multiples

In this section, we improve on the best impossible differential attack on ARIA-128 [22]

that covers up to 6 rounds. This attack is illustrated in Fig. 12. We achieve this improve-

ment by using multiple impossible differentials. The main goal of this application is to
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γ π τ σ

γ π τ σ

γ−1
σ−1τ−1

γ−1

π−1

Contradiction

Fig. 11. A 4-round impossible differential of CRYPTON. A square with a dot symbolizes an active byte,

while an empty square stands for inactive bytes. A crossed square after the application of π says that at least

3 of the 4 bytes of each column will be active after the application of this operation.

demonstrate the comparison of a simple attack (with only one impossible differential)

with a similar attack exploiting multiple differentials instead. We show in particular that

in this last case, the value of the variable ε has to be higher, but the data complexity is

lower. We consider for our attacks a configuration similar to the one used in [22], i.e., with

parameters Δin = 48,Δout = 32, cin = 40, cout = 24, kA = kin = 48, kB = kout = 32,

as can be seen in Fig. 12. We provide now the complexities in the simple and the multiple

case.

Simple Case By directly applying the above attack parameters in the formulas of Sect.

2, we get a memory complexity of N = 240+24+εs = 264+εs words. The data complexity

by using Eq. (5) is CN = 2129+64+εs−48−32 = 2113+εs CP. The time complexity can be

computed by directly applying Eq. (7) CT = 280+εs 2−5 + 2128+322−1.442·2εs
2−1.58 +

21282−1.442·2εs
CE. By choosing εs = 5.9, the data complexity is 2118.9 CP , the time

complexity is 280.9CE, and the memory complexity is 269.9 128-bit words.

Multiple Case In order to find the multiple differentials with the same associated pa-

rameters as in the simple case described above, we performed an exhaustive search. So we

determined how many impossible differentials from two equal active bytes to four equal

active bytes exist. We found that there are more than 29 such impossible differentials;

thus, we can consider M = nin ·nout = 29. As we show in Sect. 2.3, the multiple attacks

can be seen, except for the data complexity, as applications in parallel of simple attacks,

where the associated εs are related to the final ε determining the probability of keeping

a key as candidate by the following relation: ε − εs = log2(M), which equals 9 in our

case. So we have N = 264+ε (which is also the memory complexity), and consequently,

the data complexity is then: CN = 2129+64+ε−48−32−9 = 2104+ε CP. The time complex-

ity can be computed by directly applying the formula for the time complexity and the

modification from Sect. 2.5: CT = 280+ε2−5 +22562−1.442·2ε
2−1.58 +21282−1.442·2ε

CE.

By taking ε = 7, we get a data complexity of 2111 CP, a time complexity of 282CE and

a memory complexity of 271 128-bit words.
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Fig. 12. Example of a 6-round attack on ARIA.

Comparing both An interesting generic question is: Are there cases where the simple

attack might provide a better complexity? As one can see from above, if we wanted

to obtain the same data complexity, we should take an ε such that ε = εs + 9. In this

case, the memory complexity of the multiple case is a factor of 29 times higher than

in the simple one. Let’s see what happens with the time complexity. The first and last

terms of the time complexity are equal. The difference might come from the middle term:

2128+322−1.442·2εs
2−3.6 and 22562−1.442·2ε

2−3.6. We see that in the multiple case, we have

the simple case term multiplied by 296 · 2−1.442·(29−1)·2εs
= 2−640.86·2ε

, which provides

a better complexity. Despite this, when the bottleneck term of the time complexity for

the best attacks is not the second term but the first, as is the case of the results on ARIA,
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while the data complexity is always much worse in the simple case, the time complexity

might be slightly better, given by the smaller εs that we can take into account.

6. Conclusion

In this paper, we presented new techniques for improving impossible differential attacks.

Furthermore, we showed that the nature of the key schedule has a non-negligible impact

on the time complexity of such attacks and provided a new complexity formula taking

this phenomenon into account. We applied these new techniques, individually and in

combination to various ciphers, based on both SPN and Feistel constructions. From this

point of view, our work complements the results of [10] where only Feistel ciphers were

analyzed. We showed here that our techniques, as well as those introduced in [10], work

on both constructions. However, there are small differences in the extent of the applica-

bility of these techniques. For example, we noticed that applying multiple differentials

in impossible differential cryptanalysis is somewhat easier on SPN ciphers, because lin-

ear layers of MixColumns type offer more possibilities for extending a differential,

hence naturally provide more input/output differences. On the other hand, the state-test

technique applies more easily to Feistel ciphers. A natural explanation for this is that in

SPN ciphers, even if the state-test technique can almost always be applied, the gain in

the complexity generally leads to an equivalent loss in data complexity, because a part

of the active part of the plaintexts has to be fixed.

We also compared attacks based on multiple (impossible) differentials with equivalent

attacks exploiting only a single differential. We showed that when exploiting multiple

differentials, the data complexity is always lower. However, the gain in the time com-

plexity is not always clear, and a simple attack can sometimes lead to a better time

complexity.

Additionally, in order to verify and validate the applicability of the proposed tech-

niques, we implemented two of the techniques on toy ciphers. These experiments confirm

that our theoretical estimates are indeed good estimates of the complexities. However,

we insist that for an exact determination of the complexity, one must perform the detailed

attack step by step.
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