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Abstract  

It has long been known that Dynamic Time Warping 

(DTW) is superior to Euclidean distance for classification 

and clustering of time series. However, until lately, most 

research has utilized Euclidean distance because it is more 

efficiently calculated. A recently introduced technique 

that greatly mitigates DTWs demanding CPU time has 

sparked a flurry of research activity. However, the 

technique and its many extensions still only allow DTW 

to be applied to moderately large datasets. In addition, 

almost all of the research on DTW has focused 

exclusively on speeding up its calculation; there has been 

little work done on improving its accuracy.  In this work, 

we target the accuracy aspect of DTW performance and 

introduce a new framework that learns arbitrary 

constraints on the warping path of the DTW calculation.  

Apart from improving the accuracy of classification, our 

technique as a side effect speeds up DTW by a wide 

margin as well. We show the utility of our approach on 

datasets from diverse domains and demonstrate 

significant gains in accuracy and efficiency.     
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Figure 1: Note that while the two time series have an 

overall similar shape, they are not aligned in the time 

axis.  Euclidean distance, which assumes the ith point in 

one sequence is aligned with the ith point in the other, 

will produce a pessimistic dissimilarity measure.  The 

non-linear Dynamic Time Warped alignment allows a 

more intuitive distance measure to be calculated. 
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1  Introduction. 
In recent years, classification and clustering of time series 

data have become a topic of great interest within the 

database/data mining community.  Although the 

Euclidean distance metric is widely known to be very 

sensitive to distortion in time axis [3][9][22][27][44], the 

vast majority of research has used Euclidean distance 

metric or some minor variation thereof [2][12] 

[16][25][29][45]. The ubiquity of Euclidean distance in 

the face of increasing evidence of its poor accuracy for 

classification and clustering is almost certainly due to its 

ease of implementation and its time and space efficiency.  

 In spite of its computational lethargy, DTW still is the 

best way to solve a vast range of time series problems, and it 

is widely used in various disciplines:- In bioinformatics, 

Aach and Church successfully applied DTW to cluster RNA 

expression data [1].  In chemical engineering, it has been 

used for the synchronization and monitoring of batch 

processes [19].  DTW has been effectively used to align 

biometric data, such as gait [18], signatures [34], 

fingerprints [30], and ECGs [5]. Rath and Manmatha have 

successfully applied DTW to the problem of indexing 

repositories of handwritten historical documents [39] 

(Although handwriting is 2-dimensional, it can be useful to 

re-represent it as a 1-dimensional time series). DTW is often 

the technique of choice for indexing video motion streams 

[36]. In robotics, Schmill et al. demonstrate a technique that 

utilizes DTW to cluster robots sensory outputs [42].  And 

finally, in music, Zhu and Shasha (among many others [20]) 

have exploited DTW to query music databases with snippets 

of hummed phrases [46]. 

 The problem of distortion in the time axis can be 

addressed by Dynamic Time Warping (DTW), a distance 

measure that has long been known to the speech 

processing community [21][31][35][38][41][43] and was 

introduced to the database community by Berndt and 

Clifford [4]. This method allows non-linear alignments 

between two time series to accommodate sequences that 

are similar, but locally out of phase, as shown in Figure 1.  

 As Berndt and Clifford originally noted, DTW does 

not scale very well to large databases because of its 

quadratic time complexity. 



2.1   Review of DTW.  However, the greater accuracy of DTW comes at a 

cost. Depending on the length of the sequences, DTW is 

typically hundreds or thousands of times slower than 

Euclidean distance. For example, Clote et al. [11] report 

an experiment using DTW to align gene expression data 

that required 6 days. 

Suppose we have two time series, a sequence Q of length n, 

and a sequence C of length m, where: 

Q = q1,q2,…,qi,…,qn  (1) 

C = c1,c2,…,cj,…,cm  (2) 

 During the past decade, there has been a huge amount 

of work on speeding up data mining time series under the 

Euclidean distance [7][16][24][45] (see [25] for a 

comprehensive listing).  However, the first practical 

technique for speeding up data mining time series under 

DTW [23] has only been introduced very recently.  The 

technique is based on using DTWs “warping envelope” 

constraint to lower bound the true DTW distance, hence 

pruning off many costly distance computations.  This 

work has sparked a flurry of research interest 

[10][17][20][33][47], ensuring that the warping-envelope 

lower bounding technique has become a relatively mature 

technology within a year.  However, there are still two 

areas in which improvements need to be made: scalability 

to truly massive datasets and classification accuracy. 

 To align these two sequences using DTW, we construct 

an n-by-m matrix where the (ith, jth) element of the matrix 

corresponds to the squared distance, d(qi,cj) = (qi - cj)
2 , 

which is the alignment between points qi and cj.  To find the 

best match between these two sequences, we can find a path 

through the matrix that minimizes the total cumulative 

distance between them.  A warping path, W, is a contiguous 

set of matrix elements that characterizes a mapping between 

Q and C. The kth element of W is defined as wk = (i,j)k. So 

we have: 

W = w1, w2, …,wk,…,wK         max(m,n) ≤ K < m+n-1 (3) 

 By definition, the optimal path Wo is the path that 

minimizes the warping cost: 
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       (4)  In this work, we address these problems with a novel 

technique. Our approach is based on learning arbitrarily 

shaped warping-envelope constraints: These learned 

constraints allow: 
 This path can be found using dynamic programming to 

evaluate the following recurrence which defines the 

cumulative distance γ(i,j) as the distance d(i,j) found in the 

current cell and the minimum of the cumulative distances of 

the adjacent elements:   

• Improved accuracy; by allowing some warping that 

increases intra-class similarity, while discouraging 

warping that increases inter-class similarity. 

 γ(i,j)  = d(qi,cj) + min{ γ(i-1,j-1) , γ(i-1,j ) , γ(i,j-1) }     (5)  • Faster classification and similarity search; by 

exploiting the constraints to achieve extraordinarily 

tight lower bounds, thus allowing pruning.  
 In practice, we do not evaluate all possible warping 

paths, since many of them correspond to pathological 

warpings (for example, a single point on one ECG mapping 

to an entire heartbeat in another ECG).  Instead, we consider 

the following constraints that decrease the number of paths 

considered during the matching process. This reduction in 

the number of paths considered also has the desirable side 

effect of speeding up the calculations, although only by a 

(small) constant factor. 

An interesting and useful property of our technique is that 

it includes the ubiquitous Euclidean distance and classic 

DTW as special cases. 

 The rest of the paper is organized as follows.  Section 

2 gives some background on time series data mining, a 

review of DTW, and related work.  Section 3 reviews the 

lower bounding measures and its utility.  In Section 4, we 

introduce our approach, a novel framework that we call 

the R-K Band, to the problem.  Section 5 contains an 

empirical evaluation on three real-world datasets.  And 

lastly, Section 6 gives conclusions and directions for 

future work. 

 Boundary conditions: The path must start in w1 = (1,1) 

and end in wK = (m,n), that is, the warping path has to start 

at the bottom left and end at the top right of the matrix. 

 Continuity condition: Every point in the query and 

candidate sequences must be used in the warping path, and 

both i and j indexes can only increase by 0 or 1 on each step 

along the path.  In other words, if we take a point (i, j) from 

the matrix, the previous point must have been (i-1, j-1), (i-1, 

j), or (i, j-1). 

2  Background. 
The measurement of similarity between two time series is 

an important subroutine in many data mining applications, 

including rule discovery [12], clustering [1] [14], anomaly 

detection [13], motif discovery [8], and classification 

[15][22]. The superiority of DTW over Euclidean distance 

for these tasks has been demonstrated by many authors 

[1][3][5][27][44]; nevertheless, DTW is less familiar to 

the data mining community. We will therefore begin with 

overview of DTW and its recent extensions.    

 Monotonic condition: Given wk = (a,b) then wk-1 = 

(a',b') where a–a' ≥ 0 and b-b' ≥ 0. The warping path cannot 

go backward in time; both i and j indexes either stay the 

same or increase.  They can never decrease. 

 Slope constraint condition: The path should not be too 

steep or too shallow.  This prevents very short subsequences 



to match very long ones.  The condition is expressed as a 

ratio a/b, where b is the number of steps in the x direction 

and a is the number in the y direction.  After b steps in x, 

it must make a step in y, and vice versa.  

 Adjustment Window condition: An intuitive 

alignment path is unlikely to drift very far from the 

diagonal.  The distance that the path is allowed to wander 

is limited to a window (or “band”) of size r, directly 

above and to the right of the diagonal.  

 By applying these conditions, we can restrict the 

moves that can be made from any point in the path and 

therefore reduce the number of paths that need to be 

considered. 

 The Euclidean distance between two sequences can 

be seen as a special case of DTW where the kth element of 

W is constrained such that wk = (i,j)k , i = j = k. Note that 

it is only defined in the special case where the two 

sequences have the same length. The time and space 

complexity of DTW is O(nm). However, the constraints 

above mitigate this only by a constant factor. 

 This review of DTW is necessarily brief; we refer the 

interested reader to [31][37] for more details. 

2.2   Related work. 
While there has been much work on indexing time series 

under the Euclidean metric over the last decade 

[7][16][24][25][45], there has been much less progress on 

indexing under DTW.  Additionally, all of the work on 

DTW has focused exclusively on speeding up DTW; it 

does not appear that researchers have considered the 

possibility of making DTW more accurate. 

 Keogh [23] introduced a novel technique for exact 

indexing of DTW using global constraints and Piecewise 

Constant Approximation [24].  The proposed lower 

bounding measure, LB_Keogh, exploits the global 

constraints to produce a very tight lower bound that 

prunes off numerous expensive DTW computations.   The 

method has been re-implemented and extended by several 

other research groups [17][28][46], and is now the basis 

of a successful “query-by-humming” system [47] and a 

system for indexing historical handwriting documents 

[33].  Because of the power and widespread adoption of 

this approach, we will utilize LB_Keogh lower bounding 

function as a starting point for this work.  

 We note there has been some work on obtaining 

warping alignments by methods other than DTW [3][32]. 

For example, Kwong et al. consider a genetic algorithm 

based approach [32], and recent work by Bar-Joseph et al. 

considers a technique based on linear transformations of 

spline-based approximations [3]. However, both methods 

are stochastic and require multiple runs (possibly with 

parameter changes) to achieve an acceptable alignment. In 

addition, both methods are clearly non-indexable. 

Nevertheless, both works do reiterate the superiority of 

warping over non-warping for pattern matching.  

3   Lower Bounding the DTW Distance. 
In this section, we explain the importance of lower 

bounding and briefly review the LB_Keogh lower bounding 

distance measure [23].  

3.1   The utility of lower bounding measures. 
Time series similarity search under the Euclidean metric is 

heavily I/O bound; however, similarity search under DTW 

is also very demanding in terms of CPU time. One way to 

address this problem is to use a fast lower bounding 

function to help prune sequences that could not possibly be 

the best match (see [23] for full algorithm detail). 

 There are only two desirable properties of a lower 

bounding measure:  

• It must be fast to compute. Clearly, a measure that takes 

as long to compute as the original measure is of little 

use. In our case, we would like the time complexity to 

be at most linear in the length of the sequences.  

• It must be a relatively tight lower bound. A function can 

achieve a trivial lower bound by always returning zero 

as the lower bound estimate. However, in order for the 

algorithm to be effective, we require a method that 

more tightly approximates the true DTW distance. 

 While lower bounding functions for string edit, graph 

edit, and tree edit distance have been studied extensively 

[31], there has been far less work on DTW, which is very 

similar in spirit to its discrete cousins. Below, we will 

review global constraints, which can be exploited to produce 

tight lower bounds.     

3.2   Existing lower bounding measures. 
As previously noted, virtually all practitioners using DTW 

constrain the warping path in a global sense by limiting how 

far it may stray from the diagonal [4][9][19][21][27] 

[35][41][43]. The subset of matrix that the warping path is 

allowed to visit is called a warping window or a band. 

Figure 2 illustrates two of the most frequently used global 

constraints in the literature, the Sakoe-Chiba Band [41] and 

the Itakura Parallelogram [21].  

 In addition to helping to speed up the DTW distance 

calculation, the warping window prevents a pathological 

warping, where a relatively small section of one sequence 

maps onto a relatively large section of another.  The 

importance of global constraints was documented by the 

originators of the DTW algorithm, Sakoe and Chiba, who 

were exclusively interested in aligning speech patterns [41].  

However, it has been empirically confirmed in many other 

settings, including music [20][47], finance [4], medicine 

[19], biometrics [18][34], chemistry [19], astronomy, 

robotics [42], and industry.  



 

Figure 2:  Global constraints limit the scope of the 

warping path, restricting them to the gray areas.  The 

two most common constraints in the literature are the 

Sakoe-Chiba Band and the Itakura Parallelogram. 

 As mentioned earlier, a lower bounding distance 

measure, LB_Keogh, has been introduced for the task of 

indexing DTW.  This lower bounding technique uses the 

warping window, e.g. Sakoe-Chiba Band or Itakura 

Parallelogram, to create a bounding envelope above and 

below the query sequence.  Then the squared sum of the 

distances from every part of the candidate sequence not 

falling within the bounding envelope, to the nearest 

orthogonal edge of the bounding envelope, is returned as 

its lower bound.  The technique is illustrated in Figure 3. 

This lower bound can prune off numerous number of 

expensive DTW computations, using the simple algorithm 

described in [23]. 

 

Figure 3: The Sakoe-Chiba Band A) can be used to 

create an envelope B) around a query sequence Q.  

The Euclidean distance between any candidate 

sequence C and the closest external part of the 

envelope C) is a lower bound for the DTW distance. 

4   Ratanamahatana-Keogh Band (R-K Band). 
The warping window constraints discussed above have 

been used to restrict the warping paths to force more 

intuitive alignments, as well as to speed up the 

calculation.  However, surprisingly little research has 

been done on discovering the best shape and size of the 

band. Instead, the relatively ad-hoc shapes of the bands 

introduced exclusively in the context of speech 

recognition in the 1970s have survived DTWs migration 

to diverse domains.  Many researchers seem to believe 

that the wider the band, the better classification accuracy 

[47], and that narrow bands are a necessary evil, required 

only to make the algorithm tractable. In fact, this is not true; 

in Section 4.2 we carry out extensive experiments in which 

we vary the width of Sakoe-Chiba Band. We find that the 

effect of the band width on accuracy is generally very large, 

and is heavily domain dependent. This observation 

motivates our work. If the width of the constraint band can 

greatly affect accuracy, then it is likely that the shape of the 

band can too. If we can somehow find the optimal band 

shape for a given problem, we may be able to boost the 

accuracy. Furthermore, if the optimal band shape is tighter 

than the classic bands, we can simultaneously reduce the 

CPU time and increase the tightness of the lower bounds, 

producing speed up.  

 C 
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 In order to discuss the effect of constraint shape on 

accuracy, we must first introduce a representation that 

allows the specification of arbitrary shaped constraints. For 

consistency with the literature, we call this representation 

the Ratanamahatana-Keogh band, and introduce it in the 

next section.  

4.1   A general model of global constraints. 
We can view a global constraint as constraining the indices 

of the warping path wk = (i,j)k such that j-Ri ≤ i ≤ j+Ri, 

where Ri is a term defining the allowed range of  warping, 

for a given point in a sequence. In the case of the Sakoe-

Chiba Band, R is independent of i; for the Itakura 

Parallelogram, R is a function of i. Here we define a 

parameter vector R more concretely.  

Ri = d    0 ≤ d ≤ m, 1 ≤ i ≤ m,      (6) 
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where Ri is the height above the diagonal in the y direction, 

as well as the width to the right of the diagonal in the x 

direction.  Note that |R| = m, and the above definition forces 

R to be symmetric, i.e. the constraint above the diagonal is 

the mirror image of the one below the diagonal. 

 As an example, we can create a Sakoe-Chiba Band of 

overall width of 11 (width 5 strictly above and to the right 

of the diagonal) with the definition  
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or an Itakura Parallelogram with the definition                                            
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 Even the Euclidean distance can be defined in terms of 

Ri = 0; 1 ≤ i ≤ m; only the diagonal path is allowed.  More 

generally, we can define any arbitrary global constraint with 

the vector R. Figure 4 illustrates some examples.  

 We call a global constraint specified by R a 

Ratanamahatana-Keogh-Band (which we will abbreviate as 

an R-K Band). 

 



 In some cases, we may be able to manually construct 

e best set of R-Kc Bands for classification, based on 

domain knowledge. Consider the following motivating 

problem; the 2-class dataset shown in Figure 6 (top): Since 

we can see from Figure 6 (top) that both classes have similar 

variability in the x-axis approximately around points 50 to 

135, we can allow some warping in those regions of the 

hand-constructed bands, R-K1 and R-K2.  And since class 1 

has an extra place of variability in y-axis approximately 

between data points 150 and 225, we accordingly allow 

some warping in that section of R-K1 as well.  The shape of 

hand-created R-K1 and R-K2 Bands are shown in Figure 6 

(bottom). 
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Figure 4: We can use R to create arbitrary global 

constraints.  A)  Note that the width of the band may 

increase or decrease.  We can use R to specify all 

existing global constraints, including the Sakoe-

Chiba Band B) and the Itakura Parallelogram C). 
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increase or decrease.  We can use R to specify all 

existing global constraints, including the Sakoe-

Chiba Band B) and the Itakura Parallelogram C). 
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classification.  In particular, we can use a different R-K 

Band for each class. We will denote the band learned for 

the cth class, as the R-Kc Band. 
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4.2  Are we better off with wider band? 4.2  Are we better off with wider band? 
Virtually, all researchers have used a Sakoe-Chiba Band 

with a 10% width for the global constraint. This setting 

appears to be the result of historical inertia, rather than 

some remarkable property of this particular constraint. 

Virtually, all researchers have used a Sakoe-Chiba Band 

with a 10% width for the global constraint. This setting 

appears to be the result of historical inertia, rather than 

some remarkable property of this particular constraint. 

 To test the effect of the warping window size to the 

classification accuracies, we perform an empirical 

experiment on 3 datasets for which class labels are 

available (the datasets details are fully explained in 

section 5).  We vary the warping window size from 0 

(Euclidean) to 100 and record the accuracies.  The results 

are shown in Figure 5.  
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are shown in Figure 5.  

 Surprisingly, wider bands do not always result in 

increased accuracy, as commonly believed [46]. More 

often, the accuracy peaks very early at smaller window 

size.  
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Figure 5: The classification accuracies of the 3 

datasets with different warping window sizes (x-

axis), using the uniform Sakoe-Chiba Bands.  Most 

accuracies peak at very small window sizes. 

Figure 5: The classification accuracies of the 3 

datasets with different warping window sizes (x-

axis), using the uniform Sakoe-Chiba Bands.  Most 

accuracies peak at very small window sizes. 

 Apart from the width, different shapes of the band 

also give different accuracies as well.  For example, one 

may pick the Itakura Parallelogram over the uniform 

Sakoe-Chiba band to perform classification in speech 

recognition problem, since most speech tends to have the 

most variability in its middle, and very little in the 

beginning or the end.  Consequently, choosing a good shape 

for the band may help improve its classification accuracy as 

well.  Having introduced an R-K Band, we can easily 

represent any shape and size warping windows.  However, 

we are left with the question of how we can discover the 

best R-K Band for the task at hand. 
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Figure 6: (Top)  Some instances from the trace dataset.  

(Bottom)  The hand-constructed bands created for each 

individual class; they achieve 100% accuracies in 

classification. 
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(Bottom)  The hand-constructed bands created for each 

individual class; they achieve 100% accuracies in 

classification. 

 The Euclidean accuracy for this problem is only 90%. 

The hand-constructed R-K Bands illustrated in Figure 6 

(bottom) give perfect accuracy with the widest portion of 

the band of 4.  However, we have to try several widths and 

shapes until we obtain the smallest width of the shape we 

want with the best accuracy. In addition, we make some 

unintuitive discoveries. We set the R-K2 Band to the 

Euclidean special case, and still get perfect results. So, 

while there is variability in the time-axis of Class 2, it is not 

important for discriminating it from Class 1. In general, 

even for this simplest of problems we have great difficulty 

in hand crafting high quality R-K Bands, and only converge 

on the fine solution after much tweaking. Note that this is 

only a 2-class problem; when we try to expand it to a 4-class 

problem (see Section 5), the difficulties in constructing R-Kc 

Bands appear to increase exponentially. 
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o Distance metric: h(env) = estimated ratio of the 

mean DTW distance among the correctly classified 

and misclassified objects. 

o Distance metric: h(env) = estimated ratio of the 

mean DTW distance among the correctly classified 

and misclassified objects. 

 While the results above are tentative vindication of 

the R-K Band representation, for most real-world 

problems it is simply not possible to build the high quality 

R-Kc Bands by hand. Instead, in the following sections, 

we will show how we can learn them automatically from 

the data.  
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h(2) > h(1) ? 

Yes No 

Calculate h(1)

Calculate h(2)

h(2) > h(1) ? 

Yes No 

4.3 Learning multiple Ratanamahatana-Keogh 

bands for classification. 
We have shown that it is not generally possible to 

handcraft accurate R-K Bands. Fortunately, as we will 

show, it is possible to pose the problem as a classic search 

problem, and thus take advantage of the wealth of 

research on search from the artificial intelligence 

community [39]. 
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 Using the generic heuristic search techniques 

elucidated in [39], we merely need to specify the direction 

of the search, i.e forward, backward or bi-directional, the 

initial state, heuristic function, the operators, and the 

terminal test.  Forward search starts with the initial Sakoe-

Chiba band (uniform) of width 0 (Euclidean), and 

backward search starts from the uniform band of the 

maximum width m, above and to the right of the diagonal.   
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 Before giving a full detailed explanation of our 

learning algorithm, we first give a simple intuition behind 

this approach as illustrated in Figure 7.   

 Before giving a full detailed explanation of our 

learning algorithm, we first give a simple intuition behind 

this approach as illustrated in Figure 7.   

 For a forward search, we start off with the Euclidean 

Band, and try to increment the whole section of the 

envelope before re-evaluating its accuracy.  If an 

improvement is made, we keep on incrementing that 

whole section of the envelope; otherwise, we split that 

section in half and recursively increment each portion 

individually before re-evaluation.  Backward search is 

very similar, except that we start off with a wider band 

and try to decrement the size instead of incrementing.  We 

do not consider bi-directional search in this work for 

brevity.   
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Figure 7: An illustration of our forward search 

algorithm using the accuracy metric. 
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end points. 
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same piece of envelope (as specified by start and 

end points. 
 The rest of the components of the search algorithm 

are enumerated below: 
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• The envelope’s width reaches m, or • The envelope’s width reaches m, or 
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met for all the pieces of the envelope. 

• When a condition end-start+1 ≤ threshold is 

met for all the pieces of the envelope. 
o Accuracy metric: h(env) = estimated accuracy 

using DTW, based on the envelope env. 

o Accuracy metric: h(env) = estimated accuracy 

using DTW, based on the envelope env. o Backward Search: The search is complete when 

one of the following is true: 

o Backward Search: The search is complete when 

one of the following is true: 



• No improvement can be made. 

• The envelope has width 0 (Euclidean), or 

• A condition end-start+1 ≤ threshold is met 

for all the pieces of the envelope. 

 In principle, the threshold could be a single cell, but 

this would produce a greater danger of overfitting. In this 

work, we set the threshold to be 
2

m , where m is the 

length of the input sequence.  

Table 1: A backward hill-climbing search algorithm 

that finds a proper envelope for each individual class. 

Algorithm LearnEnv() 

1. Evaluate (with initial envelopes); 

2. foreachclass i = 1:c 

3.   Enqueue(1, m, Q
i
); 

4. endfor; 

5. while !empty(Q
i:c
) 

6.   foreachclass i = 1:c 

7.     if !empty(Q
i
) 

8.       [start,end] = Dequeue(Q
i
); 

9.       Decrement the envelope Env
i
(start:end)  

10.       improve = Evaluate(with the  

                    modified envelope Env
i
); 

11.       if improve 

12.         Enqueue(start, end, Q
i
); 

13.       else 

14.         Undo the modification 

15.         Enqueue(start, mid-1, Q
i
); 

16.         Enqueue(mid, end, Q
i
); 

17.       endif; 

18.     endif; 

19.   endfor; 

20. endwhile; 

21. return Env
i:c
 

 

 Table 1 shows the backward learning algorithm that 

discovers the high-quality envelope for each individual 

class.  The only different between backward and forward 

search algorithm is on line 9; we increment the width of 

the envelope for forward search, whereas we decrement 

the width of the envelope for backward search.    

 The algorithm starts off by evaluating all the initial 

envelopes of all classes and enqueues the whole length of 

the envelope into the queue that belongs to each 

individual class (lines 1-4).  As long as there is something 

left in the queue of any classes (line 5), it takes turns, 

starting from class 1 up to class c, to make some 

modification and re-evaluate the envelope (lines 6-10).  If 

that envelope provides some improvement, then that piece 

of envelope is kept and the width is further reduced 

(increased in forward search) in the next round of iteration 

(lines 11-12).  If it provides no improvement, we have to 

restore the previous envelope and try to re-modify its 

smaller pieces (left half and right half) in the next round 

of iterations (lines 13-16).  Note that only one envelope 

can be modified at each time before the evaluation; the rest 

of the envelopes of the remaining classes must remain the 

same since a modification on an individual envelope may 

affect the classification in other classes as well.  This way, 

when there is some improvement, we know exactly which 

envelope modification it comes from. The process is 

repeated until no further change could be made to any of the 

envelopes that improves the accuracy; the algorithm then 

returns the resulting envelopes for all classes (Envi:c,, cf. 

Table 1, line 21).   

 Because “Local maximum” is a well-known drawback 

of the hill-climbing search, our algorithm does not guarantee 

an optimal solution.  To mitigate this, we can perform all 

four combinations of the search to find the set of envelopes 

that yields the best outcome.  The four combinations are: 

o Forward search with Accuracy metric. 

o Forward search with Distance metric. 

o Backward search with Accuracy metric, and 

o Backward search with Distance metric. 

 Table 2 shows the Evaluate function in greater detail.  

Lines 2-16 locate the best match for one test instance, 

according to the DTW distance with LB_Keogh function 

used to prune off some unnecessary computations.  It loops 

through all examples as it carries out the “leaving-one-out” 

scheme (line 1).  Once the best match is found, the DTW 

distance is recorded as well as the statistic of correctly 

classified vs. misclassified examples (lines 17-23).  If the 

new distance metric is smaller or the new accuracy is larger 

than what we have so far, that means we get some 

improvement (lines 25-31).  In backward search, we are 

trying to make the envelope smallest possible; this in turn 

counts identical metric value as an improvement as well; 

smaller or equal value of distmetric and larger or equal 

value of accuracy are counted as improvement. 

Table 2: An algorithm to evaluate both accuracy- and 

distance-metric heuristic functions for both forward and 

backward search.  If the input envelopes yield some 

improvement, the algorithm returns 1, otherwise returns 

0. 

Algorithm Evaluate() 

 

1. for i = 1:num_examples 

2.   test_instance = Input[i]; 

3.   best_so_far = Infinity; 

4.   best_index = -1; 

5.   for j = 1:num_examples 

6.     if i != j 

7.       LB_dist = LB_keogh(test_instance,  

                    Input[j], Env
Input[j][0]

); 

8.       if LB_dist < best_so_far 

9.         true_dist=dtwDistance(test_instance  

                        ,Input[j],Env
Input[j][0]

); 

10.         if true_dist < best_so_far 

11.           best_so_far = true_dist; 



12.           best_index = j; 

13.         endif; 

14.       endif; 

15.     endif; 

16.   endfor; 

17.   if Input[best index][0]==test instance[0]    

18.     num_correct++; 

19.     dist += dtwDistance(test_ instance,  

               Input[best_index],Env
test_instance[0]

); 

20.   else 

21.     num_wrong++; 

22.     wrongdist += dtwDistance(test_instance, 

               Input[best_index],Env
test_instance[0]

); 

23.   endif; 

24. endfor; 

25. distmetric = (dist*num_wrong)/(wrongdist *  

                 num_correct); 

26. if smaller distmetric or larger num_correct 

27.   improve = 1; 

28. else 

29.   improve = 0; 

30. endif; 

31. return improve; 

 

Figure 8: Stills from the video Gun-Draw problem; the 

right hand is tracked and converted into motion streams. 

 The overall motions of both classes are very similar.  

However, it is possible for human to visually classify the 

two classes with great accuracy, after noting that the actor 

must lift his/her hand above a holster, then reach down for 

the gun, this action creates a subtle distinction between the 

classes as shown in Figure 9. 
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 In the following section, we evaluate our proposed 

framework on three real-world datasets.  

5   Experimental Evaluation. 
In this section, we test our proposed approach with a 

comprehensive set of experiments.  Figure 9: (left) Some time series from the Gun-Draw x-

axis data.  (right) Some snippets from the Point x-axis 

data. 5.1 Dataset. 
We have chosen three datasets to be tested in our work. 

 The different in height between the two actors is not too 

much of a problem, since a standard pre-processing step in 

matching motion streams is to perform Z-normalization 

before performing comparisons [6][26]. 

5.1.1 Gun Problem 
This dataset comes from the video surveillance domain.  

The dataset has two classes, each containing 100 

examples.  All instances were created using one female 

actor and one male actor in a single session.  The two 

classes are: 

 The dataset contains 200 instances, 100 for each class.  

Each instance has the same length of 150 data points. 

5.1.2 Trace dataset • Gun-Draw: The actors have their hands by their 

sides.  They draw a replicate gun from a hip-mounted 

holster, point it at a target for approximately one 

second, then return the gun to the holster, and their 

hands to their sides.  Figure 8 illustrates some 

snippets from the video.  

This dataset is a subset of the Transient Classification 

Benchmark (trace project). 

 It is a synthetic dataset designed to simulate 

instrumentation failures in a nuclear power plant, created by 

Davide Roverso.  The full dataset consists of 16 classes, 50 

instances in each class.  Each instance has 4 features.   • Point: The actors have their hands by their sides.  

They point with their index fingers to a target for 

approximately one second, and then return their 

hands to their sides. 

 For simplicity, we only use the second feature of class 2 

and 6, and the third feature of class 3 and 7 for our 

experiment.  Our dataset contains 200 instances, 50 for each 

class.  All instances are interpolated to have the same length 

of 275 data points. Examples of each class are shown in 

Figure 10. 

 For both classes, we tracked the centroid of the right 

hand in both the X- and Y-axes; however, in this 

experiment, we will consider just the X-axis for 

simplicity. 
5.1.3 Handwritten Word Spotting data 
This is a subset of the WordSpotting Project dataset created 

by Manmatha and Rath [33]. 



  In the full dataset, there are 2,381 words with four 

features that represent each word image’s profiles or the 

background/ink transitions. 

0

 For simplicity, we pick the "Projection 

Profile"(feature 1) of the four most common words, “the”, 

“to”, “be”, and “that”, to be used in our experiment.  “the” 

has 109 instances; “to” has 91 instances; “be” has 38 

instances, and “that” has 34 instances. All instances are 

interpolated to have the same length of 100 data points. 

Once combined, we obtain a dataset of 272 instances.   

5.2  Experimental results. 
In this section, we test our proposed approach with a 

comprehensive set of experiments.  On all three datasets 

mentioned in the previous section, we perform 

classification using the following approaches:  

• Euclidean Distance. 

• Dynamic Time Warping with Sakoe-Chiba Band 

(uniform warping window) of size 1 up to 100.   The 

best accuracy with smallest-size band is to be 

reported, and 

• Dynamic Time Warping with R-K Bands that we 

learn from the input data. 

 Note that we only compare Dynamic Time Warping 

with Euclidean Distance metric in this work.  It has been 

forcefully shown in [26] that many of the more complex 

similarity measures proposed in other work have higher 

error rates than a simple Euclidean Distance metric, and 

therefore by transitivity have higher error rates than DTW 

itself.  We therefore exclude those techniques from our 

consideration in this experiment. The learned bands from 

each datasets are shown in Figure 10 and Figure 11.   
Figure 10: Trace dataset: The R-K Bands for all four 

classes.  We measure the accuracy and CPU time on each 

dataset, using the 1-nearest-neighbor with “leaving-one-

out” classification method.  The lower bounding 

technique introduced in [23] is also integrated in all the 

DTW calculations to help achieve some speedup.  
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 Table 3 compares the classification accuracies (Error 

rates) for all approaches, and Table 4 compares the CPU 

time for each method to achieve these accuracies, both 

with using Lower Bounding measure and without. 

Euclidean distance metric is essentially a DTW with 

uniform band of width 0 (no warping allowed).  For the 

uniform (Sakoe-Chiba) band, we report the best accuracy 

within the window width between 1 and 100.   We also 

report the accuracy at 10% warping window size since it 

is the number most researchers typically have been using 

in DTW researches [23][38][41]. 

Figure 11: Gun dataset: The R-K Bands for the Gun 

(left) and Point (right) classes. 



Table 3: Classification Error Rates (%) for all three datasets, using Euclidean distance, DTW with the best uniform 

band reported, DTW with 10% uniform band, and DTW with our framework, R-Kc Bands. 

 Euclidean Best Uniform 10% Uniform R-K Bands 

Gun 5.50% 1.00% at Ri = 4 4.50% at Ri = 15 0.50% with max(Ri) = 4 

Trace 11.00% 0.00% at Ri = 8 0.00% at Ri = 27 0.00% with max(Ri) = 7 

Word Spotting 4.78% 1.10% at Ri = 3 2.21% at Ri = 10 0.37% with max(Ri) = 4 

 

Table 4: CPU time (msec) for all three datasets, both with and without the use of Lower Bounding measure. 

 Euclidean Best Uniform 10% Uniform R-K-Bands 

Gun (LB) N/A 2,440 5,430 1,440 

No LB 60 11,820 17,290 9,440 

Trace (LB) N/A 16,020 34,980 7,420 

No LB 210 144,470 185,460 88,630 

Word Spotting (LB) N/A 6,100 14,770 1,940 

No LB 40 8,600 12,440 7,480 
 

 We can readily see from the above figures and tables 

that the learned R-K Bands usually are of smaller sizes than 

the uniform case; some portions of the band even have zero 

width.  This speeds up the time needed for classification.  

We can improve the DTW calculation from running several 

hundred times slower than Euclidean to running about only 

30 times or so slower (or even less than 5 times slower in 

some other datasets).  In addition, classification with R-K 

Bands always achieves higher accuracies than Euclidean or 

any-size uniform bands (or at least as accurate as the better 

of the two methods). 

 In the three datasets discussed above, it is known that 

there is some distortion in the time axis.  Where no 

distortion exists (and assuming Gaussian noise), Euclidean 

distance is known to be the optimal metric [16]. If we were 

to apply DTW in these cases, we may get lower accuracy, 

and we will certainly waste a lot of extra time.  For real-

world problems, we usually never know if Euclidean 

distance is the best approach. So, it would be very desirable 

if our approach could discover this automatically.  

 To see if this is the case, we performed an additional 

classification experiment on the well-known Cylinder-Bell-

Funnel datasets [15][22], on which Euclidean distance is 

known to perform extremely well, with sufficient number of 

instances. With 100 instances in each of the three classes, 

the Euclidean distance metric achieves 100% accuracy in 

0.16 seconds. DTW also achieves perfect accuracy, but 

wastes a large amount of classification time without 

realizing the trivial solution.   

 The DTW algorithm with 10% warping window size 

requires 27.63 seconds.  Our approach, learning R-Kc Bands, 

quickly discovers that perfect accuracy can be achieved with 

three bands of size zero.  In other words, our approach is 

capable of learning the optimal-size bands for this problem.  

With the resultant R-Kc Bands of size 0, we also get the 

perfect accuracy using only 0.89 seconds.  This is slightly 

slower than the Euclidean distance since the R-Kc Bands are 

the special case of DTW thus a distance matrix has to be 

created during the computation.  However, it is still much 

faster than the classic 10%-uniform DTW.   It is also trivial 

to force the algorithm to perform the original Euclidean 

metric calculation instead of the DTW calculation of the 

zero band size. 

6  Conclusions and Future Work. 
In this work, we have introduced a new framework for 

classification of time series. The Ratanamahatana-Keogh 

Band (R-K Band) allows for any arbitrary shape and size of 

the warping band.  We have also introduced a heuristic 

search algorithm that automatically learns the R-K Bands 

from the data.  With an extensive empirical evaluation, we 

have shown that our approach can reduce the error rate by 

an order of magnitude, and reduce the CPU time of DTW, 

also by an order of magnitude. An attractive property of our 

approach is that it includes the two most used distance 

measures, Euclidean distance and DTW as special cases. 

One advantage of this fact is that it enables us to simply 

“slot-in” our representation to the sophisticated techniques 

available for indexing time series envelopes 

[10][17][20][33][47], thus achieving even greater speedup 

than shown here.  

 We plan to extend this work in several directions. First 

we intend to investigate the theoretical properties of R-K 

Bands, and the search algorithms defined on them. We also 

plan to consider a more generalized form of our framework, 

in which a single R-K Band is learned for an application 

domain. For example, what is the best single band for 

indexing George Washington’s handwriting [33], does it 

differ from the best band for, say Isaac Newton’s 

handwriting? 

 Finally, for some applications, it may be possible to 

examine the R-K Bands to glean knowledge about the 

domain. For example, if we learn to classify normal 

heartbeats versus supraventricular arrhythmias, and discover 

that R-K Bands are narrow at both ends, but wide in the 

center, this would suggest that the discriminating difference 

is contained within the T-U wave of the ECG [5]. 
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