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Abstract

Optimal transport (OT) is a widely used tech-

nique for distribution alignment, with applications

throughout the machine learning, graphics, and

vision communities. Without any additional struc-

tural assumptions on transport, however, OT can

be fragile to outliers or noise, especially in high

dimensions. Here, we introduce Latent Optimal

Transport (LOT), a new approach for OT that si-

multaneously learns low-dimensional structure in

data while leveraging this structure to solve the

alignment task. The idea behind our approach

is to learn two sets of “anchors” that constrain

the flow of transport between a source and tar-

get distribution. In both theoretical and empirical

studies, we show that LOT regularizes the rank of

transport and makes it more robust to outliers and

the sampling density. We show that by allowing

the source and target to have different anchors,

and using LOT to align the latent spaces between

anchors, the resulting transport plan has better

structural interpretability and highlights connec-

tions between both the individual data points and

the local geometry of the datasets.

1. Introduction

Optimal transport (OT) (Villani, 2008) is a widely used tech-

nique for distribution alignment that learns a transport plan

which moves mass from one distribution to match another.

With recent advances in tools for regularizing and speeding

up OT (Cuturi, 2013), this approach has found applications

in many diverse areas of machine learning, including do-

main adaptation (Courty et al.; Courty et al., 2017), genera-
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tive modeling (Martin Arjovsky & Bottou, 2017; Tolstikhin

et al., 2017), document retrieval (Kusner et al., 2015), com-

puter graphics (Solomon et al., 2014; 2015; Bonneel et al.,

2016), and computational neuroscience (Gramfort et al.,

2015; Lee et al., 2019).

While the ground metric in OT can be used to impose ge-

ometric structure into transport, without any additional as-

sumptions, OT can be fragile to outliers or noise, especially

in high dimensions. To overcome this issue, additional struc-

ture, either in the data or in the transport plan, can be used

to improve alignment or make transport more robust. Exam-

ples of methods that incorporate additional structure into OT

include approaches that leverage hierarchical structure or

cluster consistency (Lee et al., 2019; Yurochkin et al., 2019;

Xu et al., 2020), partial class information (Courty et al.,

2017; Courty et al.), submodular cost functions (Alvarez-

Melis et al., 2018), and low-rank constraints on the transport

plan (Forrow et al., 2019; Altschuler et al., 2019). Because

of the difficulty of incorporating structure into OT, many of

these methods need low-dimensional structure in data to be

specified in advance (e.g., estimated clusters or labels).

To simultaneously learn low-dimensional structure and use

it to constrain transport, Forrow et al. (2019) recently intro-

duced a statistical approach for OT that builds a factorization

of the transport plan to regularize its rank. After factoriza-

tion, transport from a source to target distribution can be

visualized as the flow of mass through a small number of

anchors (hubs), which serve as relay stations through which

transportation must pass (see Figure 1, a vs. b). Although

this idea of moving data through anchors is appealing, in

previous work, the anchors used to constrain transport are

shared by the source and target. As a result, when the source

and target contain different structures or experience domain

shift (Courty et al.), shared anchors may not provide an

adequate representation for both domains simultaneously.

In this work, we propose a new structured transport ap-

proach called Latent Optimal Transport (LOT). The main

idea behind LOT is to factorize the transport plan into three

components, where mass is moved: (i) from individual

source points to source anchors, (ii) from the source anchors

to target anchors, and (iii) from target anchors to individ-

ual target points (Figure 1c-d). The intermediate transport
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plan captures the high-level structural similarity between

the source and target, while the outer transport plans clus-

ter data in their respective spaces. In both theoretical and

empirical studies, we show that LOT regularizes the rank of

transport and has the effect of denoising the transport plan,

making it more robust to outliers and sampling. By allowing

the source and target to have different anchors and aligning

the latent spaces of the anchors, we show that the mapping

between datasets can be more easily interpreted.

Specifically, our contributions are as follows. (i) We intro-

duce LOT, a new form of structured transport, and propose

an efficient algorithm that solves our proposed objective

(Section 3), (ii) Theoretically, we show that LOT can be

interpreted as a relaxation to OT, and from a statistical point-

of-view, it overcomes the curse of dimensionality in terms of

the sampling rate (Section 5), (iii) We study the robustness

of the approach to noise, sampling, and various data per-

turbations when applied to both synthetic data and domain

adaptation problems in computer vision (Section 6).

2. Background

Optimal Transport: Optimal transport (OT) (Villani,

2008; Santambrogio, 2015; Peyré et al., 2019) is a dis-

tribution alignment technique that learns a transport plan

that specifies how to move mass from one distribution to

match another. Specifically, consider two sets of data points

encoded in matrices, the source X = [x1, . . . ,xn] and

the target Y = [y1, . . . ,ym], where xi ∈ X , yj ∈ Y ,

∀i, j. Assume they are endowed with discrete measures

µ =
∑N

i=1 p(xi)δxi
, ν =

∑M
j=1 p(yj)δyj

, respectively.

The cost of transporting xi to yj is c(xi,yj), where c
denotes some cost function. OT considers the most cost-

efficient transport by solving the following problem:1

OTC(µ, ν) := min
P1=µ,PT 1=ν

〈C,P〉, (1)

where P := [p(xi,yj)]i,j is the source-to-target transport

plan matrix (coupling), and C = [c(xi,yj)]i,j is the cost

matrix. When c(x,y) = d(x,y)p, where d is a distance

function, Wp := OT
1/p
C defines a distance called the p-

Wasserstein distance. The objective in (1) is a linear pro-

gramming problem, where computation speed can be pro-

hibitive if n is large (Pele & Werman, 2009). A common

speedup is to replace the objective by an entropy-regularized

proxy,

OTC,ε(µ, ν) : = min
P1=µ,PT 1=ν

〈C,P〉 − εH(P)

= min
P1=µ,PT 1=ν

εKL(P||K), (2)

1The problem can be generalized to setting of continuous mea-
sures by OTc(µ, ν) = minγ∈G

∫
X×Y

c(x, y)dγ(x, y), G = {γ :
∫
Y
dγ(x, y) = µ,

∫
X
dγ(x, y) = ν}.

where K is the Gibbs kernel induced by the element-

wise exponential of the cost matrix K := exp(−C/ε),
H(P) := −

∑

ij Pij log(Pi,j) is the Shannon entropy, and

ε is a user-specified hyperparameter that controls the amount

of entropic regularization that is introduced. We can alter-

natively write the objective function as a minimization of

εKL(P‖K), where KL denotes the Kullback-Leibler diver-

gence. In practice, the entropy-regularized form is often

used over the original objective (1) as it admits a fast method

called the Sinkhorn algorithm (Cuturi, 2013; Altschuler

et al., 2017). Hence, we will use OT to refer to the entropy-

regularized form unless specified otherwise in the context.

Optimal Transport via Factored Couplings: Factored

Coupling (FC) is proposed in (Forrow et al., 2019) to reduce

the sample complexity of OT in high dimensions. Specifi-

cally, it adds an additional constraint to (1) by enforcing the

transport plan to be of the following factored form,

p(xi,yj) =

k
∑

l=1

p(zl)p(xi|zl)p(yj |zl). (3)

This has a nice interpretation: zl serves as a com-

mon “anchor” that transportation from xi to yj must

pass through. It turns out that FC is closely related to

the Wasserstein barycenter problem (Agueh & Carlier,

2011; Cuturi & Doucet, 2014; Cuturi & Peyré, 2016),

minν
∑N

i=1W
2
2 (µi, ν), where ν is the Procrustes mean to

distributions µi, i = 1, . . . , N with respect to the squared 2-

Wasserstein distance. A crucial insight from (Forrow et al.,

2019) is that for N = 2, the barycenter ν could approximate

the optimal anchors to a transport plan of the form (3) that

minimizes the objective in (1).

3. Latent Optimal Transport

3.1. Motivation

Most datasets have low-dimensional latent structure, but

OT does not naturally use it during transport. This motivates

the idea that distribution alignment methods should both

reveal the latent structure in the data in addition to aligning

these latent structures. An illustrative example is provided

in Figure 1; here, we show the transport plan for a source

(red points) and a target (blue points), both of which ex-

hibit clear cluster structures. Because OT transports points

independently, the points can be easily mapped outside of

their original cluster (a). In comparison, low-rank OTs (b-d)

induce transport plans that are better at preserving clusters.

In (b), because factored coupling (FC) transports points via

common anchors (black squares), the anchors need to inter-

polate between both distributions, and it loses the freedom

of choosing different structures for the source and target. On

the other hand, by specifying different numbers of anchors

for the source and target individually (c vs. d), LOT can

FC
FC
FC
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(a) OT (b) FC (c) LOT (4,4) (d) LOT (8,4)

Figure 1: Comparisons of transport plans obtained for different methods applied to clustered data after domain shift. Here, we
visualize the connection between the source (blue) x and its estimated target (red) ŷ = argmaxy p(y|x). From left to right, we show the
standard OT plan (a) and the factored coupling (FC) approach (b). To the right, we show the result of LOT when we use 4 anchors in the
target with the same number in the target (c) and 8 anchors in the target (d).

extract different structures and output different transport

plans.

3.2. Problem formulation

Consider data matrices X and Y and their measures

µ, ν, as detailed in Section 2. We introduce “an-

chors” through which points must flow, thus constrain-

ing the transportation. The anchors are stacked in data

matrices Zx := [zx1 , . . . , z
x
kx
], Zy := [zy1, . . . , z

y
ky
].

We denote the measures of the source and target

anchors as µz =
∑kx

m=1 p(z
x
m)δzx

m
and νz =

∑ky

n=1 p(z
y
n)δzy

n
. For any set A, we further denote ∆k

A :=
{

∑k
i=1 ωiδai

:
∑k

i=1 ωi = 1, ωi ≥ 0,ai ∈ A, ∀i
}

as the

set of probability measures onA that has discrete support of

size up to k. Hence µz ∈ ∆kx

Zx
, νz ∈ ∆

ky

Zy
, where Zx (resp.

Zy) is the space of source (resp. target) anchors. If we

interpret the conditional probability p(a|b) as the strength

of transportation from b to a, then, using the chain rule,

the concurrence probability p(xi,yj) of xi and yj can be

written as,

p(xi,yj) =
∑

m,n

p(xi)p(z
x
m|xi)p(z

y
n|z

x
m)p(yj |z

y
n)

=
∑

m,n

p(xi, z
x
m)

p(zxm, zyn)

p(zxm)p(zyn)
p(zyn,yj). (4)

When encoding these probabilities using a transport matrix

P := [p(xi,yj)]i,j , the factorized form (4) can be written

as,

P = Pxdiag(u−1
z )Pzdiag(v−1

z )Py, (5)

where Px encodes transport from source space to source

anchor space (i.e., p(xi, z
x
m)), Pz encodes transport from

source anchor space to target anchor space, Py encodes

transport from target anchor space to target space , and

uz := [p(zx1), · · · , p(z
x
kx
)], vz := [p(zy1), · · · , p(z

y
ky
)] en-

code the latent distributions of anchors. To learn each of

these transport plans, we must first designate the ground

metric used to define the cost in each of the three stages.

The cost matrices Cx,Cy determine how points will be

transported to their respective anchors and thus dictate how

the data structure will be extracted. We will elaborate on

the choice of costs in Section 3.3.

We now formalize our proposed approach to transport in the

following definition.

Definition 1. Let Cx, Cy denote the cost matrices between

the source/target and their representative anchors, and let

Cz denote the cost matrix between anchors. We define the

latent optimal transport (LOT ) problem as,

OTL(µ, ν) : = inf
µz∈∆

kx
Zx

,νz∈∆
ky

Zy

{

OTCx
(µ, µz)

+OTCz
(µz, νz) + OTCy

(νz, ν)
}

,

where Zx and Zy are the latent spaces of the source and

target anchors, respectively.2

The intuition behind Def. 1 is that we use OTCx
(µ, µz) and

OTCy
(νz, ν) to capture group structure in each space, and

then OTCz
(µz, νz) to align the source and target by deter-

mining the transportation across anchors. Hence, LOT can be

interpreted as an optimization of joint clustering and align-

ment. The flexibility of cost matrices allows LOT to capture

different structures and induce different transport plans. In

Section 5, we further show that LOT can be regarded as a

relaxation of an OT problem.

Remark 1. In Forrow et al. (2019), the authors intro-

duce the notion of the transport rank for a transport plan

P as the minimum number of product probability mea-

sures that its corresponding coupling can be composed

from, i.e., p(x,y) =
∑r

i=1 λi (pi(x)⊗ pi(y)), λi ≥ 0,

∀i. In general, given a transportation plan P, the transport

rank rank+(P) is lower bounded by its usual matrix rank

2This definition extends naturally to continuous measures by
replacing cost matrix C with cost function c.

FC
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rank(P). In the case of LOT , the transport plan induced

by Def. 1 satisfies rank(P) ≤ rank+(P) ≤ min(kx, ky).
Thus, by selecting a small number of anchors we naturally

induce a low-rank solution for transport.

Next, we show some properties of LOT that highlight its

similarity to a metric.

Proposition 1. Suppose the latent spaces Zx = Zy are

the same as the original data spaces X = Y , and the cost

matrices are defined by Cx[a, b] = Cz[a, b] = Cy[a, b] =
d(a, b)p, where p ≥ 1 and d is some distance function. If

we define the latent Wasserstein discrepancy as WL
p :=

(OTL)
1/p

, then there exist κ > 0 such that, for any µ, ν
and ζ having latent distributions of support sizes up to k,

the discrepancy satisfies,

• WL
p (µ, ν) ≥ 0

• WL
p (µ, ν) =W

L
p (ν, µ)

• WL
p (µ, ν) ≤ κ

(

WL
p (µ, ζ) +W

L
p (ζ, ν)

)

The low-rank nature of LOT has a biasing effect that

results in WL
p (µ, µ) > 0 for a general µ. We

can debias it by defining its variant W̃L
p (µ, ν) :=

(

(

WL
p (µ, ν)

)p
− min

zk∈Φx

Wp
p (µ, zk)− min

z′

k
∈Φy

Wp
p (ν, z

′
k)

)1/p

,

where Φx = ∆kx

Zx
, Φy = ∆

ky

Zy
. The following property

connects W̃L
p (µ, ν) to k-means clustering.

Corollary 1. Under the assumptions of Proposition 1, if

p = 2 and kx = ky = k, then ∀µ, ν, we have W̃L
2 (µ, ν) ≥

0. Furthermore, W̃L
2 (µ, ν) > 0 if their k-means centroids

or sizes of their k-means clusters differ.

3.3. Establishing a ground metric

In what follows, we will focus on the Euclidean space

X = Y = R
d. Instead of considering every source-to-

target distance to build our transportation cost, we can use

anchors as proxies for each point. A well-established way

of encoding the distance that each point needs to travel to

get to its nearest anchor, is to define the cost as:

Cx = dMx
,Cz = dMz

,Cy = dMy
, (6)

where dM denotes the Mahalanobis distance: d2M(x,y) :=
(x − y)TM(x − y) and M is some positive semidefinite

matrix. The Mahalanobis distance generalizes the squared

Euclidean distance and allows us to consider different costs

based on correlations between features. The framework of

Mahalanobis distance benefits from efficient metric learning

techniques (Cuturi & Avis, 2014); recent research also estab-

lishes connections between it and robust OT (Paty & Cuturi,

2019; Dhouib et al., 2020). When a simple L2-distance

is used (M = I), we will denote this specific variant as

LOT-L2.

When LOT moves source points through anchors, the an-

chors impose a type of bottleneck, and this results in a loss

of information that makes it difficult to estimate the corre-

sponding point in the target space. In cases where accurate

point-to-point alignment is desired, we propose an alter-

native strategy for defining the cost matrix Cz . The idea

is to represent an anchor as the distribution of points as-

signed to it. Specifically, we represent zx, zy as measures in

R
d: z̃x =

∑N
i=1 Px(xi|z

x)δxi
, z̃y =

∑M
j=1 Py(yj |z

y)δyj
.

Then we measure the cost between anchors as the squared

Wasserstein distance between their respective distributions,

Cz := [W2
2 (Px(·|z

x
m),Py(·|z

y
n))]m,n. (7)

Besides the quantity itself, the transport plan returned by

calculating Cz is also very important as it provides accu-

rate point-to-point maps. Since the cost matrix is now a

function of Px and Py, we use an additional alternating

scheme to solve the problem: we alternate between updat-

ing Cz while keeping Px and Py fixed, and then updating

Px,Py,Pz while keeping Cz fixed. An efficient algorithm

is presented in Appendix B.3 to reduce the computation

complexity. This variant, LOT-WA , can yield better perfor-

mance in downstream tasks that require precise alignment

at the cost of additional computation.

3.4. Algorithm

In the rest of this section, we will develop our main approach

for solving the problem in Def. 1. We provide an outline of

the algorithm in Algorithm 1 and an implementation of the

algorithm in Python at: http://nerdslab.github.io/

latentOT.

(1) Optimizing Px,Py and Pz: To begin, we assume that

the anchors and cost matrices Cx,Cz,Cy are already spec-

ified. Let Kx,Kz,Ky be the Gibbs kernels induced from

the cost matrices Cx,Cz,Cy as in (2). The optimization

problem can be written as,

min
uz,vz,Px,Pz,Py

∑

i∈{x,y,z}

εiKL(Pi‖Ki),

subject to: Px1 = µ,PT
x 1 = uz,Pz1 = uz,

PT
z 1 = vz,Py1 = vz,P

T
y 1 = ν. (8)

This is a Bregman projection problem with affine constraints.

An iterative projection procedure can thus be applied to

solve the problem (Benamou et al., 2015). We present

the procedure as UPDATEPLAN in Algorithm 1, where

Px,Pz,Py are successively projected onto the constrained

sets of fixed marginal distributions. We defer the detailed

derivation to Appendix B.1.

LOT
http://nerdslab.github.io/latentOT
http://nerdslab.github.io/latentOT
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Algorithm 1 Latent Optimal Transport - LOT

Input: Data matrices X, Y; metric costs Mx,My,Mz;

entropy regularization parameters εx, εy, εz; initial

anchors Zx,Zy .

Output: Transport plans Px,Py,Pz; source and target

anchors Zx, Zy .

Initialize: Px,Py,Pz,Zx,Zy

1: while not converging do

2: (vec(Zx), vec(Zy))← Eqn. (9)

3: Kx = {exp(−‖X[i]− Zx[j]‖
2
Mx

/εx)}i,j
4: Ky = {exp(−‖Y[i]− Zy[j]‖

2
My

/εy)}j,q
5: Kz = {exp(−‖Zx[i]− Zy[j]‖

2
Mz

/εz)}p,q
6: Px,Py,Pz ←UPDATEPLAN (Kx,Ky,Kz)

7: end while

Return: Px, Py , Pz , Zx, Zy

UPDATEPLAN (Kx,Ky,Kz)

Initialize: αx ← 1N ;βx ← 1k1
;αy ← 1k2

;

βy ← 1M ;αz ← 1k1
;βz ← 1k2

1: while not converging do

2: αx ← µ⊘Kxβx; βy ← ν ⊘KT
y αy

3: uz ← ((αz ⊙Kzβz)⊙ (βx ⊙KT
xαx))

1
2

4: βx ← uz ⊘KT
xαx; αz ← uz ⊘Kzβz

5: vz ← ((αy ⊙Kyβy)⊙ (βz ⊙KT
z αz))

1
2

6: βz ← vz ⊘KT
z αz; αy ← vz ⊘Kyβy

7: end while

Return: Pi = diag(αi)Kidiag(βi), i ∈ {x, y, z}

(2) Optimizing the anchor locations: Now we consider

the case where we are free to select the anchor locations in

R
d. We consider the class of Mahalanobis costs described in

Section 3.3. Let Mx, Mz , My be the Mahalanobis matrices

correspond to Cx, Cz , and Cy , respectively.

Given the transport plans generated after solving (8), we

can derive the the first-order stationary condition of OTL

with respect to Zx and Zy . Let

A =

[

D(uz)⊗ (Mx +Mz) Pz ⊗Mz

−PT
z ⊗Mz D(vz)⊗ (My +Mz)

]

The update formula is given by

[

vec(Z∗
x)

vec(Z∗
y)

]

= A−1 ×

[

(PT
x ⊗Mx)vec(X)

(Py ⊗My)vec(Y)

]

, (9)

where vec(·) denotes the operator converting a matrix to a

column vector, and D(·) denotes the operator converting a

vector to a diagonal matrix. We defer the detailed derivation

to Appendix B.2. Pseudo-code for the combined scheme

can be found in Algorithm 1.

(3) Robust estimation of data transport: LOT provides

robust transport in the target domain by aligning the

data through anchors, which can facilitate regression,

and classification in downstream applications. We de-

note the centroids of the source and target by Qx =
diag(u−1

z )PT
xX

T , Qy = diag(v−1
z )PyY

T . We propose

the estimator X̂ :=
∑

m,n p(z
x
m, zyn|x)(Q

y
m − Qx

n) =

diag(µ−1)Pxdiag((Pz1)
−1)Pz(Qy −Qx). In contrast to

factored coupling (Forrow et al., 2019), where Zx = Zy,

LOT is robust even when the source and target have different

structures (see Table 1 MNIST-DU, Figure 4).

(4) Implementation details: LOT has two primary hyper-

parameters that must be specified: (i) the number of the

source and target anchors kx, ky and (ii) the regularization

parameter ε. For details on the tuning of these parameters,

please refer to Appendix F. In practice, we use centroids

from k-means clustering (Arthur & Vassilvitskii, 2006) to

initialize the anchors, and for all the experiments we have

conducted, LOT typically converges within 20 iterations.

4. Related Work

Interpolation between factored coupling and k-means

clustering: Assume we select the Mahalanobis matrices

of the costs defined in Section 3.3 to be Mx = My = I,
and Mz = λI. If we let λ → ∞ when estimating the

transport between source and target anchors, the anchors

merge, and our approach reduces to the case of factored

coupling (Forrow et al., 2019). At the other end, if we

let λ → 0, then LOT becomes separable, and the middle

term vanishes. In this case, each remaining term exactly

corresponds to a pure clustering task, and LOT reduces to

k-means clustering (Arthur & Vassilvitskii, 2006).

Relationship to OT-based clustering methods: Many

methods that combine OT and clustering (Li & Wang, 2008;

Ye et al., 2017; Ho et al., 2017; Dessein et al., 2017; Genevay

et al., 2019; Alvarez-Melis & Fusi, 2020) focus on using the

Wasserstein distance to identify barycenters that serve as

the centroids of clusters. When finding barycenters for the

source and target separately, this could be seen as LOT with

Cz = 0 and Cx, Cy defined using a squared L2 distance.

In other related work (Laclau et al., 2017), co-clustering is

applied to a transport plan as a post-processing operation,

and no additional regularization on the transportation cost

in OT is imposed. In contrast, our approach induces ex-

plicit regularization by separately defining cost matrices for

the transport between the source/target points and their an-

chors. This yields a transport plan guided by a cluster-level

matching.

Relationship to hierarchical OT : Hierarchical OT (Chen

et al., 2018; Lee et al., 2019; Yurochkin et al., 2019; Xu

et al., 2020) transports points by moving them within some

predetermined subgroup simultaneously based on either

their class label or pre-specified structures, and then forms a
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matching of these subgroups using the Wasserstein distance.

The resulting problem solves a multi-layer OT problem

which gives rise to its name. With a Wasserstein distance

used to build the Cz cost matrix, LOT effectively reduces to

hierarchical OT for fixed and hard-class assignment Px and

Py . However, a crucial difference between LOT and hierar-

chical OT lies in that the latter imposes the known structure

information. In contrast, LOT discovers this structure by

simultaneously learning Px and Py .

Transportation with anchors: The notion of moving data

points with anchors to match points in heterogeneous spaces

has appeared in other work (Sato et al., 2020; Manay et al.,

2006). These approaches map each point from one domain

into a distribution of the costs, which effectively builds up

a common representation for the points from both spaces.

In contrast to this work, we use the anchors to encourage

clustering of data and to impose rank constraints on the

transport plan.

5. Theoretical Analysis

LOT as a relaxation of OT: We now ask how the op-

timal value of our original rank-constrained objective in

(8) is related to the transportation cost defined in entropy-

regularized OT. It turns out their objectives are connected by

an inequality described below (see Appendix A for a proof).

Proposition 2. Let P be a transport plan of the form in (5).

Assume that K is some Gibbs kernel that satisfies,

KxKzKy ≤ K, (10)

where the inequality is over each entry. Then we have,

εKL(P‖K) ≤ε(KL(Px‖Kx) + KL(Pz‖Kz)

+KL(Py‖Ky)) + ε(H(uz) +H(vz)), (11)

where H(a) := −
∑

i ai log ai denotes the entropy.

The proposition shows that an OT objective, correspond-

ing to a kernel K (resp. C), can be upper bounded

by three sub-OT problems defined by subsequent kernels

Kx,Kz,Ky (resp. Cx,Cz,Cy) that satisfies (10) (resp.

exp(−Cx/ε) exp(−Cz/ε) exp(−Cy/ε) ≤ exp(−C/ε)).

Let us compare the upper bound given by Proposition 2

with Def. 1 and ignore the entropy terms; we recognize

that it is precisely the entropy-regularized objective of LOT .

In other words, with suitable cost matrices satisfying (10),

LOT could be interpreted as a relaxation of an OT problem in

a decomposed form. We then ask what Cx, Cz , Cy should

be to satisfy (10). In cases where cost C is defined by the

Lp-norm to the power p, the following corollary shows that

the same form suffices.

Corollary 2. Let d(x,y) := ‖x − y‖pp. Consider an opti-

mal transport problem OTC,ε with cost C[i, j] = d(xi,yj),

where p ≥ 1. Then for a sufficiently small ε, the latent

optimal transport OTL with cost matrices, Cx[i,m] =
3p−1d(xi−zxm),Cz[m,n] = 3p−1d(zxm−zyn),Cy[n, j] =
3p−1d(zyn − yj) minimizes an upper bound of the entropy-

regularized OT objective in (2).

Corollary (2) provides natural costs for LOT to be posed as a

relaxation to a OT problem with Lp norm. More generally,

finding the optimal cost functions that obey (10) and min-

imize the gap in the inequality in Proposition 2 is outside

the scope of this work but would be an interesting topic for

future investigation.

Sampling complexity: Below we analyze LOT from a sta-

tistical point of view. Specifically, we bound the sampling

rate of OTL in Def. 1 when the true distributions µ and ν
are estimated by their empirical distributions.

Proposition 3. Suppose X and Y have distributions µ and

ν supported on a compact region Ω in R
d, the cost functions

cx(·, ·) and cy(·, ·) are defined as the squared Euclidean

distance, and µ̂, ν̂ are empirical distributions of n and m
i.i.d. samples from µ and ν, respectively. If the spaces for

latent distributions are equal to Zx = Zy = R
d, and there

are kx and ky anchors in the source and target, respectively,

then with probability at least 1− δ,

Err ≤ C

√

k3maxd log kmax + log(2/δ)

N
, (12)

where Err = |OTL(µ, ν) − OTL(µ̂, ν̂)|, kmax =
max{kx, ky}, N = min{n,m} and C ≥ 0 is some con-

stant not depending on N .

As shown in (Weed et al., 2019), the general sampling rate

of a plug-in OT scales with N
1
d , suffering from the “curse

of dimensionality”. On the other hand, as evidence from

(Forrow et al., 2019), structural optimal transport paves

ways to overcome the issue. In particular, LOT achieves

N− 1
2 scaling by regularizing the transport rank.

Time complexity: We can bound the time complexity as

O(Ti + Tbcd(Tk + Tau + Tpu)), where Ti is the initial-

ization complexity, e.g., if we use k-means, then it equals

to O(nkxdTx + mkydTy) where Tx and Ty are the itera-

tion numbers of the Floyd algorithm applied to the source

and target, respectively, Tbcd is the total number of itera-

tions of block-coordinate descent, Tk = O(nkx + mky)
is the computation time for updating the kernels, Tau =
O((kx + ky)

3 + d(nkx + mky)) is the complexity of up-

dating anchors, and Tpu is the complexity for updating

plans. Because our updates are based on iterative Breg-

man projections similar to the Sinkhorn algorithm, it has

complexity comparable to OT. Therefore, the overall com-

plexity of LOT is approximately Tbcd times of OT, assuming

n, m ≥ d(kx + ky). Empirically, Tbcd depends on the

structure of data, but we observed that it is usually under

OT
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Figure 2: Results on Gaussian mixture models. In (a), we apply a rotation between the source and target, in (b) we add outliers, in (c) we
vary the ambient dimension, in (d) the target is set to have 8 components, and we vary the number of components in the source to simulate
source-target mismatch, in (e) we fix the rank to 10 and vary the number of factors (anchors) used in the approximation. Throughout, we
simulate data according to a GMM and evaluate performance by measuring the classification accuracy (top) and computing the deviation
between the transport plans before and after the perturbations with respect to the Fröbenius norm (bottom).
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Figure 3: Comparisons of the time complexity and loss. The fig-
ure compares the time complexity (dashed) and linear loss (solid)
of LOT, FC, and OT in the setting of the 7-component GMM model.

20. Note that the same applies to FC with kx = ky = k.

In Figure 3, we complement our analysis by simulating a

comparison of the time complexity for LOT and FC vs. OT

in the setting of a 7-component Gaussian mixture model.

We can see the compute time of LOT scales similarly to FC.

Transport cost: We also compare the transport loss re-

turned by LOT (blue), FC (orange), and OT (green) as a

function of the number of anchors in Figure 3. For a fair

comparison, we considered a balanced scenario where 7-

component GMMs generate the source and target. The

anchors of the source and target are chosen to be equal for

LOT . The result shows that the losses are indeed higher for

LOT and FC compared to OT but are fairly insensitive with

to the chosen number of anchors. Moreover, we find that

LOT has a slightly lower loss compared to FC even when we

choose the number of source and target anchors to be equal.

6. Experiments

In this section, we conduct empirical investigations. Details

of hyperparameter tuning can be found in Appendix F.

E1) Testing robustness to various data perturba-

tions: To better understand how different types of domain

shift impact the transport plans generated by our approach,

we considered different transformations between the source

and target. To create synthetic data for this task, we gen-

erated multiple clusters/components using a k-dimensional

Gaussian with random mean and covariance sampled from a

Wishart distribution, randomly projected to a 5-dimensional

subspace. The source and target are generated indepen-

dently: we randomly sample a fixed number of points ac-

cording to the true distribution for each cluster. We com-

pared the performance of the LOT variants proposed in Sec-

tion 3.3: LOT-L2 (orange curves) and LOT-WA (green curves)

with baselines OT (blue curves) and rank regularized fac-

tored coupling (FC) (Graf & Luschgy, 2007) (red curves) in

terms of their (i) classification rates and (ii) deviation from

the original transport plan without perturbations, which we

compute as Err(P − P0) = ‖P − P0‖F /‖P0‖F , where

P0 is the transport plan obtained before perturbations. The

results are averaged over 20 runs, and a 75% confidence

interval is used. See Appendix E for further details.

When compared with OT, both our method and FC provide

more stable class recovery, even with significant amounts of

perturbations (Figure 2). When we examine the error term

in the transport plan, we observe that, in most cases, the OT

plan deviates rapidly, even for small amounts of perturba-

tions. Both FC and LOT appear to have similar performances

across rotations while OT’s performance decreases quickly.

In experiment (b), we found that both LOT variants provide

LOT
FC
FC
LOT
FC
LOT
FC
LOT
FC
LOT
FC
FC


Latent Optimal Transport

substantial improvements on classification subject to out-

liers, implying the applicability of LOT for noisy data. In

experiment (c), we study LOT in the high-dimensional set-

ting; we find that LOT-WA behaves similarly to FC with some

degradation in performance after the dimension increases

beyond 70. Next, in experiment (d), we fix the number of

components in the target to be 10, while varying the number

in the source from 4 to 10. In contrast to the outlier experi-

ment in (b), LOT-WA shows more resilience to mismatches

between the source and target. At the bottom of plot (d), we

show the 2-Wasserstein distance (blue) and latent Wasser-

stein discrepancy (orange) defined in Proposition 1. This

shows that the latent Wasserstein discrepancy does indeed

provide an upper bound on the 2-Wasserstein distance. Fi-

nally, we look at the effect of transport rank on LOT and

FC in (e). The plot shows that the slope for LOT is flatter

than FC while maintaining similar performances.

E2) Domain adaptation application: In our next experi-

ment, we used LOT to correct for domain shift in a neural

network that is trained on one dataset but underperforms on

a new but similar dataset (Table 1, Figure 4). MNIST and

USPS are two handwritten digits datasets that are semanti-

cally similar but that have different pixel-level distributions

and thus introduce domain shift (Figure 4a). We train a

multi-layer perceptron (MLP) on the training set of the

MNIST dataset, freeze the network, and use it for the re-

maining experiments. The classifier achieves 100% training

accuracy and a 98% validation accuracy on MNIST but only

achieves 79.3% accuracy on the USPS validation set. We

project MNIST’s training samples in the classifier’s output

space (logits) and consider the 10D projection to be the

target distribution. Similarly, we project images from the

USPS dataset in the network’s output space to get our source

distribution. We study the performance of LOT in correcting

the classifier’s outputs and compare with FC , k-means OT

(KOT) (Forrow et al., 2019), and subspace alignment (SA)

(Fernando et al., 2013).

In Table 1, we summarize the results of our comparisons

on the domain adaptation task (MNIST-USPS). Our results

suggest that both FC and LOT perform pretty well on this

task, with LOT beating FC by 2% in terms of their final

classification accuracy. We also show that LOT does better

than naive KOT . In Figure 4a, we use Isomap to project the

distribution of USPS images as well as the alignment results

for LOT, FC , and OT. For both LOT and FC , we also display

the anchors; note that for LOT , we have two different sets of

anchors (source, red; target, blue). This example highlights

the alignment of the anchors in our approach and contrasts

it with that of FC .

Taking inspiration from studies in self-supervised learning

(Doersch et al., 2015; He et al., 2020) that use different

transformations of an input image (e.g., masking parts of the

Table 1: Results for concept drift and domain adaptation for

handwritten digits. The classification accuracy and L2-error are

computed after transport for MNIST to USPS (left) and coarse

dropout (right). Our method is compared with the accuracy before

alignment (Original), entropy-regularized OT, k-means plus OT

(KOT ), and subspace alignment (SA).

MNIST-USPS MNIST-DU

Accuracy Accuracy L2 error

Original 79.3 72.6 0.72

OT 76.9 61.5 0.71

KOT 79.4 60.9 0.73

SA 81.3 72.3 -

FC 84.1 67.2 0.59

LOT-WA 86.2 77.7 0.56

image) to build invariances into a network’s representations,

here we ask how augmentations of the images introduce

domain shift and whether our approach can correct/identify

it. To test this, we apply coarse dropout on test samples in

MNIST and feed them to the classifier to get a new source

distribution. We do this in a balanced (all digits in source

and target) and an unbalanced setting (2, 4, 8 removed from

source, all digits in target). The results of the unbalanced

dropout are summarized in Table 1 (MNIST-DU), and the

other results are provided in Table S1 in the Appendix. In

this case, we have the features of the testing samples pre-

transformation, and thus, we can compare the transported

features to the ground truth features in terms of their point-

to-point error (L2 distance). In the unbalanced case, we

observe even more significant gaps between FC and LOT, as

the source and target datasets have different structures. To

quantify these different class-level errors, we compare the

confusion matrices for the classifier’s output after alignment

(Figure 4b). By examining the columns corresponding to the

removed digits, we see that FC is more likely to misclassify

these images. Our results suggest that LOT has comparable

performance with FC in a balanced setting and outperforms

FC in an unbalanced case.

The decomposition in both LOT and FC allows us to visu-

alize transport between the source, anchors, and the target

(Figure 4c-d, S2). This visualization highlights the inter-

pretability of the transport plans learned via our approach,

with the middle transport plan Pz providing a concise map

of interactions between class manifolds in the unbalanced

setting. With LOT (Figure 4c), we find that each source

anchor is mapped to the correct target anchor, with some

minor interactions with the target anchors corresponding to

the removed digits. In comparison, FC (Figure 4d, S2) has

more spurious interactions between source, anchors, and

target.

E3) Robustness to sampling: We examined the robustness

to sampling for the MNIST to USPS example (Figure 5).

SA


Latent Optimal Transport

Before

FC

OT

Source anchor

Target anchor
LOT

Tr
u

e
Tr

u
e

Predicted

Pz
Px Py

Unbalanced

Unbalanced

������������������������

LOT

FC

PyPx

�

�

�

�

Anchor

���������������
 Unbalanced

Figure 4: Visualization of results on handwritten digits and
examples of domain shift. (a) 2D projections of representations
formed in deep neural network before (top) and after different
alignment methods (LOT , FC , OT). (b) confusion matrices for
LOT (top) and FC (bottom) after alignment. The transport plans are
visualized for LOT (c) and FC (d) in the unbalanced case.

In this case, we find that LOT has a stable alignment as we

subsample the source dataset, with very little degradation

in classification accuracy, even as we reduce the source to

only 20 samples. We also observe a significant gap between

LOT and other approaches in this experiment, with more

than a 10% gap between FC and LOT when very few source

samples are provided. Our results demonstrate that LOT is

Figure 5: LOT provides robust alignment, even when given very
few samples. We compare our method with OT and FC on the
MNIST-USPS domain adaptation task when different numbers
of USPS samples are available. Reported classification rates are
averaged over 50 random sets.

robust to subsampling, providing empirical evidence for

Proposition 3.

7. Discussion

In this paper, we introduced LOT, a new form of structured

transport leading to an approach for jointly clustering and

aligning data. We provided an efficient optimization method

to solve for the transport, and studied its statistical rate via

theoretical analysis and robustness to data perturbations

with empirical experiments. In the future, we would like to

explore the application of LOT to non-Euclidean spaces, and

incorporate metric learning into our framework.
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