
TECHNICAL

R E P O R T

Institut für Informationssysteme

Abteilung Datenbanken und

Artificial Intelligence

Technische Universität Wien

Favoritenstr. 9

A-1040 Vienna, Austria

Tel: +43-1-58801-18403

Fax: +43-1-58801-18493

sekret@dbai.tuwien.ac.at

www.dbai.tuwien.ac.at

INSTITUT FÜR INFORMATIONSSYSTEME

ABTEILUNG DATENBANKEN UND ARTIFICIAL INTELLIGENCE

Making Use of Advances in Answer-Set

Programming for Abstract

Argumentation Systems

DBAI-TR-2011-70

Wolfgang Dvořák Sarah Alice Gaggl

Johannes Wallner Stefan Woltran

DBAI TECHNICAL REPORT

2011

DBAI TECHNICAL REPORT

DBAI TECHNICAL REPORT DBAI-TR-2011-70, 2011

Making Use of Advances in Answer-Set Programming

for Abstract Argumentation Systems

Wolfgang Dvořák 1 Sarah Alice Gaggl 1

Johannes Wallner 1 Stefan Woltran 1

Abstract.Dung’s famous abstract argumentation frameworks represent the core formal-

ism for many problems and applications in the field of argumentation which significantly

evolved within the last decade. Recent work in the field has thus focused on implemen-

tations for these frameworks, whereby one of the main approaches is to use Answer-Set

Programming (ASP). While some of the argumentation semantics can be nicely expressed

within the ASP language, others required rather cumbersome encoding techniques. Re-

cent advances in ASP systems, in particular, the metasp optimization frontend for the

ASP-package gringo/claspD provides direct commands to filter answer-sets satisfy-

ing certain subset-minimality (or -maximality) constraints. This allows for much simpler

encodings compared to the ones in standard ASP language. In this paper, we experimen-

tally compare the original encodings (for the argumentation semantics based on preferred,

semi-stable, and respectively, stage extensions) with new metasp encodings, thus evaluat-

ing the efficiency of the novel metasp technique. Moreover, we provide novel encodings

for the recently introduced resolution-based grounded semantics. Our experimental results

indicate that the metasp approach works well in those cases where the complexity of the

encoded problem is adequately mirrored within the metasp approach.

1Institute for Information Systems 184/2, Technische Universität Wien, Favoritenstrasse 9-11, 1040 Vi-

enna, Austria. E-mail: {dvorak,gaggl,wallner,woltran }@dbai.tuwien.ac.at

Acknowledgements: This work was Supported by the Vienna Science and Technology Fund

(WWTF) under grant ICT08-028.

Copyright c© 2011 by the authors

1 Introduction

In Artificial Intelligence (AI), the area of argumentation (the survey by Bench-Capon and

Dunne [3] gives an excellent overview) has become one of the central issues during the last decade.

Although there are now several branches within this area, there is a certain agreement that Dung’s

famous abstract argumentation frameworks (AFs) [7] still represent the core formalism for many

of the problems and applications in the field. In a nutshell, AFs formalize statements together with

a relation denoting rebuttals between them, such that the semantics gives a handle to solve the

inherent conflicts between statements by selecting admissible subsets of them, but without taking

the concrete contents of the statements into account. Several semantical principles how to select

those subsets have already been proposed by Dung [7] but numerous other proposals have been

made over the last years. In this paper we shall focus on the preferred [7], semi-stable [4], stage

[19], and the resolution-based grounded semantics [1].

Each of these semantics is based on some kind of subset-maximality (resp. -minimality) and

thus it is well amenable for the novel metasp concepts which we describe below. Among these

semantics we distinguish two classes of semantics: On the one hand, the first three semantics

mentioned are among the hardest for abstract argumentation, i.e. decision problems (as credulous

or skeptical acceptance) are located on the this makes them suitable candidates to employ the

novel metasp concepts. On the other hand, for the resolution-based grounded semantics we are

not aware of any existing implementation; we will present (three alternative) novel ASP encodings

for this semantics in the course of this paper.

Let us thus now turn to the main context of the paper, which is the realization of abstract ar-

gumentation within the paradigm of Answer-Set Programming (see [18] for a recent overview on

this topic). More specifically, we follow here the ASPARTIX approach [11], where a single pro-

gram (or query) is used to encode a particular argumentation semantics, while the instance of an

argumentation framework is given just as an input database. Many semantics have already been

encoded in this way1, most of them discussed in [11]. For problems located on the second-level

of the polynomial hierarchy (i.e. for preferred, stage, and semi-stable semantics) ASP encodings

turned out to be quite complicated and hardly accessible for non-experts in ASP (we will sketch

here the encoding for the stage semantics in some detail, since it has not been presented in [11]).

This is due to the fact that tests for subset-maximality have to be done “by hand” in ASP requiring

a certain saturation technique (which dates back to the original ΣP
2 -hardness proof for disjunc-

tive ASP [12]; see [11] for its application to argumentation encodings). Recent advances in ASP

solvers, in particular, the metasp optimization frontend for the ASP-system gringo/clasp

allows for much simpler encodings for such tests. More precisely, metasp allows to use the tra-

ditional #minimize statement (which in its standard variant minimizes by cardinality or weights,

but not by subset inclusion) also for selection among answer-sets which are minimal (or maximal)

wrt. subset-inclusion in certain predicates. Details about metasp can be found in [15].

Our first main contribution will be the practical comparison between handcraft encodings (i.e.

encodings in the standard ASP language without the new semantics for the #minimize statement)

1See http://rull.dbai.tuwien.ac.at:8080/ASPARTIX for a web front-end of the ASPARTIX sys-

tem.

2

and the much simpler metasp encodings for argumentation semantics. The experiments show that

the simpler metasp encodings do not necessarily result in longer runtimes. In turn, for semantics

located on the second level of the polynomial hierarchy, the metasp encodings outperform the

handcraft saturation-based encodings. We thus can give additional evidence to the observations

in [15], where such a speed-up was reported for encodings in a completely different application

area.

Our second contribution is the presentation of ASP encodings for the resolution-based

grounded semantics [1]. To the best of our knowledge, no implementation for this quite interesting

semantics has been released so far. In this paper, we present a rather involved handcraft encoding

(basically following the algorithm presented in [1]) but also two much simpler encodings (using

metasp) which closely follow the original definition of the semantics. However, there is an im-

portant difference to the former three semantics: while preferred, stage, and semi-stable semantics

are located on the second level of the polynomial hierarchy, this is not true for the resolution-

based grounded semantics (which remains on the NP level). However, using metasp internally

results in a disjunctive ASP program (and thus falls into a class of second-level complexity), while

our handcraft encoding here is free of disjunction. This jump of complexity is mirrored in our

experiments which are more opaque than for the other three semantics.

These two contributions hence suggest that metasp is a very useful tool for problems known

to be hard for the second-level, but one might loose performance in case metasp is used for

“easier” problems just for the sake of comfortability. Nonetheless, we believe that the concept

of the advanced #minimize statement is vital for ASP, since it allows for rapid prototyping of

second-level encodings without being an ASP guru. We believe that the illustrated application of

abstract argumentation demonstrates the practical usefulness of this metasp approach, but further

experiments from other areas still have to be undertaken.

The remainder of the paper is organized as follows: Section 2 provides the necessary back-

ground; first on abstract argumentation, then on Answer-Set Programming. Section 3 then con-

tains the ASP encodings for the semantics we are interested in here. We first discuss the handcraft

saturation-based encoding for stage semantics (the ones for preferred and semi-stable are similar

and already published; so we decided to omit them here). Then, in Section 3.2 we provide the

novel metasp encodings for all considered semantics (including two variants for the resolution-

based grounded semantics). Afterwards, in Section 3.3 we finally present an alternative encoding

for the resolution-based grounded semantics which better mirrors the complexity of this semantics.

Section 4 then presents our experimental evaluation. We conclude the paper with a brief summary

and discussion for future research directions.

2 Background

2.1 Abstract Argumentation

In this section we introduce (abstract) argumentation frameworks [7] and recall the semantics we

study in this paper (see also [1, 2]). Moreover, we highlight complexity results for typical decision

problems associated to such frameworks.

3

Definition 2.1 An argumentation framework (AF) is a pair F = (A, R) where A is a set of ar-

guments and R ⊆ A × A is the attack relation. The pair (a, b) ∈ R means that a attacks b. An

argument a ∈ A is defended by a set S ⊆ A if, for each b ∈ A such that (b, a) ∈ R, there exists a

c ∈ S such that (c, b) ∈ R.

Example 2.2 Consider the AF F = (A, R), with A = {a, b, c, d, e} and R = {(a, b), (c, b), (c, d),
(d, c), (d, e), (e, e)}. The graph representation of F is given as follows:

a b c d e

Semantics for argumentation frameworks are given via a function σ which assigns to each AF

F = (A, R) a set σ(F) ⊆ 2A of extensions. We shall consider here for σ the functions stb,

adm, prf , com, grd , grd∗, stg , and sem which stand for stable, admissible, preferred, complete,

grounded, resolution-based grounded, stage, and semi-stable semantics respectively. Towards the

definition of these semantics we have to introduce two more formal concepts.

Definition 2.3 Given an AF F = (A, R). The characteristic function FF : 2A ⇒ 2A of F is

defined as FF (S) = {x ∈ A | x is defended by S}. Moreover, for a set S ⊆ A, we denote the set

of arguments attacked by S as S⊕
R = {x | ∃y ∈ S such that (y, x) ∈ R}, and define the range of S

as S+
R = S ∪ S⊕

R .

We are now ready to define semantics for AFs:

Definition 2.4 Let F = (A, R) be an AF. A set S ⊆ A is conflict-free (in F), iff there are no

a, b ∈ S, such that (a, b) ∈ R. cf (F) denotes the collection of conflict-free sets of F . For such a

conflict-free set S, it holds that

• S ∈ stb(F), if S+
R = A;

• S ∈ adm(F), if S ⊆ FF (S);

• S ∈ com(F), if S = FF (S);

• S ∈ grd(F), if S ∈ com(F) and there is no T ∈ com(F) with T ⊂ S;

• S ∈ prf (F), if S ∈ adm(F) and there is no T ∈ adm(F) with T ⊃ S;

• S ∈ sem(F), if S ∈ adm(F) and there is no T ∈ adm(F) with T+
R ⊃ S+

R .

• S ∈ stg(F), if there is no T ∈ cf (F) in F , such that T+
R ⊃ S+

R ;

For all semantics σ, the sets defined above are the only ones in σ(F).

4

We recall that for each AF F , stb(F) ⊆ sem(F) ⊆ prf (F) ⊆ com(F) ⊆ adm(F) holds, and

that for each of the considered semantics σ except stable semantics, σ(F) 6= ∅ holds. Moreover

the grounded semantics always proposes an unique extension, the grounded extension, which is

the least fix-point of the characteristic function FF .

Example 2.5 Recall the AF F from example 2.2. We have that {a, d} is a stable extension and

thus that stb(F) = stg(F) = sem(F) = {{a, d}}. The admissible sets of F are {}, {a},
{c}, {d}, {a, c}, {a, d}, and therefore prf (F) = {{a, c},{a, d}}. Finally we have com(F) =
{{a},{a, c},{a, d}}, with {a} being the grounded extension.

On the base of these semantics one can define the family of resolution based semantics (see

[1]), with the resolution-based grounded semantics being the most popular instance. Towards a

definition of resolution-based grounded semantics we briefly introduce the concept of resolutions

in AFs.

Definition 2.6 Given AF F = (A, R). A (full) resolution β ⊂ R of F is a set of attacks such that

(a, b) ∈ β iff (b, a) /∈ β and {(a, b), (b, a)} ⊆ R.

We are now ready to define resolution-based grounded extensions.

Definition 2.7 A set S ⊆ A is a resolution-based grounded extension of F if (i) there exists a

resolution β such that grd((A, R\β)) = S 2; and (ii) there is no resolution β′ such that grd((A, R\
β′)) ⊂ S.

Example 2.8 Recall the AF from example 2.2. There is one mutual attack and thus we have

two resolutions β1 = {(c, d)} and β2 = {(d, c)}. Condition (i) of Definition 2.7 gives us two

candidates for resolution-based grounded extensions, namely {a, d} and {a, c}, and as they are

not in ⊂-relation they are indeed resolution-based grounded extensions.

We now turn to the complexity of reasoning in AFs. To this end, we define the following

decision problems for the semantics σ introduced in Definitions 2.4 and 2.7.

• Credulous Acceptance Credσ: Given AF F = (A, R) and an argument a ∈ A. Is a contained

in some S ∈ σ(F)?

• Skeptical Acceptance Skeptσ: Given AF F = (A, R) and an argument a ∈ A. Is a contained

in each S ∈ σ(F)?

• Verification of an extension Verσ: Given AF F = (A, R) and a set of arguments S ⊆ A. Is

S ∈ σ(F)?

2Abusing notation slightly, we use grd(F) for denoting the unique grounded extension of F .

5

We assume the reader has knowledge about standard complexity classes, i.e. P, NP and

LOGSPACE (L), but we briefly recapitulate the concept of oracle machines and the complexity

classes ΣP
2 , ΠP

2 . By a NP-oracle machine we mean a Turing machine which can access an oracle,

that decides a given (sub)-problem in the class NP within one step. We define ΣP
2 , as the class

of decision problems that can be decided in polynomial time using a nondeterministic Turing ma-

chine with access to an NP-oracle. The class ΠP
2 is defined as the complementary class of ΣP

2 , i.e.

ΠP
2 = coΣP

2 .

In Table 1 we summarize complexity results relevant for our work [1, 6, 8, 9, 10].

prf sem stg grd∗

Credσ NP-c ΣP
2 -c ΣP

2 -c NP-c

Skeptσ ΠP
2 -c ΠP

2 -c ΠP
2 -c coNP-c

Verσ in L in L in L in P

Table 1: Complexity of abstract argumentation (C-c denotes completeness for class C)

2.2 Answer-Set Programming

In this section, we first give a brief overview of the syntax and semantics of disjunctive logic

programs under the answer-sets semantics [16]; for further background, see [13, 17].

We fix a countable set U of (domain) elements, also called constants; and suppose a total order

< over the domain elements. An atom is an expression p(t1, . . .,tn), where p is a predicate of arity

n ≥ 0 and each ti is either a variable or an element from U . An atom is ground if it is free of

variables. By BU we denote the set of all ground atoms over U .

A (disjunctive) rule r is of the form

a1 ∨ · · · ∨ an ← b1, . . . , bk, not bk+1, . . . , not bm,

with n ≥ 0, m ≥ k ≥ 0, n + m > 0, where a1, . . . , an, b1, . . . , bm are atoms, and “not ”

stands for default negation. The head of r is the set H(r) = {a1, . . . , an} and the body of r is

B(r) = {b1, . . . , bk, not bk+1, . . . , not bm}. Furthermore, B+(r) = {b1, . . . , bk} and B−(r) =

{bk+1, . . . , bm}. A rule r is normal if n ≤ 1 and a constraint if n = 0. A rule r is safe if each

variable in r occurs in B+(r). A rule r is ground if no variable occurs in r. A fact is a ground

rule without disjunction and empty body. An (input) database is a set of facts. A program is a

finite set of disjunctive rules. For a program P and an input database D, we often write P(D)
instead of D ∪ P . If each rule in a program is normal (resp. ground), we call the program normal

(resp. ground). Besides disjunctive and normal program, we consider here the class of optimization

programs. Those are normal programs which additionally contain #minimize statements

#minimize[l1 = w1@J1, . . . , lk = wk@Jk], (1)

6

e normal programs disjunctive program optimization programs

|=c NP ΣP
2 ΣP

2

|=s coNP ΠP
2 ΠP

2

Table 2: Data Complexity for logic programs (all results are completeness results).

where li is a default literal, wi an integer weight and Ji provides an integer priority level for

1 ≤ i ≤ k.

For any program P , let UP be the set of all constants appearing in P (if no constant appears

in P , an arbitrary constant is added to UP). Gr(P) is the set of rules rσ obtained by applying, to

each rule r ∈ P , all possible substitutions σ from the variables in r to elements of UP .

An interpretation I ⊆ BU satisfies a ground rule r iff H(r) ∩ I 6= ∅ whenever B+(r) ⊆ I and

B−(r)∩ I = ∅. I satisfies a ground program P , if each r ∈ P is satisfied by I . A non-ground rule

r (resp., a program P) is satisfied by an interpretation I iff I satisfies all groundings of r (resp.,

Gr(P)). I ⊆ BU is an answer set of P iff it is a subset-minimal set satisfying the Gelfond-Lifschitz

reduct

PI = {H(r)← B+(r) | I ∩B−(r) = ∅, r ∈ Gr(P)}.

For a program P , we denote the set of its answer sets by AS(P).
The semantics of optimization programs, we require here, follows the novel metasp tech-

nique, and we consider here the interpretation of the #minimize statement wrt. subset-inclusion.

For any sets X and Y of atoms, we have Y ⊆w
J X , if for any weighted literal l = w@J occurring

in (1), Y |= l implies X |= l. Then, M is a collection of relations of the form⊆w
J for priority levels

J and weights w. An answer set Y of P dominates an answer set X of P wrt. M if there are a

priority level J and a weight w such that X ⊆w
J Y does not hold for ⊆w

J∈ M , while Y ⊆w′

J ′ X
holds for all ⊆w′

J ′∈M where J ′ ≥ J . Finally we obtain that X is an answer set of the optimization

program P wrt. M if there is no answer set Y of P that dominates X wrt. M .

Credulous and skeptical reasoning in terms of programs is defined as follows. Given a program

P and a set of ground atoms A. Then, we write P |=c A (credulous reasoning), if A is contained

in some answer set of P; we write P |=s A (skeptical reasoning), if A is contained in each answer

set of P .

We briefly recall some complexity results for disjunctive logic programs. In fact, since we will

deal with fixed programs we focus on results for data complexity. Recall that data complexity in

our context is the complexity of checking whether P(D) |= A when disjunctive logic programs

P are fixed, while input databases D and ground atoms A are an input of the decision problem.

Depending on the concrete definition of |=, we give the complexity results in Table 2 (cf. [5] and

the references therein). We note here, that even normal programs together with the optimization

technique have a worst case complexity of ΣP
2 (resp. ΠP

2).

Inspecting now Table 1 one can directly see which encoding is appropriate for which argumen-

tation semantics.

7

3 Encodings of AF Semantics

In this section we first show how to represent AFs in ASP and we give three programs which

we need later on in this section 3. The first one πcf opens the search space for our solutions via

two guessing rules and eliminates all guesses which are not conflict-free. The second program

π< defines an order over the domain elements, and the third one πrange computes the range of

a set S. Then, in Subsection 3.1 we exemplify on the stage semantics the saturation technique

for encodings which solve associated problems which are on the second level of the polynomial

hierarchy. In Subsection 3.2 we will make use of the newly developed metasp optimization

technique to encode the preferred, semi-stable, stage and resolution-based grounded semantics

without (explicitly) using the quite complicated saturation technique. As the resolution-based

grounded semantics is on a lower complexity level than the other semantics used here, we give in

Subsection 3.3 an alternative encoding based on the algorithm of Baroni et al. in [1].

All our programs are fixed which means that the only translation required, is to give an AF F
as input database F̂ to the program πσ for a semantics σ. In fact, for an AF F = (A, R), we define

F̂ as

F̂ = { arg(a) | a ∈ A} ∪ {defeat(a, b) | (a, b) ∈ R }.

In what follows, we use unary predicates in/1 and out/1 to perform a guess for a set S ⊆ A, where

in(a) represents that a ∈ S. The following notion of correspondence is relevant for our purposes.

Definition 3.1 Let S ⊆ 2U be a collection of sets of domain elements and let I ⊆ 2BU be a

collection of sets of ground atoms. We say that S and I correspond to each other, in symbols

S ∼= I, iff (i) for each S ∈ S, there exists an I ∈ I, such that {a | in(a) ∈ I} = S; (ii) for each

I ∈ I, it holds that {a | in(a) ∈ I} ∈ S; and (iii) |S| = |I|.

Let F = (A, R) be an argumentation framework. The following program fragment guesses, when

augmented by F̂ , any subset S ⊆ A and then checks whether the guess is conflict-free in F :

πcf = { in(X)← not out(X), arg(X);

out(X)← not in(X), arg(X);

← in(X), in(Y),defeat(X, Y) }.

Proposition 3.2 For any AF F , cf (F) ∼= AS(πcf (F̂)).

For ASP encodings, it is sometimes required or desired to avoid the use of negation. This

might either be the case for the saturation technique or if a simple program can be solved without

a Guess&Check approach. Then, encodings typically rely on a form of loops where all domain

elements are visited and it is checked whether a desired property holds for all elements visited so

far. We will use this technique in our saturation-based encoding in the upcoming subsection, but

also for the computation of the grounded extension in Subsection 3.2.

3We make use of some program modules already defined in [11], for a more detailed explanation we refer to the

mentioned paper.

8

For this purpose, an order < over the domain elements (usually provided by common ASP

solvers) is used together with a few helper predicates defined in program π< below; in fact, predi-

cates inf/1, succ/2 and sup/1 denote infinum, successor and supremum of the order <.

π< = { lt(X, Y)← arg(X), arg(Y), X < Y ;

nsucc(X, Z)← lt(X,Y), lt(Y, Z);

succ(X, Y)← lt(X, Y),not nsucc(X, Y);

ninf(Y)← lt(X, Y);

inf(X)← arg(X),not ninf(X);

nsup(X)← lt(X,Y);

sup(X)← arg(X),not nsup(X) }.

The following module computes for a guessed subset S ⊆ A the range S+
R of S in an AF (A, R).

πrange = {in range(X)← in(X);

in range(X)← in(Y),defeat(Y, X);

not in range(X)← arg(X),not in range(X)}.

3.1 Saturation Encodings

In this subsection we make use of the saturation technique introduced by Eiter and Gottlob in [12].

In [11], this technique was already used to encode the preferred and semi-stable semantics. Here

we give the encodings for the stage semantics, which is very similar to the one of semi-stable

extensions. The main difference is that for semi-stable extensions the set S ⊆ A needs to be

admissible, whereas for stage extensions the set S is only required to be conflict-free. Therefore

we obtain the encoding for stage extensions by a slight modification of the encoding for semi-stable

extensions from [11].

In fact, for an AF F = (A, R) and S ∈ cf (F) we need to check whether no T ∈ cf (F) with

S+
R ⊂ T+

R exists. Therefore we have to guess an arbitrary set T and saturate in case (i) T is not

conflict-free, and (ii) S+
R 6⊂ T+

R . Together with πcf this is done with the following module, where

in/1 holds the current guess for S and inN/1 holds the current guess for T . More specifically,

rule fail ← inN(X), inN(Y), defeat(X, Y) checks for (i) and the remaining two rules with fail
in the head fire in case S+

R = T+
R (indicated by predicate eqplus/0 described below), or there

exists an a ∈ S+
R such that a /∈ T+

R (here we use predicate in range/1 from above and predicate

not in rangeN/1 which we also present below). As is easily checked one of this two conditions

holds exactly if (ii) holds.

9

πsatstage = { inN(X) ∨ outN(X)← arg(X);

fail← inN(X), inN(Y),defeat(X, Y);

fail← eqplus;

fail← in range(X),not in rangeN(X);

inN(X)← fail, arg(X);

outN(X)← fail, arg(X);

← not fail }.

For the definition of predicates not in rangeN/1 and eqplus/0 we make use of the aforemen-

tioned loop technique and predicates from program π< above.

πrangeN = { undefeated upto(X, Y)← inf(Y), outN(X), outN(Y);

undefeated upto(X, Y)← inf(Y), outN(X),not defeat(Y,X);

undefeated upto(X, Y)← succ(Z, Y),undefeated upto(X, Z), outN(Y);

undefeated upto(X, Y)← succ(Z, Y),undefeated upto(X, Z),not defeat(Y,X);

not in rangeN(X)← sup(Y), outN(X), undefeated upto(X, Y);

in rangeN(X)← inN(X);

in rangeN(X)← outN(X), inN(Y),defeat(Y, X) }.

π+
eq = { eqplus upto(X)← inf(X), in range(X), in rangeN(X);

eqplus upto(X)← inf(X), not in range(X),not in rangeN(X);

eqplus upto(X)← succ(Z, X), in range(X), in rangeN(X), eqplus upto(Z);

eqplus upto(X)← succ(Y,X),not in range(X),not in rangeN(X), eqplus upto(Y);

eqplus← sup(X), eqplus upto(X) };

We define πstg = πcf ∪ π< ∪ πrange ∪ πrangeN ∪ π+
eq ∪ πsatstage and obtain the following result.

Proposition 3.3 For any AF F , stg(F) ∼= AS(πstg(F̂)).

3.2 Meta ASP Encodings

The following encodings for preferred, semi-stable and stage semantics are written using the

#minimize[·] statement when evaluated with the subset minimization semantics provided by

metasp. For our encodings we do not need priorization and weights, therefore these are omitted

(i.e. set to default) in the minimization statements. The minimization technique is realized through

meta programming techniques, which themselves are answer-set programs. This works as follows:

The original answer-set program to solve is given to the grounder gringo, which reifies the pro-

gram and outputs its ground version in the form of facts. The grounder is then again executed

on this output with the meta programs, which encode the optimization. Lastly claspD handles

10

the solving part. Note that here we use the version of clasp which supports disjunctive rules.

Therefore for a program π and an AF F we have the following execution.

gringo --reify π(F̂) | \
gringo -{meta.lp,metaO.lp,metaD.lp} \
<(echo "optimize(1,1,incl).") | claspD 0

Here, meta.lp, metaO.lp and metaD.lp are the encodings for the minimization statement.

The statement optimize(1,1,incl) indicates that we use subset inclusion for the optimiza-

tion technique using priority and weight 1.

We now look at the encodings for the preferred, semi-stable and stage semantics using this

minimization technique. First we need one auxiliary module for admissible extensions.

πadm = πcf ∪ {defeated(X)← in(Y), defeat(Y,X);

← in(X),defeat(Y,X),not defeated(Y)}.

Now the modules for preferred, semi-stable and stage semantics are easy to encode using the

minimization statement of metasp. For the preferred semantics we take the admissible module

and use the minimization of the out predicate. This in turn gives us the subset maximal admissible

extensions, which captures the definition of preferred semantics. The encodings for the semi-

stable and stage semantics are similar. Here we minimize the predicate not in range from the

πrange module. The only difference between the semi-stable and stage encoding is that the former

uses the admissible module, whereas the latter needs only conflict-freeness.

πprf metasp = πadm ∪ {#minimize[out]}.

πsem metasp = πadm ∪ πrange ∪ {#minimize[not in range]}.

πstg metasp = πcf ∪ πrange ∪ {#minimize[not in range]}.

The following results follow now quite directly.

Proposition 3.4 For any AF F , the following relations hold.

1. prf (F) ∼= AS(πprf metasp(F̂)),

2. sem(F) ∼= AS(πsem metasp(F̂)),

3. stg(F) ∼= AS(πstg metasp(F̂)).

Next we give two different encodings for computing resolution-based grounded extensions.

Both encodings use subset minimization for the resolution part, i.e. the resulting extension is sub-

set minimal with respect to all possible resolutions. The difference between the two encodings is

that the first one computes the grounded extension for the guessed resolution explicitly (making

use of looping concepts presented already in [11]). The second encoding uses the metasp subset

minimization additionally to get the grounded extension from the complete extensions of the cur-

rent resolution (recall that the grounded extension is in fact the unique subset-minimal complete

extension). The module πgrd below for computing the grounded extension is taken from [11] with

11

a small modification: instead of the defeat predicate we use defeat minus beta, since we need the

grounded extensions of a restricted defeat relation. The πres module guesses this restricted defeat
relation, i.e. {R \ β} for a resolution β.

πres = { defeat minus beta(X,Y)← defeat(X, Y),not defeat minus beta(Y,X),

X 6= Y ;

defeat minus beta(X,Y)← defeat(X, Y),not defeat(Y,X);

defeat minus beta(X,X)← defeat(X, X)}.

We repeat the definition of πgrd here, which includes the module πdefended .

πdefended = { defended upto(X, Y)← inf(Y), in(X),not defeat minus beta(Y,X);

defended upto(X, Y)← inf(Y), in(Z),defeat minus beta(Z, Y),

defeat minus beta(Y,X);

defended upto(X, Y)← succ(Z, Y),defended upto(X, Z),

not defeat minus beta(Y, X);

defended upto(X, Y)← succ(Z, Y), in(V),defeat minus beta(V, Y),

defeat minus beta(Y,X);

defended(X)← sup(Y), defended upto(X, Y)}.

πgrd = π< ∪ πdefended ∪ {in(X)← defended(X)}

Now we can define the encoding for resolution-based grounded semantics.

πgrd∗ metasp = πgrd ∪ πres ∪ {#minimize[in]}.

The second version computes the grounded extensions simply by subset minimization from the

complete extensions. We compute the complete extensions again wrt. the restricted defeat relation.

πcom = πadm ∪ { undefended(X)← defeat minus beta(Y, X),not defeated(Y);

← out(X),not undefended(X) }.

π′
grd∗ metasp = πcom ∪ πres ∪ {#minimize[in]}.

Proposition 3.5 For any AF F and π ∈ {πgrd∗ metasp, π
′
grd∗ metasp}, grd∗(F) corresponds to

AS(π(F̂)) in the sense of Definition 3.1, but without property (iii).

As the proposition suggests there is a caveat for these two encodings of the resolution-based

grounded semantics. Define for projection of an extension Pr(X) = {a | in(a) ∈ X}. For

π ∈ {πgrd∗ metasp, π
′
grd∗ metasp} in general we have that several I ∈ AS(π(F̂)) map to the same

Pr(I), i.e. we have duplicated extensions if we project out only the in predicate from the an-

swer sets. While this does not harm credulous or skeptical reasoning, some measures have to be

taken to remove these duplicates when enumerating or counting extensions. The solver clasp

already features such a technique, which is presented in [14]. This feature is not yet implemented

in claspD. The duplicated extensions might also influence computation times, especially for out-

putting the extensions. The reason for this behavior lies in the guessing of a resolution. Whereas

12

the other encodings guess basically the in/1 predicate, the two metasp encodings guess the res-

olution. Therefore the result might include the same extension with different resolutions guessed.

3.3 Alternative Encodings for Resolution-based Grounded Semantics

In the previous section, we have shown two encodings for the resolution-based grounded seman-

tics via optimization programs, i.e. we made use of the #minimize statement under the subset-

inclusion semantics. From the complexity point of view this is not adequate, since we thus ex-

pressed an problem on the NP-layer (see Table 1) via an encoding which implicitly makes use of

disjunction (see Table 2 for the actual complexity of optimization programs). Hence, we provide

here an alternative encoding for the resolution-based grounded semantics based on the verification

algorithm proposed by Baroni et al. in [1]. Our new encoding is just a normal program and thus

located at the right level of complexity.

We need some further notation. For an AF F = (A, R) and a set S ⊆ A we define F |S =
((A ∩ S), R ∩ (S × S)) as the sub-framework of F wrt S; furthermore we also use F − S as a

shorthand for F |A\S . By SCCs(F), we denote the set of strongly connected components of an

AF F = (A, R) which identify the vertices of a maximal strongly connected4 subgraphs of F ;

SCCs(F) is thus a partition of A. A partial order ≺F over SCCs(F) = {C1, . . . , Cn}, denoted as

(Ci ≺F Cj) for i 6= j, is defined, if ∃x ∈ Ci, y ∈ Cj such that there is a direct path from x to y in

F .

Definition 3.6 A C ∈ SCCs(F) is minimal relevant (in an AF F) iff C is a minimal element of

≺F and F |C satisfies the following three conditions:

a) the attack relation R(F |C) of F is irreflexive, i.e. (x, x) 6∈ R(F |C) for all arguments x;

b) R(F |C) is symmetric, i.e. (x, y) ∈ R(F |C)⇔ (y, x) ∈ R(F |C);

c) the undirected graph obtained by replacing each (directed) pair {(x, y), (y, x)} in F |C with

a single undirected edge {x, y} is acyclic.

The set of minimal relevant SCCs in F is denoted by MR(F).

Definition 3.7 ([1]) Given an AF F = (A, R) such that (F −S+
R) 6= (∅, ∅) and MR(F −S+

R) 6= ∅,
where S ∈ grd(F), a set of arguments U ⊆ A is resolution-based grounded in F , i.e. U ∈ grd∗(F)
iff the following three conditions are satisfied.

(i) U ∩ S+
R = S;

(ii) (T ∩ ΠF) ∈ stb(F |ΠF
), where T = U \ S+

R , and ΠF =
⋃

V ∈MR(F−S+

R
) V ;

(iii) (T ∩ΠC
F) ∈ grd∗(F |ΠC

F

− (S+
R ∪ (T ∩ΠF)⊕R)), where T and ΠF are as in (ii) and ΠC

F stands

for A \ ΠF .

4A directed graph is called strongly connected if there is a directed path from each vertex in the graph to every

other vertex of the graph.

13

To illustrate the conditions of Definition 3.7, let us have a look at the following example.

Example 3.8 Consider the following AF F over A = {a, b, c, d, e, f}

a b

c

d

e f

Let us check whether U = {a, d, f} is resolution-based grounded in F , i.e. whether U ∈ grd∗(F).
S = {a} is the grounded extension of F and S+

R = {a, b}, hence the first condition (i) is satisfied.

We obtain T = {d, f} and ΠF = {c, d}. We observe that T ∩ ΠF = {d} is a stable extension of

the AF F |ΠF
; that satisfies condition (ii). Now we need to check condition (iii), we first identify the

necessary sets: ΠC
F = {a, b, e, f}, T ∩ ΠC

F = {f} and (T ∩ ΠF)⊕R = {c, e}. It remains to check

{f} ∈ grd∗({f}, ∅) which is easy to see. Hence, U ∈ grd∗(F).
Concerning the original defintion of resolution-based grounded semantics (cf. Definition 2.7),

observe that we have two possible resolutions for F , namely either selecting (c, d) or (d, c). For

the former selection, the grounded extension of the resulting framework, is {a, c, f}, for the latter

selection we actually obtain U as the grounded extension. Since {a, c, f} 6⊂ U , U is indeed

resolution-based grounded in F .

The following encoding is based on the Guess&Check procedure which was also used for the

encodings in [11]. After guessing all conflict-free sets with the program πcf , we check whether

the conditions of Definitions 3.6 and 3.7 hold. Therefore the program πarg set makes a copy of the

actual arguments, defeats and the guessed set to the predicates arg set/2, defeatN/3 and inU/2.

The first variable in these three predicates serves as an identifier for the iteration of the algorithm

(this is necessary to handle the recursive nature of Definition 3.7). In all following predicates we

will use the first variable of each predicate like this. As in some previous encodings in this paper,

we use the program π< to obtain an order over the arguments, and we start our computation with

the infimum represented by the predicate inf/1.

πarg set = { arg set(N, X)← arg(X), inf(N);

inU(N, X)← in(X), inf(N);

defeatN(N, Y,X)← arg set(N, X), arg set(N, Y),defeat(Y,X) }.

In the program πdefendedN together with the program πgroundN we perform a fixed-point computation

of the predicate defendedN/2 via def uN/3, as in the definition of the characteristic function FF

in Definition 2.3. This is very similar to the rules used in module πdefended but now we use an

additional argument N for the iteration step; on the other hand we do not incorporate resolutions

directly here.

14

πdefendedN = { def uN(N, X, Y)← inf(Y), arg set(N, X),not defeatN(N, Y,X);

def uN(N, X, Y)← inf(Y), inS(N, Z),defeatN(N, Z, Y),

defeatN(N, Y,X);

def uN(N, X, Y)← succ(Z, Y),not defeatN(N, Y,X),

def uN(N, X, Z);

def uN(N, X, Y)← succ(Z, Y), def uN(N, X, Z), inS(N, V),

defeatN(N, V, Y),defeatN(N, Y,X);

defendedN(N, X)← sup(Y),def uN(N, X, Y) }.

In πgroundN we then obtain the predicate inS(N, X) which identifies argument X to be in the

grounded extension of the iteration N .

πgroundN = πcf ∪ π< ∪ πarg set ∪ πdefendedN ∪ { inS(N, X)← defendedN(N, X) }.

The next module πF minus range computes the arguments in (F − S+
R), represented by the predicate

not in SplusN/2, via predicates in SplusN/2 and u cap Splus/2 (for S+
R and U ∩ S+

R). The two

constraints in πF minus range check condition (i) of Definition 3.7.

πF minus range = { in SplusN(N, X)← inS(N, X);

in SplusN(N, X)← inS(N, Y),defeatN(N, Y,X);

u cap Splus(N, X)← inU(N, X), in SplusN(N, X);

← u cap Splus(N, X),not inS(N, X);

← not u cap Splus(N, X), inS(N, X);

not in SplusN(N, X)← arg set(N, X),not in SplusN(N, X) }.

The module πMR computes ΠF =
⋃

V ∈MR(F−S+

R
) V , where mr(N, X) denotes that an argument is

contained in a set V ∈ MR. Therefore we need to check all three conditions of Definition 3.6.

The first two rules compute the predicate reach(N, X, Y) if there is a path between the arguments

X, Y ∈ (F − S+
R). With this predicate we will identify the SCCs. The third rule computes

self defeat/2 for all arguments violating Condition a). Next we need to check Condition b). With

nsym/2 we obtain those arguments which do not have a symmetric attack to any other argument

from the same component. Condition c) is a bit more tricky. With predicate reachnotvia/4 we say

that there is a path from X to Y not going over argument V in the framework (F − S+
R). With this

predicate at hand we can check for cycles with cyc/4. Then, to complete Condition c) we derive

bad/2 for all arguments which are connected to a cycle (or a self-defeating argument). In the

predicate pos mr/2, we put all the three conditions together and say that an argument x is possibly

in a set V ∈ MR if (i) x ∈ (F − S+
R), (ii) x is neither connected to a cycle nor self-defeating, and

(iii) for all y it holds that (x, y) ∈ (F − S+
R)⇔ (y, x) ∈ (F − S+

R). Finally we only need to check

if the SCC obtained with pos mr/2 is a minimal element of≺F . Hence we get with notminimal/2
all arguments not fulfilling this, and in the last rule we obtain with mr/2 the arguments contained

in a minimal relevant SCC.

15

πMR = { reach(N, X, Y)← not in SplusN(N, X),not in SplusN(N, Y),defeatN(N, X, Y);

reach(N, X, Y)← not in SplusN(N, X),defeatN(N, X, Z), reach(N, Z, Y),

X! = Y ;

self defeat(N, X)← not in SplusN(N, X),defeatN(N, X, X);

nsym(N, X)← not in SplusN(N, X),not in SplusN(N, Y),defeatN(N, X, Y),

not defeatN(N, Y,X), reach(N, X, Y), reach(N, Y,X), X! = Y ;

nsym(N, Y)← not in SplusN(N, X),not in SplusN(N, Y),defeatN(N, X, Y),

not defeatN(N, Y,X), reach(N, X, Y), reach(N, Y,X), X! = Y ;

reachnotvia(N, X, V, Y)← defeatN(N, X, Y),not in SplusN(N, V),

reach(N, X, Y), reach(N, Y,X), X! = V, Y ! = V ;

reachnotvia(N, X, V, Y)← reachnotvia(N, X, V, Z), reach(N, X, Y),

reachnotvia(N, Z, V, Y), reach(N, Y,X),

Z! = V,X! = V, Y ! = V ;

cyc(N, X, Y, Z)← defeatN(N, X, Y),defeatN(N, Y,X),

defeatN(N, Y, Z),defeatN(N, Z, Y),

reachnotvia(N, X, Y, Z), X! = Y, Y ! = Z, X! = Z;

bad(N, Y)← cyc(N, X, U, V), reach(N, X, Y), reach(N, Y,X);

bad(N, Y)← self defeat(N, X), reach(N, X, Y), reach(N, Y,X);

pos mr(N, X)← not in SplusN(N, X),not bad(N, X),not self defeat(N, X),

not nsym(N, X);

notminimal(N, Z)← reach(N, X, Y), reach(N, Y,X),

reach(N, X, Z),not reach(N, Z, X);

mr(N, X)← pos mr(N, X),not notminimal(N, X) }.

We now turn to Condition (ii) of Definition 3.7, where the first rule in πstableN computes the set

T = U \ S+
R . Then we check whether T = ∅ and MR(F − S+

R) = ∅ via predicates emptyT/1
and not exists mr/1. If this is so, we terminate the iteration in the last module πiterate . The first

constraint eliminates those guesses where MR(F − S+
R) = ∅ but T 6= ∅, because the algorithm

is only defined for frameworks fulfilling this. Finally we derive the arguments which are defeated

by the set T in the MR denoted by defeated/2, and with the last constraint we eliminate those

guesses where there is an argument not contained in T and not defeated by T in MR and hence

(T ∩ ΠF) 6∈ stb(F |ΠF
).

πstableN = { t(N, X)← inU(N, X),not inS(N, X);

nemptyT(N)← t(N, X);

emptyT(N)← not nemptyT(N), arg set(N, X);

existsMR(N)← mr(N, X),not in SplusN(N, X);

not exists mr(N)← not existsMR(N),not in SplusN(N, X);

16

true(N)← emptyT(N),not existsMR(N);

← not exists mr(N), nemptyT(N);

defeated(N, X)← mr(N, X),mr(N, Y), t(N, Y),defeatN(N, Y,X);

← not t(N, X),not defeated(N, X),mr(N, X) }.

With the last module πiterate we perform step (iii) of Definition 3.7. The predicate t mrOplus/2
computes the set (T ∩ΠF)⊕R and with the second rule we start the next iteration for the framework

(F |ΠC

F

− (S+
R ∪ (T ∩ ΠF)⊕R)) and the set (T ∩ ΠC

F).

πiterate = { t mrOplus(N, Y)← t(N, X), mr(N, X),defeatN(N, X, Y);

arg set(M,X)← not in SplusN(N, X),not mr(N, X),not t mrOplus(N, X),

succ(N, M),not true(N);

inU(M,X)← t(N, X),not mr(N, X), succ(N, M),not true(N) }.

Finally we put everything together and obtain the program πgrd∗ .

πgrd∗ = πgroundN ∪ πF minus range ∪ πMR ∪ πstableN ∪ πiterate .

Proposition 3.9 For any AF F , grd∗(F) ∼= AS(πgrd∗(F̂)).

4 Experimental Evaluation

In this section we present our results of the performance evaluation. We compared the time

needed for computing all extensions for the semantics described earlier using both the handcrafted

saturation-based and the alternative metasp encodings.

The tests were executed on an openSUSE based machine with eight Intel Xeon processors

(2.33 GHz) and 49 GB memory. For generating the answer sets, we used gringo version 3.0.3

for grounding and the solver claspD (version 1.1.1). The latter being the variant of clasp for

disjunctive answer-set programs.

We randomly generated AFs (i.e. graphs) ranging from 20 to 110 arguments. We used two

parameterized methods for generating the attack relation in these AFs.

1. Arbitrary AF F : For any pair a, b of arguments in F the attack (a, b) is inserted into F with

a given probability p.

2. Grid-structured AF F : Every argument is arranged in an (n × m) grid, i.e. is connected

to its neighbors via attacks. The actual values for n and m depend on the total number of

arguments; more precisely we let n be either 5, 15, or 25 and m is then chosen accordingly.

For every neighbor b of a either the mutual attack {(a,b),(b,a)} is added with a probabil-

ity p, or otherwise a single attack is inserted into F . The direction of the single attack is

chosen randomly with equal chance. For the grids we consider two neighborhoods, namely

4-neighborhood and 8-neighborhood. The former connects all arguments horizontally and

vertically, the latter connecting them also diagonally.

17

As an illustrative example for the grid structure, consider the following grid.

a b c

d e f

The undirected edges represent the neighborhood (4-neighborhood in this case). With a probability

p the mutual attack is used (as for the arguments b, c) and otherwise only one direction is inserted.

The probability p for generating the instances was chosen from 0.1 to 0.4.

Overall 14388 tests were executed, with a timeout of five minutes for each execution. Timed

out instances are considered as solved in 300 seconds. The time consumption was measured using

the Linux time command. For all the tests we let the solver generate all answer sets, but only

outputting the number of models. To minimize external influences on the test runs, we alternated

the different encodings for the semantics during the test runs.

The Figures 1 - 6 show the comparison results for the preferred, semi-stable and stage semantics

respectively. Each of the figures has several subfigures. The subfigures show first a comparison

of average computation time wrt. to the number of arguments and then a percentage of timeouts.

The remaining subfigures show detailed behavior of each encoding separately, namely the time

consumption of each test run individually and a box plot. In these detailed subfigures the instances

are ordered from the left to right wrt. number of arguments. The box plot shows the mean, lower

and higher quartile as a box of the computation times. Note that the whiskers of the box plot extend

to the minimum and maximum time consumption. The box plot is shown for the arbitrary and the

two different grid-structured instances.

One can see that the metasp encodings have a better performance, compared to the hand-

crafted encodings, on the preferred, semi-stable and stage semantics. In particular, for the stage

semantics the performance difference between the handcrafted and the metasp variant is no-

ticeable. The metasp encodings performed better wrt. to arbitrary AFs than on the structured

ones, whereas for the handcrafted encodings this behavior differs. The handcrafted stage encod-

ing performed similar on both the arbitrary and grid-structured instances. Recall that the average

computation time includes the timeouts, which strongly influence the diagrams.

The overall picture changes wrt. the resolution-based grounded semantics. The graphical rep-

resentations of the results can be seen in the Figures 7 - 10. We distinguish between the three

encoding alternatives, namely the handcrafted, πgrd∗ , and the two metasp variants, πgrd∗ metasp

and π′
grd∗ metasp . The two metasp encodings use the minimization for the resolution part, but

the latter also uses it for computing the grounded extension. If we compare the resolution-based

grounded semantics with the other three semantics, then all three encodings presented have a rela-

tively high average computation time even for a low number of arguments.

If we look more closely at the structure of the AFs, then we see that the computation time

quickly rises for arbitrary generated AFs. Noticeable is the statistics for AFs with argument size of

at least 40. The handcrafted encoding could not solve most of these instance due to memory allo-

cation faults. These are indicated by the missing data points. The metasp encodings could only

18

solve a small subset of the AFs with at least 40 arguments without timing out, namely those which

were generated with a small number of attacks, i.e. the parameter for the inserting probability p
was low.

For the grid-structured AFs we see that the 4-neighborhood grids were easier to solve for all

three encodings, the π′
grd∗ metasp encoding outperforming the other two. Interestingly comput-

ing the grounded extension explicitly did not result in a performance gain in this case. The 8-

neighborhood grids were more difficult for the encodings to solve, but we have a similar overall

picture as we had with the 4-neighborhood grids, except that the timeout rate is much higher.

Again, the timeouts strongly influence the average computation time. In particular the timeout

rate for the resolution-based grounded encodings is much higher than for the other semantics.

5 Conclusion

In this paper, we inspected various ASP encodings for four prominent semantics in the area of

abstract argumentation. (1) For the preferred and the semi-stable semantics, we compared existing

saturation-based encodings [11] (here we called them handcraft encodings) with novel alternative

encodings which are based on the recently developed metasp approach [15], where subset mini-

mization can be directly specified (and a frontend, i.e. a meta-interpreter) compiles such statements

back into the core ASP language. (2) For the stage semantics, we presented here both a handcraft

and a metasp encoding. Finally, (3) for the resolution-based grounded semantics we provided

three encodings, two of them using the metasp techniques.

Although the metasp encodings are much simpler to design (since saturation techniques are

delegated to the meta-interpreter), they perform surprisingly well when compared with the hand-

crafted encodings which are directly given to the ASP solver. This shows the practical relevance

of the metasp technique also in the area of abstract argumentation. Future work has to focus

on further experiments which hopefully will strengthen our observations. To this end, typical

benchmarks for abstract argumentation have to be collected and provided; we believe that this is a

necessary next step for the argumentation community.

References

[1] Pietro Baroni, Paul E. Dunne, and Massimiliano Giacomin. On the resolution-based family of

abstract argumentation semantics and its grounded instance. Artif. Intell., 175(3-4):791–813,

2011.

[2] Pietro Baroni and Massimiliano Giacomin. Semantics of abstract argument systems. In

I. Rahwan and G. Simari, editors, Argumentation in Artificial Intelligence, pages 25–44.

Springer, 2009.

[3] Trevor J. M. Bench-Capon and Paul E. Dunne. Argumentation in artificial intelligence. Artif.

Intell., 171(10-15):619–641, 2007.

19

[4] Martin Caminada. Semi-stable semantics. In Paul E. Dunne and Trevor J. M. Bench-Capon,

editors, Proceedings of the 1st Conference on Computational Models of Argument (COMMA

2006), volume 144 of Frontiers in Artificial Intelligence and Applications, pages 121–130.

IOS Press, 2006.

[5] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov. Complexity and ex-

pressive power of logic programming. ACM Computing Surveys, 33(3):374–425, 2001.

[6] Yannis Dimopoulos and Alberto Torres. Graph theoretical structures in logic programs and

default theories. Theor. Comput. Sci., 170(1-2):209–244, 1996.

[7] Phan Minh Dung. On the acceptability of arguments and its fundamental role in nonmono-

tonic reasoning, logic programming and n-person games. Artif. Intell., 77(2):321–358, 1995.

[8] Paul E. Dunne and Trevor J. M. Bench-Capon. Coherence in finite argument systems. Artif.

Intell., 141(1/2):187–203, 2002.

[9] Paul E. Dunne and Martin Caminada. Computational complexity of semi-stable semantics in

abstract argumentation frameworks. In Steffen Hölldobler, Carsten Lutz, and Heinrich Wans-

ing, editors, Proceedings of the 11th European Conference on Logics in Artificial Intelligence

JELIA 2008, volume 5293 of Lecture Notes in Computer Science, pages 153–165. Springer,

2008.

[10] Wolfgang Dvořák and Stefan Woltran. Complexity of semi-stable and stage semantics in

argumentation frameworks. Inf. Process. Lett., 110(11):425–430, 2010.

[11] Uwe Egly, Sarah Alice Gaggl, and Stefan Woltran. Answer-set programming encodings for

argumentation frameworks. Argument and Computation, 1(2):147–177, 2010.

[12] Thomas Eiter and Georg Gottlob. On the computational cost of disjunctive logic program-

ming: Propositional case. Ann. Math. Artif. Intell., 15(3-4):289–323, 1995.

[13] Thomas Eiter, Georg Gottlob, and Heikki Mannila. Disjunctive datalog. ACM Trans.

Database Syst., 22(3):364–418, 1997.

[14] M. Gebser, B. Kaufmann, and T. Schaub. Solution enumeration for projected Boolean search

problems. In W. van Hoeve and J. Hooker, editors, Proceedings of the Sixth International

Conference on Integration of AI and OR Techniques in Constraint Programming for Combi-

natorial Optimization Problems (CPAIOR’09), volume 5547 of Lecture Notes in Computer

Science, pages 71–86. Springer, 2009.

[15] Martin Gebser, Roland Kaminski, and Torsten Schaub. Complex optimization in answer set

programming. TPLP, 2011. Accepted for publication.

[16] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and disjunctive

databases. New Generation Comput., 9(3/4):365–386, 1991.

20

[17] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona Perri,

and Francesco Scarcello. The dlv system for knowledge representation and reasoning. ACM

Trans. Comput. Log., 7(3):499–562, 2006.

[18] Francesca Toni and Marek Sergot. Argumentation and answer set programming. In M. Bal-

duccini and T.C. Son, editors, Gelfond Festschrift, volume 6565 of LNAI, pages 164–180.

Springer, 2011.

[19] Bart Verheij. Two approaches to dialectical argumentation: admissible sets and argumenta-

tion stages. In J. Meyer and L. van der Gaag, editors, Proceedings of the 8th Dutch Conference

on Artificial Intelligence (NAIC’96), pages 357–368, 1996.

21

20 40 60 80 100

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

Average computation time (preferred)

Number of arguments

ti
m

e
 (

s
e

c
)

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●
●

●

●

ππprf_metasp arbitrary
ππprf_metasp 4−grid
ππprf_metasp 8−grid
ππprf arbitrary
ππprf 4−grid
ππprf 8−grid

20 40 60 80 100

0
2

0
4

0
6

0
8

0
1

0
0

Timeout percentage (preferred)

Number of arguments

P
e

rc
e

n
ta

g
e

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●

●

●

ππprf_metasp arbitrary
ππprf_metasp 4−grid
ππprf_metasp 8−grid
ππprf arbitrary
ππprf 4−grid
ππprf 8−grid

Figure 1: Average and timeout statistics for preferred semantics.

22

0 500 1000 1500 2000

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

Test runs detailed ππprf_metasp

Tests executed

ti
m

e
 (

s
e
c
)

●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●
●
●●
●
●●●●● ●●●●●●●●●●●●●●●

●●●●●
●
●●
●
●●
●
●●●●
●

●●●●●
●
●
●

●

●●● ●
●●●●●●●●●●●
●
●

●●
●●●●●
●

●

●

●

●●●●●
●

●●●●
●
●●
●
●
●●
●●

● Arbitrary instances
4−neighborhood instances
8−neighborhood instances

Arbitrary 4−neighborhood 8−neighborhood

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

Box plot ππprf_metasp

ti
m

e
 (

s
e
c
)

0 500 1000 1500 2000

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

Test runs detailed ππprf

Tests executed

ti
m

e
 (

s
e
c
)

●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●
●●●●●●●
●

●●●●●●●●●●●
●
●
●●●
●
●●
●●●●
●
●●●
●●
●●
●
●●●
●
●●
●
●●●●● ●●

●
●●●●●●●●●●
●●●

●

●

●

●●
●

●
●
●●
●
●

●●
●

●
●●

●
●●
●●

●
●
●●

●
●

●●
●
●●●●●●●

●

●

●
●
●

●

●

●
●
●

●
●

●

●

●
●

●

●

●
●

●●●●

●

●
●

●
●
●

●

●●

● Arbitrary instances
4−neighborhood instances
8−neighborhood instances

Arbitrary 4−neighborhood 8−neighborhood

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

Box plot ππprf

ti
m

e
 (

s
e
c
)

Figure 2: Statistics for preferred semantics.

23

20 40 60 80 100

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

Average computation time (semi−stable)

Number of arguments

ti
m

e
 (

s
e

c
)

● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ●

●

●

●

●

●

ππsem_metasp arbitrary
ππsem_metasp 4−grid
ππsem_metasp 8−grid

ππsem arbitrary
ππsem 4−grid
ππsem 8−grid

20 40 60 80 100

0
2

0
4

0
6

0
8

0
1

0
0

Timeout percentage (semi−stable)

Number of arguments

P
e

rc
e

n
ta

g
e

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●
●

●

●

●

ππsem_metasp arbitrary
ππsem_metasp 4−grid
ππsem_metasp 8−grid

ππsem arbitrary
ππsem 4−grid
ππsem 8−grid

Figure 3: Average and timeout statistics for semi-stable semantics.

24

0 500 1000 1500 2000

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

Test runs detailed ππsem_metasp

Tests executed

ti
m

e
 (

s
e
c
)

●● ●● ●● ●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●● ●●●●

●●●●●●●●●●●
●●●
●
●
●
●●●●●●●
●
●●●
●●●●●●●●●●●● ●●●

●●

●

●●●●●
●
●
●

●
●●●●
●

●
●●
●

●●●

●

●
●

●●

●
●●●●●
●●
●
●●
●

●
●●

●

●●●●●

●

●

●

●

●
●

●●

●

●
●
●●

●

●
●

●

●

●

●
●●

●

●

●●
●
●●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

● Arbitrary instances
4−neighborhood instances
8−neighborhood instances

Arbitrary 4−neighborhood 8−neighborhood

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

Box plot ππsem_metasp

ti
m

e
 (

s
e
c
)

0 500 1000 1500 2000

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

Test runs detailed ππsem

Tests executed

ti
m

e
 (

s
e
c
)

●● ●● ●● ●● ●● ●●●●●●●●●●●●●●●●●
●
●
●
●●●
●●●●●●●
●●●●●
●●●●●●●●● ●●●●●●●●●●●

●

●
●●●
●
●●●●●
●●●●●

●

●●●
●

●

●●●
●●●●●●●
●

●

●
●●

●

●●●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●●

●
●
●●●
●●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●
●●

●

●

●

●
●●
●
● ●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

● Arbitrary instances
4−neighborhood instances
8−neighborhood instances

Arbitrary 4−neighborhood 8−neighborhood

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

Box plot ππsem

ti
m

e
 (

s
e
c
)

Figure 4: Statistics for semi-stable semantics.

25

20 40 60 80 100

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

Average computation time (stage)

Number of arguments

ti
m

e
 (

s
e

c
)

● ● ● ● ●
● ●

●

●

●

● ● ● ●

●
●

●

●

●

●
●

●

ππstg_metasp arbitrary
ππstg_metasp 4−grid
ππstg_metasp 8−grid
ππstg arbitrary
ππstg 4−grid
ππstg 8−grid

20 40 60 80 100

0
2

0
4

0
6

0
8

0
1

0
0

Timeout percentage (stage)

Number of arguments

P
e

rc
e

n
ta

g
e

● ● ● ● ● ●
●

●

● ●

● ● ● ● ●

● ●
●

●

●●

●

ππstg_metasp arbitrary
ππstg_metasp 4−grid
ππstg_metasp 8−grid
ππstg arbitrary
ππstg 4−grid
ππstg 8−grid

Figure 5: Average and timeout statistics for stage semantics.

26

0 500 1000 1500 2000

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

Test runs detailed ππstg_metasp

Tests executed

ti
m

e
 (

s
e
c
)

●● ●● ●● ●●●

●
●●●●
●
●
●
●
●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●

●

●●
●●
●
●●●●●●●

●

●

●

●

●

●●
●
●

●

●●●●●●●●●●●●●●●● ●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●

●

●

●●●●●●
●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●
●
●●

●

●

●

●●
●

●

●
●●●●
●●●
●●
●●
●●
●

●
●●●●●
●
●●●●●
●
●●
●
●●●

●
●

●

●

●
●●
●
●

●

●

●

●

●●
●
●

●

●

●●
●
●

●

●

●●●●

●
●
●

●
●●●●●●
●
●●●
●

●

●●

●

●●

●●●

●

●

●

●

●

●

●

●
●
●

●
●

●

●●●
●●

●

●

●

●

●

●

●
●
●●●
●
●●
●●

●

● Arbitrary instances
4−neighborhood instances
8−neighborhood instances

Arbitrary 4−neighborhood 8−neighborhood

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

Box plot ππstg_metasp

ti
m

e
 (

s
e
c
)

0 500 1000 1500 2000

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

Test runs detailed ππstg

Tests executed

ti
m

e
 (

s
e
c
)

●● ●● ●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●● ●●●

●

●

●●●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●

●

●●

●●

●

●●
●
●●●
●

●

●

●

●

●

●●

●

●

●

●●●●●
●●●●●●●●
●
●●

●●●

●

●●●●

●
●●

●

●

●

●

●●●

●

●
●
●●
●●
●

●

●
●●●
●
●
●●●
●●
●
●
●
●●●

●●●

●
●

●●

●●●●

●

●●●●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●●
●

●●

●

●

●

●

●
●

●●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●

●

●●
●
●●●
●

●

●

●

●●

●

●

●
●

●
●

●

●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● Arbitrary instances
4−neighborhood instances
8−neighborhood instances

Arbitrary 4−neighborhood 8−neighborhood

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

Box plot ππstg

ti
m

e
 (

s
e
c
)

Figure 6: Statistics for stage semantics.

27

20 30 40 50 60

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

Average computation time (resolution−based grounded)

Arbitrary instances

Number of arguments

ti
m

e
 (

s
e

c
)

●

●

● ● ●

● Metasp ππgrd*_metasp

Metasp ππ'grd*_metasp

Handcrafted ππgrd*

20 30 40 50 60

0
2

0
4

0
6

0
8

0
1

0
0

Timeout percentage (resolution−based grounded)

Arbitrary instances

Number of arguments

P
e

rc
e

n
ta

g
e

●

●

●
●

●

● Metasp ππgrd*_metasp

Metasp ππ'grd*_metasp

Handcrafted ππgrd*

Figure 7: Average computation time and timeouts for resolution-based grounded semantics and

arbitrary AFs.

28

20 30 40 50 60

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

Average computation time (resolution−based grounded)

4−grid instances

Number of arguments

ti
m

e
 (

s
e

c
)

●

●

●

●

●

● Metasp ππgrd*_metasp

Metasp ππ'grd*_metasp

Handcrafted ππgrd*

20 30 40 50 60

0
2

0
4

0
6

0
8

0
1

0
0

Timeout percentage (resolution−based grounded)

4−grid instances

Number of arguments

P
e

rc
e

n
ta

g
e

●

●

●

● ●

● Metasp ππgrd*_metasp

Metasp ππ'grd*_metasp

Handcrafted ππgrd*

Figure 8: Average computation time and timeouts for resolution-based grounded semantics and

4-neighborhood AFs.

29

20 30 40 50 60

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

Average computation time (resolution−based grounded)

8−grid instances

Number of arguments

ti
m

e
 (

s
e

c
)

●

●
●

● ●

● Metasp ππgrd*_metasp

Metasp ππ'grd*_metasp

Handcrafted ππgrd*

20 30 40 50 60

0
2

0
4

0
6

0
8

0
1

0
0

Timeout percentage (resolution−based grounded)

8−grid instances

Number of arguments

P
e

rc
e

n
ta

g
e

●

●

●

●
●

● Metasp ππgrd*_metasp

Metasp ππ'grd*_metasp

Handcrafted ππgrd*

Figure 9: Average computation time and timeouts for resolution-based grounded semantics and

8-neighborhood AFs.

30

0 200 400 600

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

Test runs detailed Metasp ππgrd*_metasp

Tests executed

ti
m

e
 (

s
e

c
)

●●●●●●●●●●●

●

●

●●●●

●

●

●

●●●●●
●

●

●●●

●

●●

●

●

●●●●●

●

●

●

●

●

●●●●

●

●●●●●●

●

●●

●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●

●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●
●●●
●
●●

●●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● Arbitrary instances
4−neighborhood instances
8−neighborhood instances

Arbitrary 4−neighborhood 8−neighborhood

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

Box plot Metasp ππgrd*_metasp

ti
m

e
 (

s
e

c
)

0 200 400 600

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

Test runs detailed Metasp ππ'grd*_metasp

Tests executed

ti
m

e
 (

s
e

c
)

●●●●●●●●●●●●

●

●●●●●●●●●

●

●

●

●

●

●

●

●●

●

●

●●●●●●●●●●●

●●●●●●●●●●●

●●●

●

●●

●

●

●

●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● Arbitrary instances
4−neighborhood instances
8−neighborhood instances

Arbitrary 4−neighborhood 8−neighborhood

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

Box plot Metasp ππ'grd*_metasp

ti
m

e
 (

s
e

c
)

0 200 400 600

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

Test runs detailed Hancrafted ππgrd*

Tests executed

ti
m

e
 (

s
e

c
)

●

●
●

●

●●●●
●
●

●

●

●

●

●

●

●

●●

●

●

●●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●

● Arbitrary instances
4−neighborhood instances
8−neighborhood instances

Arbitrary 4−neighborhood 8−neighborhood

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

Box plot Hancrafted ππgrd*

ti
m

e
 (

s
e

c
)

Figure 10: Detailed statistics for resolution-based grounded semantics.

31

