
EasyChair Preprint
№ 5000

Making Theory Reasoning Simpler

Giles Reger, Johannes Schoisswohl and Andrei Voronkov

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

February 21, 2021



Making Theory Reasoning Simpler

Giles Reger1, Johannes Schoisswohl1(B), and Andrei Voronkov1,2

1 The University of Manchester
2 EasyChair

johannes.schoisswohl@manchester.ac.uk

Abstract. Reasoning with quantifiers and theories is at the core of
many applications in program analysis and verification. Whilst the prob-
lem is undecidable in general and hard in practice, we have been mak-
ing large pragmatic steps forward. Our previous work proposed an in-
stantiation rule for theory reasoning that produced pragmatically useful
instances. Whilst this led to an increase in performance, it had its lim-
itations as the rule produces ground instances which (i) can be overly
specific, thus not useful in proof search, and (ii) contribute to the al-
ready problematic search space explosion as many new instances are
introduced. This paper begins by introducing that specifically addresses
these two concerns as it produces general solutions and it is a simplifi-
cation rule, i.e. it replaces an existing clause by a ‘simpler’ one. Encour-
aged by initial success with this new rule, we performed an experiment
to identify further common cases where the complex structure of theory
terms blocked existing methods. This resulted in four further simplifica-
tion rules for theory reasoning. The resulting extensions are implemented
in the Vampire theorem prover and evaluated on SMT-LIB, showing
that the new extensions result in a considerable increase in the number
of problems solved, including 90 problems unsolved by state-of-the-art
SMT solvers.

1 Introduction

Many applications of reasoning in program analysis and verification depend on
reasoning with the first-order theory of arithmetic, often in combination with
other theories and quantifiers. A common approach to this problem is via Satis-
fiability Modulo Theory (SMT) solving, which has strong support for decidable
theories but may struggle to scale in the presence of quantifiers. Conversely,
superposition-based first-order solvers handle quantifiers naturally and have, re-
cently, been extended to reason with theories [2,3,5,6,9,13,16,21]. Such solvers
are based on a saturation loop and tend to suffer from search space explosion.
This is compounded by the effective but explosive use of theory axioms, leading
to the derivation of numerous inconsequential consequences of the theory. So far
we have attempted to control this explosive behaviour [10,17] but now we aim
to eliminate some of it. This paper introduces a set of simplification rules for
reasoning in the theory of (any combination of linear or non-linear real, rational,
or integer) arithmetic, i.e. rules that make reasoning in arithmetic simpler.



2 Giles Reger, Johannes Schoisswohl, and Andrei Voronkov

This work was motivated by our previous attempt [20] to find useful instances
of first-order clauses that would be otherwise difficult to find via reasoning with
theory axioms. For example, when considering the two clauses

r(7x) ¬r(6 + y) ∨ p(y)

our previous work would apply resolution on r(7x) and ¬r(6+y) using unification
with abstraction to produce the clause 7x 6= 6 + y∨ p(y) and then applied theory
instantiation, utilising an SMT solver to find the substitution {x 7→ 1, y 7→ 1},
producing the instance p(1). This may or may not be useful to proof search
and, crucially, we need to keep performing inferences with the original clauses in
case it is not. In this case, we would prefer to instantiate with {y 7→ 7x− 6} to
produce 7x 6= 6 + (7x− 6) ∨ p(7x− 6), which can be reduced to p(7x− 6). This
is a general solution (being logically equivalent) that is also simpler – in this
case it has fewer variables than the original clause. Hence, we replace the clause
by the more general result, aiding proof search and preventing the addition of
unnecessary instances.

The above was motivated by the observation that we would often see clauses
of the form k̂x 6= t ∨ C[x] (for numeral k̂, variable x, and term t) and expend

much effort using theory axioms to rewrite k̂x 6= t into x 6= t

k̂
. This led us to

conduct an experiment to identify other common cases where arithmetic clauses
could be simplified. An immediate observation is that, if x ranges over the reals,

p(7x−6) can be instantiated with {x 7→ (y+6)
7 } to produce p(y). Furthermore, in

the above example we no longer need to employ the expensive unification with
abstraction as we can instantiate r(7x) with {x 7→ z

7} to produce r(z) and then
resolve with r(6 + y) ∨ p(y) to produce p(y) directly.

Another observation was that a large amount of effort was expended by
the theorem prover reordering sums and products to expose seemingly obvious
structure. For example, taking (3t+ x) + 2t and producing 5t+ x requires three
theory axioms and 12 rewriting steps. To combat this, we introduce an evaluation
method that flattens sums and products, reorders and simplifies them, before
reintroducing the necessary bracketed structure. A related common issue was the
occurrence of terms that could easily be cancelled, such as in 4x+ 3 < 4x+ 10,
again requiring significant rewriting effort that can be replaced by a special rule.

This paper does not present the exploratory experimentation described above
but focusses instead on the fruits of this work. After introducing the necessary
preliminaries (Sec. 2), we make the following contributions:

– A new Gaussian Variable Elimination rule (Sec. 3) that eliminates variables
if they can be described completely in terms of other variables.

– A set of Arithmetic Subterm Generalisation rules (Sec. 4) that replace clauses
with obvious generalisations, as in the above cases of replacing p(7x−6) with
p(y) and r(7x) with r(x).

– A general approach to the evaluation of terms involving arithmetic (Sec. 5),
including a special rule to handle a surprisingly common corner case involv-
ing unary minus.



Making Theory Reasoning Simpler 3

– A rule for cancelling subterms, e.g. in 4x+ 3 < 4x+ 10 (Sec. 6)

These rules are all implemented in the Vampire [1,14] theorem prover. Our
experimental evaluation (Sec. 7) shows that the new rules significantly improve
the number of problems (from SMT-LIB) that Vampire can solve. Our final
experiment shows that the new Vampire can solve 1,052 problems unsolved by
Vampire 4.5, 1,056 problems unsolved by CVC4, and 1,350 problems unsolved
by Z3 — given their complementary nature, this equates to 90 problems unsolved
by any of these state-of-the-art solvers.

2 Preliminaries and Related Work

First-Order Logic and Theories. We consider a many-sorted first-order logic
with equality. A signature is a pair Σ = (Ξ,Ω) where Ξ is a set of sorts and
Ω a set of predicate and function symbols with associated argument and return
sorts from Ξ. Terms are of the form c, x, or f(t1, . . . , tn) where f is a function
symbol of arity n ≥ 1, t1, . . . , tn are terms, c is a zero arity function symbol (i.e.
a constant) and x is a variable. We assume that all terms are well-sorted and
write t : σ if term t has sort σ. Atoms are of the form p(t1, . . . , tn), q or t1 's t2
where p is a predicate symbol of arity n, t1, . . . , tn are terms, q is a zero arity
predicate symbol and for each sort s ∈ Ξ, 's is the equality symbol for the sort
s. We write simply ' when s is known from the context or irrelevant. A literal is
either an atom A, in which case we call it positive, or a negation of an atom ¬A,
in which case we call it negative. When L is a negative literal ¬A and we write
¬L, we mean the positive literal A. For negative literals with binary predicates
¬(t1 ♦ t2) (like, e.g. equality), we sometimes write t1 6♦ t2.

A clause is a disjunction of literals L1 ∨ . . . ∨ Ln for n ≥ 0. We disregard
the order of literals and treat a clause as a multiset. When n = 0 we speak of
the empty clause, which is always false. When n = 1 a clause is called a unit
clause. Variables in clauses are considered to be universally quantified. Standard
methods exist to transform an arbitrary first-order formula into clausal form
(e.g. [15] and our recent work in [19]).

In the following we use expression to mean a term, an atom, a literal, or a
clause. We write E[t]p to denote an expression E containing a term t at position
p (a position is a unique point in an expression’s syntax tree) and may then
write E[s]p to denote the same expression with t replaced by term s at p. We
will normally leave the position p as implicit. A substitution is any θ of the form
{x1 7→ t1, . . . , xn 7→ tn}, where n ≥ 0. Eθ is the expression obtained from E
by the simultaneous replacement of each xi by ti. An expression is ground if
it contains no variables. An instance of E is any expression Eθ and a ground
instance of E is any instance of E that is ground. A unifier of two terms, atoms
or literals E1 and E2 is a substitution θ such that E1θ = E2θ. It is known that
if two expressions have a unifier, then they have a so-called most general unifier.

We assume a standard notion of a (first-order, many-sorted) interpretation I,
which assigns a non-empty domain Is to every sort s ∈ Ξ, and maps every func-
tion symbol f to a function If and every predicate symbol p to a relation Ip on



4 Giles Reger, Johannes Schoisswohl, and Andrei Voronkov

these domains so that the mapping respects sorts. We call If the interpretation
of f in I, and similarly for Ip and Is. Interpretations are also sometimes called
first-order structures. A sentence is a closed formula, i.e. with no free variables.
We use the standard notions of validity and satisfiability of sentences in such
interpretations. An interpretation is a model for a set of clauses if (the universal
closure of) each of these clauses is true in the interpretation.

A theory T is identified by a class of interpretations. A sentence is satisfiable
in T if it is true in at least one of these interpretations and valid if it is true in
all of them. A function (or predicate) symbol f is called uninterpreted in T , if
for every interpretation I of T and every interpretation I ′ which agrees with I
on all symbols apart from f , I ′ is also an interpretation of T . A theory is called
complete if, for every sentence F of this theory, either F or ¬F is valid in this
theory. Evidently, every theory of a single interpretation is complete. We can
define satisfiability and validity of arbitrary formulas in an interpretation in a
standard way by treating free variables as new uninterpreted constants.

The theories we will deal with are the theories of integer, rational, and real
arithmetic with uninterpreted functions, denoted by TZ, TQ, and TR, which fix the
interpretation of a distinguished sort σZ, σQ, and σR to the set of mathematical
integers Z, rationals Q, and reals R respectively, and assign the usual meanings to
the function and predicate symbols {+,−, <,≤, ·}. By k̂, we denote the numeral
interpreted as k in any of these theories. We consider signatures over these
theories to additionally contain uninterpreted functions, and predicates, hence,
in contrast to the case without unintpreted functions, for none of these theories
there is a sound and complete proof system (see e.g. [13]).

Unless stated differently, we use the symbols x, y, z for variables, s, t, u for
terms, C,D for clauses, p, q, r for predicate symbols, f, g, h for function symbols,
and σ for substitutions, and sorts, with sometimes suffixes being added.

Term Orderings. A simplification ordering (see, e.g. [8]) on terms is an ordering
that is well-founded, monotonic, stable under substitutions and has the subterm
property. Such an ordering captures a notion of simplicity, i.e. t1 ≺ t2 implies
that t1 is in some way simpler than t2. Vampire uses the Knuth-Bendix or-
dering [12], which is parametrized by total precedence ordering on function and
predicate symbols �. This is total on ground terms and partial on non-ground
ones, leading to the possibility of incomparable terms, e.g. f(x, a) and f(b, y). A
simplification ordering ≺ on terms can be extended to a simplification ordering
on literals and clauses, using a multiset extension of orderings. For simplicity,
we will use ≺ to refer to the term ordering and its lifting. Whenever E1 ≺ E2

(E2 ≺ E1) we say that E1 is smaller (bigger) than E2. An equality literal t ' s
is oriented if t ≺ s or s ≺ t.

Saturation-Based Proof Search. We introduce our new rules within the context of
saturation-based proof search. The general idea in saturation is to maintain two
sets of Active and Passive clauses. A saturation-loop then selects a clause C from
Passive, places C in Active, applies generating inferences between C and clauses
in Active, and finally places newly derived clauses in Passive after applying some



Making Theory Reasoning Simpler 5

retention tests. The retention tests involve checking whether the new clause is
itself redundant (i.e. a tautology) or redundant with respect to existing clauses
(implied by a set of smaller clauses in Active ∪ Passive). Rules that remove the
parent clause immediately from the search space without performing a retention
test are called immediate simplification rules. Whenever there are applicable
immediate simplification rules, the first one wrt. some fixed ordering is chosen
to be applied to the selected clause instead of applying any other rule. The rules
introduced in this paper are all introduced as immediate simplification rules.
However, as mentioned later, not all of them strictly obey the requirement that
the result is smaller. Normally this would have implications on the completeness
of the approach but we lose completeness when we start reasoning with theories.
This leads us to a trade-off between the potential loss of some proofs by missing
some inferences, and the potential gain via simplifying proof search. Our later
experimental results show that forgoing completeness is of pragmatic interest.

Superposition Calculus. Vampire works with the superposition and resolution
calculus (see our previous work [11,14] for a description). The calculus itself is
not of direct interest to this work. We do, however, draw attention to two rules.
Firstly, the Equality Resolution rule

s 6' t ∨ C
Cθ

θ is a most general unifier of s and t

is a starting point for both our previous theory instantiation work and the Gaus-
sian Variable Elimination rule introduced later (Sec. 3). Secondly, we draw at-
tention to the Demodulation (or rewriting by unit equalities) rule

l ' r ����L[t] ∨ C
L[rθ] ∨ C

where lθ = t, rθ ≺ lθ, and (l ' r)θ ≺ L[t]∨C. This is of interest as later we will
need to take special care of the last side-condition when evaluating terms.

Theory Reasoning. To perform theory reasoning within this context it is common
to do two things. Firstly, to evaluate new clauses to put them in a common form
(e.g. rewrite all inequalities in terms of <) and evaluate ground theory terms and
literals (e.g. 1+2 becomes 3 and 1 < 2 becomes false). More complex evaluation
is possible and is the subject of this work (see Section 5). Secondly, relevant
theory axioms can be added to the initial search space. For example, if the input
clauses use the + symbol one can add the axioms x+ y ' y + x and x+ 0 ' x,
among others.

In addition to these basic methods, Vampire also employs a number of other
techniques. AVATAR modulo theories [16] uses an SMT solver within the con-
text of clause splitting to ensure that the ground part of any chosen clause splits
are theory-consistent. The previously mentioned unification with abstraction and
theory instantiation [20] rules support lazy unification modulo theories and prag-
matic instantiation. Theory axiom usage can be controlled by the set of support



6 Giles Reger, Johannes Schoisswohl, and Andrei Voronkov

strategy [17] or layered clause selection [10]. Both approaches de-prioritise rea-
soning with theory axioms.

3 Gaussian variable elimination

Recall the example 7x 6= 6 + y ∨ p(y) from the Introduction (Sec. 1) where we
want to identify the substitution {y 7→ 7x− 6} to produce the simpler instance
p(7x− 6). Our general approach is to rewrite 7x 6= 6 + y in terms of y and then
apply the standard Equality Resolution rule introduced in Sec. 2. This gives us
the straightforward rule:

s 6' t ∨ C[x]
gve

C[u]

where x : σZ, x : σQ, or x : σR, 〈s, t〉 =⇒∗gve 〈x, u〉, or 〈t, s〉 =⇒∗gve 〈x, u〉 and x is
not a subterm of u. The relation =⇒∗gve is the reflexive, and transitive closure of
the relation =⇒gve which can be defined as follows.

〈s + t, u〉 =⇒gve 〈s, u + (− t)〉
〈s + t, u〉 =⇒gve 〈t, u + (− s)〉 〈− s, t〉 =⇒gve 〈s,− t〉

〈s · t̂, u〉 =⇒gve 〈s, u / t〉 if t 6= 0, and t̂ : σQ, or t̂ : σR
〈ŝ · t, u〉 =⇒gve 〈t, u / s〉 if s 6= 0, and ŝ : σQ, or t̂ : σR

〈s / t̂, u〉 =⇒gve 〈s, u · t〉 if t 6= 0, and t̂ : σQ, or t̂ : σR

It should be noted that =⇒gve is not normalising. The pair 〈s1 + s2, t〉 can,
for example, be rewritten to 〈s1, t− s2〉, as well as to 〈s2, t− s1〉. But due to the
fact that there is at most a linear number of such rewritings, we can enumerate
all of them and choose the first 〈x, t〉, such that x is not a subterm of t. Further
choice comes from the fact that we can either rewrite based on 〈l, r〉, or based
on 〈r, l〉. Looking at our example, we could rewrite

〈6 + y, 7x〉 =⇒gve 〈y, 7x− 6〉

but also
〈7x, 6 + y〉 =⇒gve 〈x, (6 + y) / 7〉

if x is not of integer sort, leaving us with a choice. Another source of choice
comes from the fact that our premise can contain multiple negative equalities.
Any of those could potentially be used to rewrite the rest of the clause.

Since application of the rule, will yield a logically equivalent conclusion, with
fewer literals and fewer distinct variables, we make an arbitrary choice. For
the same reason, we implement this as a simplification rule (thus removing the
premise from the search space) even though the conclusion will often be incom-
parable to (not smaller than) the premise.

To further demonstrate this rule we consider the additional example



Making Theory Reasoning Simpler 7

p(7xxxy − 6)
asg·varp(7xxx− 6)
asgpowvar

p(7x− 6)
asg·nump(x− 6)
asg+

p(x)

Fig. 1. Illustration of the 4 generalization rules, in the theory of Reals.

x+ y 6= 36 ∨ x+ 3y 6= 90 ∨ p(x, y)
gve

(36− y) + 3y 6= 90 ∨ p(36− y, y)
eval

36 + 2y 6= 90 ∨ p(36− y, y)
gve

∨ p(36− (90− 36)/2, (90− 36)/2)
eval

p(9, 27)

which highlights the need to interleave evaluation between successive Gaussian
elimination steps — we discuss our evaluation strategy below.

4 Arithmetic subterm generalization

Taking a closer look at the choice for our example from the previous section,
we see that we could have instantiated the premise y + 6 6' 7x ∨ p(y) either
with {y 7→ 7x − 6} to get p(7x − 6), or with {x 7→ (6 + y) / 7} to obtain p(y)
(again, assuming that x is not of integer sort). Both of the clauses are logically
equivalent in TQ, and TR, since the earlier is an instance of the latter, and the
latter implies the earlier as we can apply the substitution {x 7→ (y+ 6) / 7} and
simplify the result to the earlier clause. Obviously this kind of reasoning can be
applied for any linear subterm k̂ · x+ d where k 6= 0.

Splitting this idea into multiple rules lets us take these generalizations fur-
ther. Therefore we propose 4 rules for arithmetic subterm generalization, that
are illustrated in a single example in Figure 1.

Since we do not want the applicability of our generalization rules to depend
on associativity and commutativity (AC) we will formulate them modulo AC.
For this purpose we introduce the following notation. We use C[t]AC to denote a
clause that contains the subterm t modulo AC. Further we use C[t′]AC to denote
the same clause, but all occurrences of t modulo AC, being replaced by t′.

Addition Generalization

C[x + t1 + . . . + tn]AC
asg+

C[x]AC

where

– x : σ for some σ ∈ {σZ, σQ, σR}



8 Giles Reger, Johannes Schoisswohl, and Andrei Voronkov

– all occurrences of x are in the subterm x + t1 + . . . + tn (modulo AC)
– x is not a subterm of ti

The first rule deals with the case where a clause contains a sum with a variable
as summand. Such a sum can be generalized by applying the substitution {x 7→
x − t1 − . . . − tn} , and simplifying the result.

Numeral Multiplication Generalization

C[k̂ · x · t1 · . . . · tn]AC
asg·num

C[x · t1 · . . . · tn]AC

where

– x : σ for some σ ∈ {σQ, σR}
– all occurrences of x are in the term k̂ · x · t1 · . . . · tn (modulo AC)
– x is not a subterm of ti

In the second rule we generalize a product that contains one variable that occurs
only once in this product. Its soundness is justified by the substitution {x 7→ x̂

k}.

Variable Multiplication Generalization

C[x · x1 · . . . · xn]AC
asg·var

C[x]AC

where

– x : σ for some σ ∈ {σZ, σQ, σR}
– all occurrences of x, xi are in the term x · x1 · . . . · xn (modulo AC)
– x 6= xi

In this rule we generalize subterms that are products of variables, containing
redundant variables. The rule is sound since we can replace xi by 1̂.

Variable Power Generalization

C[xn]AC
asgpowvar

C[xk]AC

where

– x : σR
– xn is an abbreviation for x · x · ... · x

– k =

{
1 if n is odd

2 if n is even

– all occurrences of x are in the term xn (modulo AC)

The last rule lets us generalize away redundant powers of variables. Its soundness
is guaranteed by the fact, that for Real numbers the co-domains of xn and xk

are the same.
All of the above rules produce a result that is smaller with respect to any sim-

plification ordering due to the removal of terms, justifying their implementation
as immediate simplifications.



Making Theory Reasoning Simpler 9

5 Evaluation

As mentioned above, reasoning with arithmetic often requires us to be able to
evaluate terms — evaluations such as 3 + 3 =⇒ 6 and f(x) + 0 =⇒ f(x) are
straightforward but we also want to support evaluations such as (3t+x)+2t =⇒
5t+ x for variable x and arbitrary term t. We introduce a new method for this
(replacing a previous ad-hoc method implemented in Vampire). The general
idea is to first rewrite terms into a special normal form, apply simplifying steps
that preserve this form, and then denormalise to obtain standard terms again.
We describe the three steps in detail below.

Normalization. This step removes the need to take care of reordering and brack-
eting of terms. Our general normal form is as follows

ĉ1 · (t1,1 · . . . · t1,k1) + . . . + ĉn · (tn,1 · . . . · t1,kn)

where ti,j ≺1 ti,j+1 and (ti,1 · . . . · ti,ki) ≺2 (ti+1,1 · . . . · ti+1,ki+1). To get

to this normal form we rewrite −t as −1 · t, rewrite t / ĉ as t · 1̂
c , rewrite t as

1 · t where necessary, and sort with respect to ≺1 and ≺2. Both relations ≺1,
and ≺2 need to be strict total orderings, on terms, and ≺1-sorted lists of terms
respectively. Vampire uses so-called aggressive sharing for terms, meaning that
for each distinct term there is at most one instance present in memory, and copies
are being made by copying the term’s id. Hence we can define ≺1 as comparing
the ids of two terms. We use the same approach for ≺2.

Simplification. Once in normal form, terms can be simplified by joining coeffi-
cients for identical terms and removing terms multiplied by zero. This can be
given as follows:

ĉ · t · . . . d̂ . . . · u =⇒eval ĉd · t · . . . · u
s + . . . ĉ1 · t + ĉ2 · t . . . + u =⇒eval s + . . . ĉ1 + c2 · t . . . + u

s + . . . + 0̂ · t + . . . + u =⇒eval s + . . . + u

If we would generate an empty sum by removing an addition we will simplify to 0̂
instead. All of these steps can be implemented in linear time and in a bottom up
manner, since we firstly can rely on the terms being sorted by the non-numeral
parts of their summands, and secondly on a numeral part of a product being on
a fixed position.

Denormalisation. Finally, as the normal form contains redundant information
(such as 1 · t+ . . . instead of t+ . . .) we need to denormalise as follows:

−1 · (t1 · . . . · tn) =⇒ (t1 · (. . . · (tn−1 · (− tn)) . . .))

1 · (t1 · . . . · tn) =⇒ (t1 · (. . . · (tn−1 · tn) . . .))



10 Giles Reger, Johannes Schoisswohl, and Andrei Voronkov

We define the rule eval to be the chain of normalising, simplifying and de-
normalising a clause in a bottom-up manner, which is only applied if the step
of simplification is successful for some subterm. The reason for not always ap-
plying the rules is to prevent arbitrary reordering of sums and products, which
in many cases leads to conclusions being bigger than the premise. This can have
significant consequences beyond perturbing proof search. Consider the following
scenario involving the Demodulation rule (see Sec. 2).

x+ y ' y + x ((((
(((k = a+ (b+ c)

demodulation
k = a+ (c+ b)

eval
k = a+ (b+ c)

This process would repeat itself ad infinitum as the initial clause is deleted,
replaced by an identical clause. Evaluation would violate the side-condition that
should have prevented this, if we would not insist on the step of simplification
being successful for the rule to be applied.

In most cases this inference rule is a true simplification wrt. our simplification
ordering, since we eliminate at least one symbol in each of the cases in the step
simplification. Due to generating sometimes bigger terms in the normalisation,
like in the case x+x⇒ 1 · x+ 1 · x⇒ 2 · x we sometimes violate the simplifica-
tion ordering. Due to the fact that these cases do not occur too frequently, and
completeness is not possible in our base theories, we ignore these violations.

During experimentation, we discovered many cases where a unary minus
blocks our evaluation rule. Consider the following desired derivation

y + t 6= x ∨ C[y +−x]

C[y +−(y + t)

C[y + (−y +−t)]
C[t]

This is not currently possible as the weight of −y+−t is 5, which is larger than
the weight of −(y + t), meaning the second step is not a simplification.

We introduce a simple fix by modifying the weight function and symbol
precedence of the Knuth-Bendix ordering as follows:

1. We let − to be weight 0 (for every sorted version of −)

2. We let − be the largest symbol among symbols of its sort

As a result we can use the following rewrite rule as an additional simplifaction
rule, since the right hand side has the same weight as the left hand side, but −,
the outer most symbol on the left hand side, has higher precedence than + the
one on the right hand side.

− (x + y) =⇒push− (− x) + (− y)



Making Theory Reasoning Simpler 11

6 Cancellation

The motivation for our last rule was two-fold. Firstly evaluation of constant
predicates can be helpful in some cases, but fails in seemingly trivial cases. One
example for a case like this is the redundant literal 4x+ 3 < 4x+ 10. The simple
approach of evaluating interpreted predicates fails since we are dealing with non-
ground symbols. However it can be simplified to a ground term that can then
be evaluated, by cancelling away the 4x on both sides of the inequality.

The second motivation were cases where unification with abstraction yields
literals in which gve could almost be applied but require a step of cancellation.
An example for such a case is the derivation

p(5x) ¬p(3x) ∨ C[x]

3x 6= 5x ∨ C[x]
cancel

0 6= 2x ∨ C[x]
gve

C[0]

In order to resolve both of these cases we propose the inference rule cancel-
lation cancel, which consists of the following two symmetric cases depending on
which side is cancelled. as follows.

s+ . . . n̂t . . .+ u ♦v + . . . n̂t . . .+ w ∨ C
cancel

s+ . . .+ u ♦v + . . .+ w ∨ C

where

– ♦∈ {', 6', <, 6<,≤, 6≤}

s+ . . . n̂t . . .+ u ♦v + . . . m̂t . . .+ w ∨ C
cancel

s+ . . .+ u ♦v + . . . m̂− nt . . .+ w ∨ C

where

– m̂− n� n̂−m
– ♦∈ {', 6', <, 6<,≤, 6≤}

s+ . . . n̂t . . .+ u ♦v + . . . m̂t . . .+ w ∨ C
cancel

s+ . . . n̂−mt . . .+ u ♦v + . . .+ w ∨ C

where

– n̂−m� m̂− n
– ♦∈ {', 6', <, 6<,≤, 6≤}

In order for the rule to not be sensitive to associativity and commutativity, we
perform the same steps of normalisation and denormalisation as for the rule eval.
Again we will only simplify a clause, if cancellation itself, not only normalisation
and denormalisation, is applicable.

The rule is a simplification rule since the number of symbols is reduced with
(almost) every application of the cancellation.



12 Giles Reger, Johannes Schoisswohl, and Andrei Voronkov

Table 1. Compares the number of problems solved with any configuration where a
new option is enabled to the ones where it is disabled, with a runtime of 10 seconds.
The column “both” lists how many were solved in either case. The columns “on”,
and “off” list how many additional problems could have been solved with the option
enabled, or disabled respectively.

on both off

gve 121 3372 104
eval 323 2927 347
asg 440 2859 298
push− 112 3378 107
cancel 576 2749 272

7 Experimental evaluation

We describe two experiments to establish the impact of the new rules. The first
experiment compares the new rules to each other, whilst the second experiment
aims to determine how helpful the new rules will be in designing extensions to
Vampire’s portfolio mode. This is a standard approach to evaluating the benefit
of new features in an automated theorem prover [18].

Experimental Setup. We implemented the rules as immediate simplification rules
in Vampire 4.5 (the implementation is available from the GitHub repository
linked from the Vampire website [1], on the branch integer-arithemtic). We
selected a suitable subset of problems as follows. We started with the set prob-
lems of 56,210 from SMT-LIB that involve quantifiers and arithmetic. In a first
step we filtered out benchmarks that Vampire could solve within 1 second in
both default mode (which involves a simpler version of the rule eval), and in
default mode with eval enabled. Our main experiments were carried out on the
remaining set of 21,512 benchmarks, we which will refer to as B. Filtering out
trivial benchmarks avoids the results containing noise from benchmarks that
can easily be solved and is an approach recently adopted by SMT-COMP [22].
Experiments are run on a Linux cluster where each node contains two octa-
core 2.1 GHz Intel Xeon processors and 160GB of RAM. The raw results of our
experiments can be found on GitHub3.

Experiment 1. In our first experiment we wanted to find out which are the best
combinations of new rules, and whether the rules themselves have a positive im-
pact on proof search. Therefore we ran Vampire in each of the 32 configurations
C resulting from enabling or disabling each of the 5 groups of rules (asg, gve,
eval, push−, and cancel) over B with a timeout of 10 seconds.

The results are given in Table 1 showing the total number of problems solved
and the problems gained/lost when compared to the default mode with no op-
tions set. Each row represents the combination (union) of 16 strategies where

3 https://github.com/vprover/vampire_publications/tree/master/

experimental_data/TACAS-2021-THEORY-REASONING

https://github.com/vprover/vampire_publications/tree/master/experimental_data/TACAS-2021-THEORY-REASONING
https://github.com/vprover/vampire_publications/tree/master/experimental_data/TACAS-2021-THEORY-REASONING


Making Theory Reasoning Simpler 13

Table 2. The top 10 strategies in the greedy ranking of configurations.

solved id eval gve asg push− cancel

2546 15 X X X X X
548 24 X
136 27 X X X
63 22 X X
51 9 X X X
38 4 X X
27 23 X X X
20 26 X X
19 25 X X
18 5 X X X

Table 3. The symmetric difference in number of problems solved between the three
new strategies in portfolio mode against Vampire 4.5. Each cell indicates the number
of problems solved by the row solver unsolved by the column solver. The column unique
lists how many problems each strategy could solve that no other strategy could. The
strategy Vampire * is what we can solve with either of the three other strategies.
Vampire * is not taken into account for uniqueness.

strategy total unique Vampire * 15 24 27 Vampire 4.5

Vampire * 7511 0 0 622 937 932 1052
15 6889 64 0 0 865 729 824
24 6574 12 0 550 0 261 366
27 6579 2 0 419 266 0 165

Vampire 4.5 6506 10 47 441 298 92 0

that option is turned on. This shows that, with the exception of evaluation, the
gains outweigh the losses, sometimes considerably. This result for evaluation tells
us that the other rules can still operate effectively without our new evaluation
and, further, that the two evaluation methods are in some sense complementary.
Therefore, whilst we explore this further, we will keep both evaluation methods.
The most significant gains are with cancellation, which may be related to the
fact that it is applicable to inequalities as well as equalities.

Greedy Ranking. Another way of looking at the results of Experiment 1 is to
create a greedy ranking rank of all configurations C, starting with the set of all
configurations, and ranking the configuration solving the most benchmarks in B
as the best, ranking the one that solves most of the remaining benchmarks as
second, and so on. The top 10 strategies in this ranking are given in Table 2.
The overall best strategy uses all 5 of the new rules. Interestingly, the second
best strategy only uses the gve rule. This ranking indicates the most promising
strategies to use in our next experiment.

Experiment 2 In our second experiment we wanted to see how many new prob-
lems we can solve with the new simplification rules compared to our current



14 Giles Reger, Johannes Schoisswohl, and Andrei Voronkov

Table 4. Comparing our new approach, Vampire *, against Vampire 4.5, Cvc4, and
Z3 with results separated by logic. The notation (+a,−b) means that the solver solved
a problems the new Vampire could not solve, and the new vampire could solve b the
other solver couldn’t. The entries a(b) in the column Vampire *, list the number a of
problems that could be solved by our new rules, and b the number of these problems
that could not be solved by any of the other solvers.

count Vampire * Vampire 4.5 Cvc4 Z3

ALIA 24 14 (0) 12 (+0, -2) 23 (+9, -0) 24 (+10, -0)
AUFDTLIA 134 39 (0) 39 (+0, -0) 86 (+47, -0) 80 (+45, -4)
AUFLIA 862 312 (4) 311 (+4, -5) 295 (+84, -101) 331 (+148, -129)
AUFLIRA 1697 1364 (0) 1354 (+0, -10) 1455 (+101, -10) 1453 (+102, -13)
AUFNIA 3 0 (0) 0 (+0, -0) 0 (+0, -0) 0 (+0, -0)
AUFNIRA 509 87 (2) 81 (+2, -8) 87 (+20, -20) 63 (+16, -40)
LIA 246 79 (0) 78 (+0, -1) 246 (+167, -0) 230 (+155, -4)
LRA 2043 1013 (41) 365 (+0, -648) 1528 (+635, -120) 1756 (+883, -140)
NIA 11 1 (0) 1 (+0, -0) 9 (+9, -1) 5 (+4, -0)
NRA 101 92 (0) 91 (+0, -1) 72 (+0, -20) 96 (+9, -5)
UFDTLIA 274 120 (4) 115 (+0, -5) 40 (+3, -83) 34 (+1, -87)
UFDTLIRA 33 0 (0) 0 (+0, -0) 33 (+33, -0) 33 (+33, -0)
UFLIA 4833 1924 (23) 1829 (+30, -125) 2314 (+501, -111) 1899 (+315, -340)
UFLRA 7 2 (0) 2 (+0, -0) 2 (+0, -0) 5 (+3, -0)
UFNIA 10735 2463 (16) 2227 (+11, -247) 4928 (+3055, -590) 3858 (+1983, -588)

Any Logic 21512 7510 (90) 6505 (+47, -1052) 11118 (+4664, -1056) 9867 (+3707, -1350)

best effort in Vampire 4.5. Therefore we ran Vampire with the three top rank-
ing configurations of experiment 3 forced added on top of Vampire’s portfolio
mode. The portfolio mode executes a sequence of strategies heuristically chosen
based on problem features. Forcing a configuration of new options on top of this
forces each strategy to make use of the new options. We ran this experiment
over B with a timeout of 200 seconds.

Results are given in Table 3 and show that the new rules allow Vampire
to solver considerably more problems (1052) than it could before whilst losing
relatively few (47). The best configuration of options (all five new rules) solves
the most with the other two configurations solving roughly the same. The in-
teresting point here is that they remain complementary, solving a large number
of problems uniquely. These are the exact conditions we require for producing
a new, powerful portfolio mode. It is likely that performance will improve even
further when also considering other option combinations.

Finally, Table 4 compares the number of problems solved by either of the
three top strategies – referred to as Vampire∗ – against Vampire 4.5, Z3 [7]
and Cvc4 [4]. Results are further separated by the logic in which the bench-
marks belong — A stands for Arrays, UF stands for Uninterpreted Functions,
DT stands for Data Types, L stands for Linear, N for Non-linear, I stands for
Integers, R stands for Reals, with the final A standing for Arithmetic. Here we
notice that the new rules make a considerable impact in the case of pure linear
real arithmetic. This is likely due to the fact that the asg allows us to fully
generalise away most linear terms and gve will be broadly applicable without
uninterpreted functions. It is interesting to note that, whilst the new Vampire



Making Theory Reasoning Simpler 15

solves fewer problems than Cvc4, and Z3 overall, it solves many (1056, and
1350) problems that the other provers do not solve. The most striking result
is that we can solve 90 new problems, neither Vampire 4.5 nor either of the
state-of-the-art SMT solvers could solve.

8 Conclusion

We have motivated and introduced five new simplification rules for reasoning
in the theory of arithmetic within saturation-based first-order theorem provers.
These rules were implemented within the Vampire theorem prover and demon-
strated to improve the reasoning power on problems taken from SMT-LIB. It
remains future work to explore the ideal combinations of these rules and existing
proof search heuristics. It also remains an open question whether we can design
an evaluation rule and modified simplification ordering that ensures that every
evaluation that we want to perform is a true simplification. As demonstrated,
this is not necessary pragmatically but would be satisfying theoretically.

References

1. Vampire website. https://vprover.github.io/.

2. E. Althaus, E. Kruglov, and C. Weidenbach. Superposition modulo linear arith-
metic SUP(LA). In Frontiers of Combining Systems, 7th International Symposium,
FroCoS 2009, Trento, Italy, September 16-18, 2009. Proceedings, vol. 5749 of Lec-
ture Notes in Computer Science, pp. 84–99. Springer, 2009.

3. L. Bachmair, H. Ganzinger, and U. Waldmann. Refutational theorem proving for
hierarchic first-order theories. Appl. Algebra Eng. Commun. Comput., 5:193–212,
1994.

4. C. Barrett, C. Conway, M. Deters, L. Hadarean, D. Jovanovic, T. King,
A. Reynolds, and C. Tinelli. CVC4. In Proceedings of the 23rd International
Conference on Computer Aided Verification, number 6806 in Lecture Notes in
Computer Science, pp. 171–177. Springer-Verlag, 2011.

5. P. Baumgartner and U. Waldmann. Hierarchic Superposition With Weak Abstrac-
tion. In Proceedings of the 24th International Conference on Automated Deduction,
number 7898 in Lecture Notes in Artificial Intelligence, pp. 39–57. Springer-Verlag,
2013.

6. M. P. Bonacina, C. Lynch, and L. M. de Moura. On deciding satisfiability by
theorem proving with speculative inferences. J. Autom. Reasoning, 47(2):161–189,
2011.

7. L. M. de Moura and N. Bjørner. Z3: an efficient SMT solver. In Proc. of TACAS,
vol. 4963 of LNCS, pp. 337–340, 2008.

8. N. Dershowitz and D. A. Plaisted. Rewriting. In Handbook of Automated Reason-
ing, vol. I, chapter 9, pp. 535–610. Elsevier Science, 2001.

9. H. Ganzinger and K. Korovin. Theory instantiation. In Logic for Programming,
Artificial Intelligence, and Reasoning, 13th International Conference, LPAR 2006,
Phnom Penh, Cambodia, November 13-17, 2006, Proceedings, vol. 4246 of Lecture
Notes in Computer Science, pp. 497–511. Springer, 2006.

https://vprover.github.io/


16 Giles Reger, Johannes Schoisswohl, and Andrei Voronkov

10. B. Gleiss and M. Suda. Layered clause selection for theory reasoning. In Automated
Reasoning, pp. 402–409. Springer International Publishing, 2020.

11. K. Hoder, G. Reger, M. Suda, and A. Voronkov. Selecting the selection. In Au-
tomated Reasoning: 8th International Joint Conference, IJCAR 2016, Coimbra,
Portugal, June 27 – July 2, 2016, Proceedings, pp. 313–329. Springer International
Publishing, 2016.

12. D. Knuth and P. Bendix. Simple word problems in universal algebra. In Compu-
tational Problems in Abstract Algebra, pp. 263–297. Pergamon Press, 1970.

13. K. Korovin and A. Voronkov. Integrating linear arithmetic into superposition
calculus. In Computer Science Logic, 21st International Workshop, CSL 2007,
16th Annual Conference of the EACSL, Lausanne, Switzerland, September 11-15,
2007, Proceedings, vol. 4646 of Lecture Notes in Computer Science, pp. 223–237.
Springer, 2007.

14. L. Kovács and A. Voronkov. First-order theorem proving and Vampire. In CAV
2013, vol. 8044 of Lecture Notes in Computer Science, pp. 1–35, 2013.

15. A. Nonnengart and C. Weidenbach. Computing small clause normal forms. In
Handbook of Automated Reasoning (in 2 volumes), pp. 335–367. Elsevier and MIT
Press, 2001.

16. G. Reger, N. Bjørner, M. Suda, and A. Voronkov. AVATAR modulo theories.
In GCAI 2016. 2nd Global Conference on Artificial Intelligence, vol. 41 of EPiC
Series in Computing, pp. 39–52. EasyChair, 2016.

17. G. Reger and M. Suda. Set of support for theory reasoning. In IWIL Workshop
and LPAR Short Presentations, vol. 1 of Kalpa Publications in Computing, pp.
124–134. EasyChair, 2017.

18. G. Reger, M. Suda, and A. Voronkov. The challenges of evaluating a new feature
in Vampire. In Proceedings of the 1st and 2nd Vampire Workshops, vol. 38 of EPiC
Series in Computing, pp. 70–74. EasyChair, 2016.

19. G. Reger, M. Suda, and A. Voronkov. New techniques in clausal form generation.
In GCAI 2016. 2nd Global Conference on Artificial Intelligence, vol. 41 of EPiC
Series in Computing, pp. 11–23. EasyChair, 2016.

20. G. Reger, M. Suda, and A. Voronkov. Unification with abstraction and theory
instantiation in saturation-based reasoning. In International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, pp. 3–22. Springer,
2018.

21. P. Rümmer. A Constraint Sequent Calculus for First-Order Logic with Linear
Integer Arithmetic. In Proceedings of the 15th International Conference on Logic
for Programming Artificial Intelligence and Reasoning, number 5330 in Lecture
Notes in Artificial Intelligence, pp. 274–289. Springer-Verlag, 2008.

22. T. Weber, S. Conchon, D. Déharbe, M. Heizmann, A. Niemetz, and G. Reger.
The smt competition 2015–2018. Journal on Satisfiability, Boolean Modeling and
Computation, 11(1):221–259, 2019.


