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Abstract- Multiple anagramming is a general method

for the cryptanalysis of transposition ciphers, and has a

graph theoretic representation. Inspired by a partially

mechanised approach used in World War II, we con-

sider the possibility of a fully automated attack. Two

heuristics based on measures of natural language are

used — one to recognise plaintext, and another to guide

construction of the secret key. This is shown to be un-

workable for cryptograms of a certain difficulty due to

random variation in the constructive heuristic. A solver

based on an ant colony optimisation (ACO) algorithm

is then introduced, increasing the range of cryptograms

that can be treated; the pheromone feedback provides

a mechanism for the recognition heuristic to correct the

noisy constructive heuristic.

1 Introduction

Cryptography has had a long and colourful history. The ear-

liest schemes, now termed the classical ciphers, were de-

signed to be carried out with pen and paper rather than by

electronics. Many were transpositions: algorithms which

rearrange the order of letters in a message. Classical cryp-

tography became obsolete after the advent of computers;

more complex ciphers could be used, and older ciphers bro-

ken with greater ease. Nonetheless, modern analogues of

classical schemes can still be found as components of larger

ciphers. In particular, some iterated block ciphers, such as

the Data Encryption Standard [Nat99], incorporate transpo-

sitions to provide diffusion.

The cryptanalyst’s tactic when presented with a transpo-

sition was to exploit particular statistical features of the ci-

phertext, as well as to rely upon intuition, luck and trial-and-

error, to find the correct decryption. As this was sometimes

too slow a process, mechanised aids were used as early as

World War II [Bau97] by which frequencies of letter pairs

(known as bigrams) were automatically examined in order

to narrow down the space of possible keys. The remain-

ing few keys could then be checked exhaustively by hand to

recover the plaintext.

We consider the possibility of fully automating this pro-

cedure. A straightforward implementation turns out to be

incapable of decrypting harder cryptograms due to random

variation in the bigram heuristic. We quantify which cryp-

tograms are hard for this algorithm. It will be shown that

the pheromone feedback mechanism of an Ant Colony Sys-

tem is capable of overcoming some random variation and

decrypting a wider variety of messages.

A preliminary version of this result was summarised in

[RCS03].

The rest of the paper is organised as follows: first, we re-

view transposition ciphers, Section 2, and standard attacks

on transpositions, Section 3. In Section 4, the fully auto-

mated attack is presented. A dictionary-based score is used

to recognise plaintext. However, difficulties with the bigram

heuristic limit its application. The remedial Ant Colony

System is then given in Section 5, with experimental re-

sults in Section 6. Previous approaches are contrasted in

Section 7, and finally conclusions are given in Section 8.

2 Transposition Ciphers and Bigrams

In this section, two forms of the transposition cipher (see

[Gai39]) are introduced and their cryptanalysis shown to be

equivalent. The first is known as columnar transposition. In

this cipher, the plaintext is written into a grid of fixed width,

padded with dummy characters if necessary. The columns

of the grid are numbered according to a permutation — the

permutation forms the secret key — and read off column-

wise in that sequence. As an example, consider the plaintext

“MYANTALGORITHMSARERIDDLEDWITHBUGS”, en-

crypted using the key (31524):

3 1 5 2 4

M Y A N T

A L G O R

I T H M S

A R E R I

D D L E D

W I T H B

U G S X X

Ciphertext: YLTRDIG NOMREHX MAIADWU TRSIDBX

AGHELTS

Decryption is simply a matter of writing the ciphertext back

into the grid using the same ordering of the columns.

The second form is termed complete-unit transposition.

The plaintext is divided into a series of blocks (units) of a

fixed length w, again padding if necessary. A permutation

of size w is applied to each block in turn, rearranging the

letters. The sequence of permuted blocks is then used as

the ciphertext. Here is an example with the same key and

plaintext as before:

31524 31524 31524 31524 31524...

MYANT ALGOR ITHMS ARERI DDLED...

⇒ YNMTA LOARG TMISH RRAIE DEDDL...



In a sense this latter form of the transposition is also

the most general, as any transposition can be recast as a

complete-unit transposition with key size set to the length

of the plaintext.

Both of these forms of the transposition cipher are sus-

ceptible to an attack known as multiple anagramming. The

key size w is assumed known (there are statistical tests for

this purpose), and the ciphertext is written into a grid with w
columns. For columnar transpositions, the ciphertext must

be written into the grid column by column from left to right,

and dually for complete-unit transpositions the ciphertext is

entered row by row from top to bottom. The columns then

have to be rearranged to form readable plaintext in every

row. For example,

Y

L

T

R

D

I

G

N

O

M

R

E

H

X

M

A
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rearrange

=⇒
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I
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D
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U
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S

N

O

M

R

E

H

X

T

R

S

I

D

B

X

Finding the correct rearrangement is clearly equivalent to

finding the key. Certain patterns inherent in natural lan-

guage can be exploited in order to do this efficiently.

3 Historical Cryptanalysis of Transposition Ci-

phers

One property of written natural language is that the distri-

bution of pairs of letters, known as bigrams, is not uniform.

In English, for example, ‘TH’ is common and ‘QZ’ is rare.

Using some large sample of text, stripped of numbers, punc-

tuation, whitespace and other non-letters, a standard proba-

bility for each bigram can be obtained1. For other texts, the

observed frequencies will tend to be close to these probabil-

ities. Two columns placed next to each other form several

bigrams, one for each row. The bigram adjacency score,

Adj(I,J), is defined as the average probability of the bi-

grams created by juxtaposing columns I and J , i.e.,

Adj(I,J)
def
=

1

h

h
∑

r=1

Pstd(IrJr), (1)

where Ir and Jr denote the rth letter in the column I or J
respectively, Pstd(xy) is the standard probability of the bi-

gram ‘xy’, and h is the number of rows in a column. The

score will be higher for two correctly aligned columns, be-

cause the bigrams will be from the plaintext. If they are

incorrectly aligned, the pairs will be much more random,

and likely to score lower. This distinction is examined more

rigorously in Section 4.

From the bigram adjacency score, a pen-and-paper

cryptanalyst infers the top candidates for each column’s

neighbour. Together with other statistical clues, it is usu-

ally straightforward to reassemble the columns correctly.

1For the experiments described in this paper, these probabilities were

taken to be the same as the relative frequencies of bigrams observed in a

140 000 character novel [Wel98].
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Figure 1: The anagramming graph produced by the cryp-

togram used as the running example. Arcs with bigram ad-

jacency score below α = 0.0035 have been pruned.

A more general method is also known [Bau97] that is less

reliant on ad hoc exploitation of particular features of the

cryptogram. This method has been partially automated, as

mentioned in the introduction, and will now be considered

in more detail.

We will first need some preliminaries: by I ‖ J , we

mean that when columns I and J are adjacent in that order

they form bigrams from the plaintext. If this is not the case,

then we write I ∦ J . The multiple anagramming problem

can be represented as a graph, as has been done in Figure 1.

We will call such a graph the anagramming graph of the

problem. Each node denotes a column. A directed arc from

column I to column J indicates that I ‖ J has not been

ruled out.

Since the transposition key is a permutation, a candidate

key can be represented as some path through the column

nodes which does not pass through the same column twice.

Normally, this would specify w! possible keys, where w is

the width of the grid; even for small w this precludes an

exhaustive search. In the historical attack, arcs on the ana-

gramming graph are pruned to restrict the number of paths.

The number of keys is hopefully reduced to a point where

each can be checked by hand to see which produces a com-

prehensible plaintext. To prune the arcs, a cutoff value α is

chosen; an arc is included from node I to J if and only if

Adj(I,J) > α.

In the following section we attempt to convert this into a

fully automated attack.

4 A Fully Automated Attack

Human interaction is still required for the recognition of

plaintext. This can be automated by a heuristic score based

on the number of dictionary words in a candidate decryp-

tion. Longer words are given more weight than shorter



words — they are less likely to appear by chance and so

give stronger evidence of a correct decryption. Let Nd be

the number of d-letter substrings from the text which are

present in a standard dictionary. The dictionary heuristic

used in this paper is defined as:

Dict(M)
def
=

1

L

10
∑

d=3

d2Nd (2)

where L is the length of the text. A list of 40 000 words,

derived from [Atk03], is used as the standard dictionary.

In practice, we find that Dict(M) is maximum whenever

M is the correct plaintext, considered over all the possible

decryptions M of a cryptogram. Hence, one way to recover

the plaintext is to consider the maximisation problem with

Dict as the objective function. Specifically, all the paths

through the pruned anagramming graph are evaluated using

Dict, and the maximum is identified as the plaintext.

It remains to select the cutoff value α. The choice for α
is critical both to the time complexity of the algorithm and

the possibility of finding the correct decryption at all. If α
is chosen too high, then it is likely that the arc linking two

columns I and J , where I ‖ J , will be pruned. This would

be disastrous, as the correct key is removed from the search

space. Conversely, if α is too low, though the confidence

in retaining the right solution increases, the time taken to

find it rises too because there are more paths through the

graph. In this algorithm, there is a direct tradeoff between

computational efficiency and probability of success.

We will attempt to derive some guidance on the choice

of α. When juxtaposing two columns I and J , consider for

the moment just the bigram produced in the top row, I1J1.

We can define a random variable on I1J1,

S(I1J1)
def
= Pstd(I1J1) (3)

where Pstd(I1J1) is the standard probability of the bigram

I1J1 appearing in natural language text. These probabili-

ties are assumed to be known, determined using a standard

corpus, and are used below to calculate expected values.

If I ‖ J , the bigram will occur with probability

Prob(I1J1) = Pstd(I1J1) (4)

The expected value of S(I1J1) is therefore

E[S(I1J1)] =
∑

I1J1

Pstd(I1J1)
2 (5)

≈ 0.008 (6)

However, if I ∦ J , we can use the standard frequencies

of single letters to estimate the probability of the bigram.

Prob(I1J1) = Pstd(I1)Pstd(J1) (7)

where Pstd(X1) is the probability of the single letter X1 ap-

pearing at some position. The expected value of S(I1J1)
then becomes

E[S(I1J1)] =
∑

I1J1

Pstd(I1)Pstd(J1)Pstd(I1J1) (8)

≈ 0.004 (9)

h 5 10 15 20

α 0.0014 0.0034 0.0042 0.0047

Table 1: α cutoff values which give a 95% probability of

the correct solution being in an anagramming graph for a

cryptogram of fixed width w = 15 and varying height h.

The variance of S(I1J1) can also be calculated in a similar

fashion.

Two juxtaposed columns form several bigrams, one for

each row. Adj(I,J) is the mean value of S over all the

rows. Assuming that the bigram on each row is indepen-

dent, Adj(I,J) is a sample mean with a sample size of h,

the height of the column (h = L/w). By the Central Limit

Theorem, this can be approximated by a normal distribu-

tion, obtaining:

Adj(I,J) ∼ N

(

0.008,

√

3 × 10−5

h

)

if I ‖ J . (10)

Adj(I,J) ∼ N

(

0.004,

√

6 × 10−5

h

)

if I ∦ J . (11)

For any cutoff value α, and some pair of columns I and J
where I ‖ J , the probability pc that the arc between those

columns will be in the anagramming graph can be calcu-

lated using (10). w − 1 correct arcs are needed in total,

and, again assuming independence, the probability that the

anagramming graph contains the correct solution is given

by pw−1
c . The reasoning can also be performed backwards;

for a fixed probability, e.g. 95%, an α value can be calcu-

lated, dependent on h and w. This has been done in Table 1

for w = 15.

Unfortunately, (11) suggests that using a low value for α
will result in few arcs being pruned, increasing the compu-

tational cost. It is also a time-consuming task just to iden-

tify all the legal paths in the graph even before they can be

checked. If the automated cryptanalysis is to be tractable, a

more subtle method is needed.

A cursory investigation using local search techniques in-

dicated that maximising Dict is made difficult by the ex-

istence of many local optima. It might be helpful to make

use of the information provided by Adj(I,J), despite some

noise, to give guidance towards the promising regions of

the search space. For this task, we examine an Ant Colony

Optimisation approach.

5 Ants for Cryptanalysis

Ant Colony Optimisation (ACO) [DS03] is a search meta-

heuristic inspired by the behaviour of real ant colonies. Ants

lay trails of a chemical known as pheromone which can

be used for communicating information about, for exam-

ple, path finding. By analogy, artificial ants use artificial

pheromone to represent knowledge gained about a search

problem based on prior experience. Pheromone modifies

ants’ subsequent choices when constructing solutions.



ATSP MA

Constructs a... cycle simple path

Next node heuristic... distance Adj(I,J)

Solution evaluated by... total distance Dict(M)

Table 2: Differences between using ACO for the Asymmet-

ric Travelling Salesman Problem (ATSP) and Multiple Ana-

gramming (MA)

ACO was originally applied to the NP-hard Travelling

Salesman Problem (TSP). Finding solutions in the anagram-

ming graph bears many similarities to an Asymmetric TSP

(ATSP). A specific ant algorithm with known success on the

TSP is Ant Colony System (ACS). The reader is referred to

[DG97] for a full description; here we will only highlight

differences and specifics in the adaptation for this problem.

Ants construct paths on the anagramming graph of a

cryptogram; each complete path is a permutation of the

nodes corresponding to a key. It is not necessary to prune

arcs, as ACS makes use of a heuristic ηij , which repre-

sents some a priori knowledge of the desirability of choos-

ing node j while at node i. For this, Adj(I,J) is used. In

each iteration, after the ants have constructed their paths,

pheromone is deposited on arcs in the graph corresponding

to the best path found since the start of the algorithm. A

completed path, which is a decryption key, is evaluated us-

ing the Dict heuristic on the plaintext produced.

The essential difference between the multiple anagram-

ming problem and the ATSP is the use of one heuristic for

constructing a solution, Adj(I,J), and another for evaluating

it, Dict; see Table 2. The two heuristics are not disparate

— both are statistics of an underlying cryptogram — but

Adj(I,J) varies in how useful its guidance to the Dict max-

imum is.

6 Computational Results

Figure 2 shows an overview result of cryptanalysis tri-

als for a variety of cryptograms of differing heights (h)

and widths (w). A sample plaintext of the implied length

(L = wh) is obtained as a random subsection of a long text

[Car65], and encrypted using a fixed key. The ACS solver

returns a key candidate within 5000 Dict evaluations. We

recorded only whether the key was exactly equal to the cor-

rect decryption key.

The results show that the ACS algorithm is most likely to

succeed on cryptograms with a small width and large height.

This is consistent with what we know: a large height pro-

vides many bigram samples for any column pair, meaning

Adj(I,J) is a more reliable statistic. A small width gives a

small key-space over which the algorithm must search.

Figure 2 also indicates that cryptograms can sometimes

be solved even when the key size is as large as 40. In this

case the total number of possible keys is 40! ≈ 1048, but

the ACS solver examines (using Dict) only 5000 of them in

order to locate the correct key.
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Figure 2: Solvability: a point is plotted at a given width,

5 ≤ w ≤ 42, and height, 1 ≤ h ≤ 20, if and only if

the ACS algorithm solved a sample cryptogram of length

L = wh within 5000 Dict evaluations. Only one trial at

each point was attempted.

Sometimes, ACS returns solutions that are close to the

key. For example, two elements in the permutation might

be in the incorrect order, or the permutation may start on the

wrong column. Despite this, the plaintext remains mostly

readable. To investigate this property, we use a success met-

ric which counts the number of columns which are placed

before their correct successor. Figure 3 shows how, for a

fixed width, the accuracy of the solution gradually improves

with increasing height.
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Figure 3: Partial solvability: Number of correct key el-

ements found by ACS (5000 Dict evaluations) for cryp-

tograms with a fixed width w = 15 and varying height. An

average over 12 trials is given for each height.



Method Width (w) Length (L)

GA [Mat93] 7 184

9 184

SA [GSN94] 10 150

20 1000

25 1000

GA [Cla98] 18 1000

SA [Cla98] 15 600

21 1000

Tabu Search [Cla98] 18 1000

ACS [this paper] 15 300

20 400

25 625

Table 3: An overview of some typical results in automated

cryptanalysis of transposition ciphers. GA = Genetic Algo-

rithm; SA = Simulated Annealing

7 Previous Work on Automated Cryptanalysis

In this section, we examine previous work on automated

cryptanalysis using metaheuristics, and provide a limited

comparison.

An early paper considering transposition ciphers is

[Mat93], which applies a genetic algorithm to the prob-

lem. The transpositions are of a somewhat harder type,

permitting uneven column lengths. In a subsequent paper

[GSN94], a different metaheuristic is employed — simu-

lated annealing. In his PhD thesis [Cla98], Andrew Clark

provides a comparative study of simulated annealing and

genetic algorithms, together with a third metaheuristic: tabu

search. For transpositions, simulated annealing solves the

most difficult cryptograms, but is also the slowest algorithm

tested.

Analogous results for a different type of classical encryp-

tion, substitution ciphers, can be found in [FSN93, SJNK93,

CD98].

Table 3 lists typical results from previous work on trans-

positions, together with some from this paper. The vari-

ous approaches involve differing heuristics, processing time

and success criteria. Despite this, a comparison does give a

rough indication of the regions of difficulty in the problem

space. It also shows that the ACS algorithm presented in

this paper can decrypt cryptograms which are significantly

shorter (up to a factor of about a half) than those tackled by

previous metaheuristic methods.

The ability of ACS to successfully decrypt cryptograms

of shorter length can be attributed to the use of a dictio-

nary heuristic in addition to bigrams. The earlier approaches

used only bigrams to evaluate the fitness of candidate solu-

tions. This is susceptible to noise in shorter messages for

similar reasons to the problems demonstrated in the bigram

adjacency score. In a local search method, this leads to a sit-

uation where locating the global optimum does not guaran-

tee the correct decryption of the cryptogram; this was noted

in [GSN94].

Local search algorithms could potentially be modified to

use the dictionary score. One pitfall is that the dictionary

heuristic does not define a very smooth search space; e.g.

an interchange of just two columns would in all likelihood

destroy a long and high scoring word. It would be desireable

to combine it with the bigram heuristic in some way; how-

ever, it is not immediately obvious as to how this could be

done robustly. A constructive algorithm, like ACS, allows

both heuristics to be integrated in a natural way.

A recent result indicates that metaheuristic techniques

may be applicable to modern cipher cryptanalysis: in

[HSIR02], statistical flaws in a reduced-round version of the

block cipher TEA are found using a genetic algorithm.

8 Conclusions and Further Work

It has been shown how the cryptanalysis of transposition

ciphers can be completely automated in a ciphertext-only

attack.

Two heuristics are used: one for recognising plaintext

using a dictionary, Dict, and another for indicating adjacent

columns using bigrams, Adj(I,J). Taken by themselves,

each is insufficient to easily decrypt a difficult cryptogram.

Constructing the key solely using the bigram scores be-

comes infeasible when random variation causes the heuris-

tic to be deceptive. Equally, Dict defines a search space

that is hard to maximise. However, in ACS both heuristics

can be used in a complementary fashion to rapidly find the

solution. The bigram scores provide hints to the right region

of the Dict search space. The pheromone feedback, calcu-

lated using Dict, compensates for any noise in the Adj(I,J)

scores.

The capability of maximising Dict allows much shorter

cryptograms to be automatically decrypted compared to

previous techniques. When 5000 Dict evaluations are used,

the length can be reduced by a factor of around two.

We believe this is the first application of an Ant Colony

Optimisation approach to cryptanalysis. More difficult

transposition schemes, such as irregular and double colum-

nar transpositions, might also be vulnerable to this ap-

proach. However, it is unlikely that these methods will pose

a threat to modern ciphers in direct key-recovery attacks

such as those just presented — the key spaces are designed

to be as discontinuous as possible. Nonetheless, much of

modern cryptanalysis is concerned with extracting informa-

tion reliably from noisy statistics; perhaps ants could im-

prove existing techniques.
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