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Malat1 as an evolutionarily conserved
lncRNA, plays a positive role in regulating
proliferation and maintaining
undifferentiated status of early-stage
hematopoietic cells
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Abstract

Background: The metastasis-associated lung adenocarcinoma transcription 1 (Malat1) is a highly conserved long

non-coding RNA (lncRNA) gene. Previous studies showed that Malat1 is abundantly expressed in many tissues and

involves in promoting tumor growth and metastasis by modulating gene expression and target protein activities.

However, little is known about the biological function and regulation mechanism of Malat1 in normal cell proliferation.

Results: In this study we conformed that Malat1 is highly conserved across vast evolutionary distances amongst 20

species of mammals in terms of sequence, and found that mouse Malat1 expresses in tissues of liver, kidney, lung,

heart, testis, spleen and brain, but not in skeletal muscle. After treating erythroid myeloid lymphoid (EML) cells

with All-trans Retinoic Acid (ATRA), we investigated the expression and regulation of Malat1 during hematopoietic

differentiation, the results showed that ATRA significantly down regulates Malat1 expression during the differentiation

of EML cells. Mouse LRH (Lin-Rhodaminelow Hoechstlow) cells that represent the early-stage progenitor cells show a

high level of Malat1 expression, while LRB (Lin − HoechstLow RhodamineBright) cells that represent the late-stage

progenitor cells had no detectable expression of Malat1.

Knockdown experiment showed that depletion of Malat1 inhibits the EML cell proliferation. Along with the down

regulation of Malat1, the tumor suppressor gene p53 was up regulated during the differentiation. Interestingly, we

found two p53 binding motifs with help of bioinformatic tools, and the following chromatin immunoprecipitation

(ChIP) test conformed that p53 acts as a transcription repressor that binds to Malat1’s promoter. Furthermore, we

testified that p53 over expression in EML cells causes down regulation of Malat1.

Conclusions: In summary, this study indicates Malat1 plays a critical role in maintaining the proliferation potential of

early-stage hematopoietic cells. In addition to its biological function, the study also uncovers the regulation pattern of

Malat1 expression mediated by p53 in hematopoietic differentiation. Our research shed a light on exploring the

Malat1 biological role including therapeutic significance to inhibit the proliferation potential of malignant cells.
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Background

The long noncoding RNA Malat1 (Metastasis-Associated

Lung Adenocarcinoma Transcript 1), also known as

NEAT2 (Nuclear-Enriched Abundant Transcript 2) or

alpha, is a highly conserved and large-size nuclear non-

coding RNA (lncRNA) molecule. This gene was firstly

identified in 2003 from early-stage non-small cell lung

cancer (NSCLC) cells with highly expression level [1],

subsequently a number of publications reported that

Malat1 is also as one of the major genes that highly up

regulates in different cancers including endometrial cancer

[2], breast cancer [3]; cervical cancer [4]; colorectal cancer

[5]; hepatocellular carcinoma [6]; liver cancer [7]; neuro-

blastoma [8]; osteosarcoma [9], pancreatic cancer [10],

prostate cancer [11], bladder cancer [12], and gastric

cancer [13]. Targeted deletion of Malat1 in human lung

tumor cells impairs tumor metastasis in a mouse xeno-

graft model [14]. Therefore, expression of Malat1 corre-

lates with tumor development, progression, metastasis

and survival in different cancer types. In addition to the

important role in proliferation and metastases of can-

cers, Malat1 also involves in other diseases and even in

normal physiological processes of cells, for example: It has

been reported that knockdown of Malat1 using siRNA

suppresses myoblast proliferation by arresting cell growth

in the G(0)/G(1) phase [15], thus target therapy of this

gene shows a potential value for recovery of muscle

atrophy or muscle wasting diseases. In addition, Lin

M.Y., et al. [16] reported that Malat1 is highly expressed

in iPS (induced pluripotent stem cells). In normal tissues,

MALAT1 expresses in a tissue specific patterns, for ex-

ample, Malat1 is the most abundantly expressed lincRNA

in differentiating neurons, and is up regulated in cere-

bellum, hippocampus and brain stem of human alco-

holics [17]. When treated the mouse brain cells with

PCP (psychotomimetic agent phencyclidine, which gen-

erally induces the perinatal apoptosis and behavioral

deficits), Malat1 is highly up regulated [18].

Full length Malat1 localizes in nuclear speckles, which

is a dynamic structure that is essential for gathering and

recruiting splicing factors [19], thus, Malat1 RNA was

considered to be as an important regulatory molecule

for trans splicing of RNA [20], Lin M.Y., et al. [16] has

found that there is a substantial difference in splices iso-

forms of lncRNA including Malat1 generated in induced

pluripotent stem cells (iPSCs) and neurons, these isoforms

are specific to different growth status, the physiological

function is unknown. As a major lncRNA, Malat1 also

joins regulation process of transcription splicing. Malat1

interacts with serine/arginine splicing factors (SF), results

in modulating the distribution of splicing factors in nu-

clear speckle, and changing cellular levels of phosphor-

ylated forms of SR proteins. Researchers have already

identified that Malat1 RNA has multiple physiological

functions in normal cells, such as regulating cell cycle

[21], Malat1 modulates the expressions of cell cycle genes,

which are required for G1/S regulation and mitotic pro-

gression with tissue-specific and developmental stage-

specific patterns.

In addition to associate with malignant phenotype for

high expression of wild type of Malat1 RNA, the mutated

forms of Malat1 are also involved in malignant phenotype;

for example, t (11; 19) (q13.1; q13.42) was been found in

mesenchymal hamartoma of liver [22], this translocation

causes breakpoint in Malat1 gene on chromosome 11,

thereafter produces mutated forms of Malat1RNA by fus-

ing Malat1 with MHLB1 gene of chromosome 19. t (6;11)

(p21;q12) was reported in renal cell carcinoma [23], this

translocation causes Malat1 (Alpha)-TFEB gene fusion,

results in over expression of native TFEB protein (de-

termined by immuno-histochemistry), while native TFEB

in cells without this translocation is not detectable by this

assay.

It has been reported that lncRNAs play critical role

in normal differentiation/cell fate decision during

hematopoiesis. The first lncRNA with key role in

hematopoiesis to be described was EGO [24], an evolu-

tionary conserved gene, which transcribes an antisense

RNA of ITPR1 gene that modulates the development

of eosinophils, EGO is normally expressed in human

CD34+ hESCs and becomes up regulated during their

differentiation into eosinophil. Knockdown of EGO by

siRNAs in cultured CD34+ progenitors impairs the ex-

pression of those genes including major basic protein

and eosinophil-derived neurotoxin, which are critical

for eosinophil development. Thus, EGO can contribute

to eosinophilopoiesis by enhancing the expression of

genes needed for this process. lncRNAs are also impli-

cated in the regulation of myelopoiesis, granulocytosis and

monocytosis, Zhang et al. [25] identified HOTAIRM1,

a gene transcribes an antisense sequence of HOXA1/2

intergenic region, is highly up regulated during retinoic

acid-induced granulocytic differentiation of myeloid

progenitors. HOTAIRM1 transcript is a ~500 bp RNA

fragment, which coordinates along with the activation

of HoxA1 and HoxA4 expression during granulocytic

differentiation in NB4 cells (acute promyelocytic leukemia

cell line) [26]. The understanding regarding involvement

of Malat1 in hematopoiesis still remains poor. In this

study we are addressed to explore Malat1 expression

regulation patterns and possible physiological functions

in hematopoietic differentiation.

Results

Malat1 is an evolutionary conserved lncRNA and expressed

in a wide range of species and tissues of primates

On mouse chromosome 19, Malat1 gene is located at

40 kb down stream of Neat1 gene (Fig. 1a). Sequence
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analysis for mouse Malat1 gene shows Malat1 is 6.98 kb

transcript, which has been identified both by Northern

blot and sequence analysis of transcription. Alignment

analysis of multiple genomic sequences shows Malat1 is

the most evolutionary conserved sequence in ~120 kb

chromosome region (Fig. 1b). The comparison of wide

range of species (20 species of mammals) by phylogenetic

analysis shows these Malat1 molecules of different re-

sources organisms are from a common ancestor (Fig. 1c).

Mouse Malat1 has smallest sequence diversity with rat

MALAT1, and human Malat1 is very closed to bonobo

and chimpanzee Malat1. Highly conserved coding DNA

sequence is common known with important physiological

functions, but the role for many of these highly conserved

long non-coding DNA sequences remains unclear. The

conservative of Malat1 sequence indicates it is a house

keeping like gene, more and more evidence shows it up reg-

ulates in many cancers, and this research also shows Malat1

is highly expression in undifferentiated hematopoietic

stem cells. In addition, several publications have described

Malat1 regulates the target gene expression via multiple

layer and flexible manners [27]. Therefore, we predict that

Malat1 plays a critical regulation role on maintenance of

proliferation and malignant cell metastasis ability, more

experiments need to be carried out to clarify these func-

tions of Malat1 molecule. Through extensive analysis of

publicly accessible panoramic expression databases includ-

ing GEO (http://www.ncbi.nlm.nih.gov/gds), GeneAtlas

(http://biogps.org/dataset), SAGE Genie (http://cgap.nci.

nih.gov/SAGE), and NHPRTR (Nonhuman Primate Refer-

ence Transcriptome Resource, http://www.nhprtr.org/data/

2014_NHP_tissuespecific). We found Malat1 RNA is ex-

tensively expressed in different species and tissues of

primates including human being. In order to compare

the Malat1 expression status in target tissues that we

were worked on, we showed the expression abundances of

Malat1 RNA in 7 target tissues from 12 primate species

based on the datasets of Illumina BodyMap 2 for expres-

sion analysis of human Malat1 and NHPRTR for expres-

sion analysis of other primates Malat1 (Fig. 2). The Malat1

(A)

(B)

(C)

Fig. 1 Malat1 gene localization, sequence conservation cross vertebrates and evolutionary Pattern. a Mouse Malat1 locus is on chromosome 19

(19A), and is localized on 40 kb down stream of Neat1 gene, yields a 6.983 kb of transcript. b Sequence comparison indicates Malat1 gene is the

most conserved sequence in around 120 kb region of chromosome 19. c Phylogenetic analysis of evolution relationship of Malat1 gene among

20 species of mammals, mouse Malat1 has smallest genetic distance with rat Malat1 and closes to human MALAT1 gene
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expresses with high level in other vertebrates such as

Zebra fish has been reported recently [28].

ATRA induces Malat1 up regulation in EML cells

In order to induce EML cell differentiation, we treated

the cells with 10 mM of ATRA for 0, 6, 12 and 24 h re-

spectively, total RNAs were detected by Northern blot

together with RNA from Epro cells. These RNAs repre-

sent the different stages of hematopoietic differentiation,

as showed in Fig. 3a (upper panel), a RNA fragment with

the size of ~7 kb was highly expressed in EML (0 h) and

EML (6 h) and dramatically decreases in EML (12 h) and

EML (24 h), tiny expression of this RNA was detected in

Epro cells. The quantitative differences of Malat1 expres-

sion level among these induction stages were determined

by comparison of signal intensity after normalizing to β-

actin control. From these comparisons, we conclude

Malat1 expression level in EML cells (0 h) is 21.25 times

higher than that in Epro; and 8.5, 4 and 2 times higher

than that in EML cells exposed to ATRA for 24, 12 and

6 h respectively (Fig. 3a upper and bottom panel).

Malat1 expresses at high level in early stage of primitive

progenitor cells in bone marrow and higher level in liver

than in most of other tissues

Malat1 down regulates during hematopoietic differenti-

ation induced by ATRA, if this expression behavior also

existed in normal hematopoietic differentiation? We iso-

lated linage negative populations (Lin-) of mouse bone

marrow by using the Lin + antibodies cocktails, the Lin-

populations was further isolated by using fluorescence

dye Rhodamine-123 and Hoechst-33342 as described in

material and methods. Our northern analysis shows Malat1

expresses with much higher level in more primitive pro-

genitor cells (LRH), the expression level in LRH population

is 40 fold higher than in LRB and 5 fold higher than in

Lin + population (Fig. 3b upper and bottom panel).

Analysis of multiple tissues shows Malat1 expresses

with the highest level in liver, and no detectable ex-

pression in skeletal muscle, among tissues assayed in

this experiment, the expression level of Malat1 from

high to low lists as following: liver > Kidney > lung >

heart > testis > spleen > brain > skeletal muscle (See Fig. 3c

upper and bottom panel).

Fig. 2 Malat1 expresses in a wide range of species and tissues of primates including human tissue samples. The expression datasets based on RNAseq

were used to show the RNA level of Malat1 in different tissues of primates. 7 target tissues were selected as showed in the figure come from 12

different primate species. The Malat1 expression dataset of human tissues are available in NCBI http://www.ncbi.nlm.nih.gov/ieb/research/acembly/

av.cgi?db=human, and the expression datasets of other primates are available in the transcriptome database of NHPRTR http://www.nhprtr.org/data/

2014_NHP_tissuespecific. The relative expression level of Malat1 RNA was labeled as FPKM (transcript abundances in fragments per kilobase of exon

per million fragments mapped)
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Hematopoietic differentiation induced by ATRA causes up

regulation of p53 and inhibition of EML cell growth

ATRA treated EML cells induces hematopoietic differ-

entiation [29]. We tested the hematopoietic factor

GATA2, which is a critical transcription factor for primi-

tive hematopoiesis procedure [30]. Our data shows that

ATRA exposed significantly up regulates GATA2 expres-

sion in EML cells (after 48 h exposed, the expression level

of GATA2 is up regulated to around 5 times of uninduced

EML cells) (Fig. 4a). Since it has been identified that

GATA2 is one of the indicator of hematopoiesis of yolk

sac stem cells and hematopoietic progenitor cells,

therefore ATRA exposed initiates hematopoiesis of EML

cells. We were also further tested the expression behavior

of EKLF1 (erythroid kruppel like factor), which drives red

blood cell differentiation and represses megakaryocyte for-

mation [31, 32]. The results show EKLF1 is up regulated

to around 4.5 times of uninduced EML cells (Fig. 4a), that

implicates the direction of differentiation is more towards

blood cells than megakaryocytes. Analysis for growth rate

of ATRA-induced EML cells shows an inhibition effect as

showed in Fig. 4b, the proliferation rate of EML cells is

decreased around 50 % after 48-h treatment with ATRA

(P = 0.0086 < 0.05).

(A) (B) (C)

Fig. 3 Expression analysis of Malat1 gene in hematopoietic cells. a Northern blot showed the expression level of full length Malat1 in ATRA induced

EML cells and Epro cells, upper panel: total RNAs from different induction stages of EML cells as designated in the figure. Lower panel:

Semi-quantitative analysis of relative expression level for Malat1 gene in indicated EML and Epro cells; b Northern blot showed the expression

level of full length Malat1 in different populations of mouse bone marrow as indicated in the figure. Upper panel: total RNA from LRH+, LRH-/(LRH)

and LRH-/(LRB) were detected with Malat1probe. Lower panel: semi-quantitative analysis of relative expression level for Malat1 gene in these

populations. c Northern blot showed the expression level for Malat1 gene in multiple tissues of mouse. Upper panel: total RNA from mouse

tissues as showed in the figure was detected. Lower panel: semi-quantitative analysis of relative expression level for Malat1 gene in mouse

tissues. 225 bp 5’ Malat1 DNA was used as the probe to detect the Malat1 expression, a ~6.9 kb Malat1 RNA was labeled in the figures, the

data was been normalized using β-actin, for further details see material and methods
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Over expression of p53 down regulates Malat1

expression level via transcriptional inhibition

In order to test if the p53 level in cells affects Malat1

expression, we carried out a transiently transfection

experiment that enforced expression of p53 gene in

EML cells for 48 h, and then prepared total RNA for

qRT-PCR detection. Our data shows p53 expression

significantly decreases Malat1 expression level. In this

test, when p53 increased to 2.7 times of control,

Malat1 decreased around 4 times (P = 0.003 < 0.05,

Fig. 5a). Based on this observation, we further test if

p53 can affect the transcription activity by performing

CHIP experiment using above transfected EML cells,

the result shows there was less target sequence can

be enriched on Malat1 promoter region by anti-pol

II antibody (2 fold difference, P = 0.00016 < 0.05) in

p53 over expressed EML cells (Figs. 5b and 5c). We

then predicted the p53 binding sites on promoter re-

gion of Malat1 using “PROMO” program (Promoter

2.0 Prediction Server), two typical p53 binding do-

mains have been predicated that the region of (−698

to−669 bp) named as p53-BS-1 locus, the region of

(−656 to−625 bp) named as p53-BS-2 locus (Figs. 6a

and 6b). We picked up these two sites for CHIP assay

experiments by using anti-p53 antibody. Around 4 fold

of target sequence was enriched on p53-BS-1 locus

(P = 0.00018 < 0.05), but no significant enrichment on

BS-p53-2 locus.

Discussion

Malat1 may preserve the proliferation ability of

hematopoietic stem cells

As a typical tumor marker, Malat1 expresses with high

level in malignant cells. In this study we found Malat1

gene expresses with high level in undifferentiated

hematopoietic stem cells and primitive progenitor cells,

down regulation of Malat1 accompanies with growth

inhibition of EML cells. Our experiments have proved that

p53 is acted as a transcription repressor of Malat1 expres-

sion to inhibit Malat1 activation. It has been identified

that interferes p53 expression inhibits hematopoietic and

muscle differentiation [33], reverse function of Malat1 vs.

p53 implies Malat1 preserves the ability to enhance the

proliferation and inhibit differentiation of hematopoietic

and muscle cells. Increased p53 expression causes cell

differentiation has been recently suggested by some ob-

servations [34–36]. In addition, interferes with endogen-

ous wt-p53 protein of non transformed murine cells 32D

(myeloid progenitors) and C2C12 (myoblasts) using

dominant negative p53 protein also shows a dramatic

inhibition effect of terminal differentiation into granu-

locytes or myotubes respectively [37]. In this study, we

identified that the proliferation ability of hematopoietic

cells is significantly inhibited by interfering Malat1 ex-

pression in EML cells (Fig. 7b). Taken together, inter-

fering endogenous Malat1 expression directly inhibits

cell differentiation, and that Malat1 acts in opposite

(A) (B)

Fig. 4 The analysis of gene expression and cell proliferation. a EML cell were induced with ATRA for indicated time points. The expression of p53,

Malat1, Gata2 and EKLF1 were detected using qRT-PCR, β-actin was used as a loading control, and the means ± SD of three independent experiments

are shown. Significant changes were detected from the group of 48 h induction (P < 0.05 vs uninduced control). b EML cells were treated

with or without (mock) ATRA for indicated time points, the graph showed the rate of growth plotted on a liner scale, the means ± SD of

three independent experiments are shown, P < 0.05 vs Mock control
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direction with p53 in EML cells preserves the prolifera-

tion ability of hematopoietic stem cells/progenitors.

p53 protein down regulates Malat1 expression via

sequence specific binding

ATRA induces hematopoietic differentiation of EML cells

is determined by up regulation of GATA2 and EKLF1

level. Our study has proved this differentiation accompan-

ies with up regulation of p53 and down regulation of

Malat1. Surprisingly, p53 protein binds to Malat1 core

promoter region, and CHIP data shows p53 can be

enriched in the region of (−652 to −765 bp), the core

binding loci is in the range of−669 to−698 bp, in which

has the sequence of cggCATGgccgccaaggtcgccGTGCCct.

Another predicted loci is in the range of (−558 to −670 bp),

the core binding loci is in the range of (−625 to −656 bp),

in which has the sequence of CATGgccttgctgGGCTGA-

gaccgcagcct, however, CHIP result shows the second site

doesn’t effectively bind with p53 (Fig. 5b). Therefore we

speculate even both sites (p53-BS1 and p53-BS2) have

conserved CATG sequence domain, but only p53-BS1

binds to p53 protein and inhibited Malat1 gene activation,

hence the background sequence of p53-BS1 with conserved

domain CATG may favor a configuration of p53 binding.

Our finding is consistent with some expression study of

p53, for example, viral protein dysregulated p53 expression

leads to up regulation of Malat1, and mutation or inactiva-

tion of p53 is also shown up regulation of Malat1 expression

[38]. Therefore we conclude that p53 is a negative regulator

of Malat1, over expression of p53 may play a therapy effect

to target inhibition of oncogenic Malat1 level in cells.

Proliferation suppression by down regulation of Malat1 in

hematopoietic cells

Apparently, our study has proved Malat1 down regulates

in late stage hematopoietic progenitors and more differ-

entiated primitive cells, and Malat1 gene expression is

inhibited by tumor repressor p53 protein. If down regu-

lation of Malat1 leads to hematopoietic differentiation via

proliferation inhibition? In order to answer this question,

we interfered Malat1 expression of EML cells, in this study

Malat1 was down regulated with 7–8 fold (P = 0.001

< 0.05), but hematopoietic differentiation marker GATA2

and EKLF1 didn’t significantly change the expression level

(A) (B)

(C)

Fig. 5 p53 bound to Malat1 promoter and inhibited its expression. a Over expression of p53 protein (around 2.7 fold up regulation) in EML cells down

regulated Malat1 level with around 4 times, β-actin was used as a loading control, the means ± SD of three independent experiments are shown, P <

0.05 (over expression of P53 vs Mock control). b CHIP assay to detect the cells with over expression of p53 gene. Rabbit IgG was used as the negative

control of CHIP, the means ± SD of three independent experiments are shown, P < 0.05 vs Mock control (co-immunoprecipitated with rabbit IgG). c

Schematic drawing shows RNA polymerase II initiation complex binds to Malat1 promoter region, and p53 protein inhibits DNA binding activity of pol

II therefore interferes the initiation complex assembly on transcription start site as indicated in the figure
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(P = 0.15 > 0.05 for GATA2 comparison and P = 0.13 > 0.05

for EKLF1 comparison. Fig. 7a). Hence over expression of

Malat1 can’t directly drive the hematopoietic differenti-

ation, however, the down regulation of this gene can sig-

nificantly reduced hematopoietic cell (EML) proliferation

rate (P = 0.0312 < 0.05, Fig. 7b), whereas, we speculate one

of the ability for Malat1 is maintained the proliferation

potential of hematopoietic stem cells/progenitors. This

result is also consistent with the studies from knockdown

of Malat1 in myoblast [39, 40]. Based on these studies we

proposed a model regarding Malat1 function (Fig. 7c),

during hematopoietic differentiation of EML cells by ret-

inoic acid exposure, RA induces up regulation of GATA2

and EKLF1, then initiates hematopoietic differentiation; in

the meantime, up regulation of p53 also results in regula-

tion of downstream gene expression including negative

regulation of Malat1, thus causes proliferation suppres-

sion. The mechanisms for Malat1 RNA regulating cell

proliferation are still unclear.

Conclusions

Malat1 is one of the most significant molecules of long

non-coding RNA (lncRNA), which is commonly up reg-

ulated in malignant cells, hence it is usually considered

as a biomarker of some type of cancers. Our research

has clarified the aspects of normal biological function

and transcriptional regulation during hematopoiesis. A,

Malat1 down regulates during hematopoietic differenti-

ation induced via ATRA; B, p53 is a negative regulator

of Malat1 expression through binding to its promoter

region; C, Malat1plays a critical role in maintaining the

proliferation potential of early-stage hematopoietic cells.

In summary, our research is the first report that Malat1

plays a role in maintaining the proliferation potential of

hematopoietic cells. And Malat1 is transcriptionally reg-

ulated by tumor suppressor p53 during ATRA induced

hematopoiesis.

Methods

Cell culture

EML cells (Multipotent hematopoietic cell line, progeni-

tor cells of myeloid, erthroid and megakaryocytic and B-

lymphoid lineages) were cultured with Iscove’s Modified

Dulbecco’s Media (IMDM), supplemented with 20 %

heat inactivated horse serum, and conditioned medium

from cultured BHK/MKL cells was used as the source of

stem cell factors. EML cells were induced to differentiate

by 10 μM all-trans retinoic acid (ATRA) for indicated

time points as showed in figures (Fig. 2a upper and bot-

tom). Epro cells were cultured with IMDM containing

(A)

(B)

Fig. 6 p53 regulated the expression of Malat1 via sequence specific binding. a CHIP assay showed p53 protein bound to BS-p53-1 but BS-p53-2

site, the means ± SD of three independent experiments are shown, P < 0.05 vs Mock control (co-immunoprecipitated with rabbit IgG). b Sche-

matic drawing shows the sequence specific binding of repression. The BS-p53-1 site with conserved sequence of cGGCATG has strong p53

binding activity therefore inhibits Malat1 expression
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20 % horse serum and 10 % HM-5 conditioned medium

as the source of mouse GM-CSF. All growth mediums

contained 5 U/ml penicillins, 5 μg/ml streptomycin

sulfate, and 2 mM l-glutamine (Invitrogen).

RNA interferences (RNAi)

Malat1 expression was silenced by RNA interference,

briefly, used the BLOCK-iT™ online program to pick up

DNA sequences that locate in ORF region of mouse

Malat1 gene as following: MA-siRNA-285: GCAGTT

TAGGAGATTGTAA (control oligo: MA-ctr-siRNA-285:

GCAGATTAGAGGTTTGTAA); MA-siRNA-2247: GCG

GAATTGCTGGTAGTTT (Control oligo: MA-ctr-siRNA-

2247: GCGGTTAGGTCGATAGTTT). Synthesized double

strand RNAs for these oligos and transiently trans-

fected into EML cells as following: 30 μl of Lipofecta-

min 2000 was mixed with 1.5 ml of Opiti-MEM

medium, then incubated at RT for 5 min, mixed 75 μl

of double strand RNA (20 μM) with 1.5 ml of Opiti-

MEM medium, incubated at RT for another 5 min.

Mixed RNAs and Lipofectamine solution and incu-

bated at RT for total 20 min. Harvested EML cells with

spin and then resuspended ~2X107cells with 1.5 ml of

Opiti-MEM medium, added RNA-Lipofectamin mix-

ture to these cells and mixed gently, then incubated

for 48 h in a CO2 incubator.

(A) (B)

(C)

Fig. 7 Interfered Malat1 expression didn’t significantly change the hematopoietic differentiation but inhibited the proliferation of EML cells. a Inhibited

Malat1 expression of EML cells by RNA interference, the decrease of Malat1 didn’t significantly change the expression of hematopoietic factor GATA2

and EKLF1, the means ± SD of three independent experiments are shown, P < 0.05 vs Mock control (control RNAi oligo). b EML cells were interfered

with control RNAi oligo or Malat1 RNAi oligo, cell number was counted at 24 and 48 h, the graph showed the growth rate of EML cells plotted on a

liner scale, the means ± SD of three independent experiments are shown, P < 0.05 vs Mock control (control RNAi oligo). c Schematic drawing shows a

work model that ATRA induces hematopoietic differentiation and Malat1 down regulation. In this model, ATRA induces up regulation of GATA2, EKLF1

and tumor repressor p53, and therefore causes hematopoietic differentiation, on the other hand, p53 acts as a transcription factor inhibits Malat1

expression in EML cells, Malat1 played a role in maintaining proliferation potential of hematopoietic cells
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Chromatin precipitation (CHIP) and promoter binding assay

ChIP assays were performed using chromatin immuno-

precipitation assay kit (Upstate) following manufacturer's

instruction. EML cells (2X106) were plated per 100-mm

dish before 24 h transfection, and then transfected with

24 μg indicated plasmids. After 48 h transfection, harvested

cells and cross linked with fixing buffer (1 % formaldehyde,

10 mM NaCl, 50 mMHePes, pH7.5, 1 mM EDTA, 0.5 mM

EGTA), prepared nuclear extracts and then fragmentized

chromatin DNA into an average of 200 bp segments by

sonication. Chip assays were performed with anti-p53 and

anti-pol II antibodies, reversed precipitated DNA-protein

complex and purified DNA fragments, then performed

quantitative PCR using QuantiTect SYBR Green PCR mas-

ter mix (Qiagen). Primers were used as following: for p53

binding site assay: Site 1: FMA53-1, gatagacctggggaccttgc,

RMA53-1, atggtcgctgcaggtgag, the amplified fragment was

113 bp; Site 2: FMA53-2, ctcacctgcagcgaccat, RMA53-2:

ctctcggggccacttttc, and the amplified fragment was 112 bp.

For pol II binding site assay, Fpol: tcgtccctacaggagcattc,

Rpol: cagcttcagcttccacttcc, and the amplified fragment was

160 bp.

RNA isolation, Northern blot and qPCR /qRT-PCR

Total RNA was isolated from EML, EPRO and isolated

bone marrow cells using trizol reagent (Life Technolo-

gies, Gaithersberg, MD). Northern blot was performed

with 10 μg total RNA per lane. Probe for detecting Malat1

was 225 bp of 5’ sequence (spanning 72-296 bp of the se-

quence of Genebank Accession number HG982261.1).

Probe for detecting β-actin was 202 bp of 5’ sequence

(spanning 490–691 bp of the sequence of Genebank Ac-

cession number X03672). A mouse multiple tissue RNA

blot was purchased from Clontech. The probes were la-

beled using PCR amplification that 32P-labeled dCTP was

incorporated into produced PCR fragments. RNA was

electrophoresed on a 1 % agrose/formaldehyde gel and

was blotted onto membranes (Amersham Pharmacia

Biotech) followed by UV crosslinking. The hybridization

was performed at 65 °C for 16 h. Signals on the washed

membrane were visualized by autoradiography and were

quantitated by densitometry analysis. The qPCR or qRT-

PCR was performed as previously described.

Purification of LRH and LRB cells from mouse bone marrow

Prepared bone marrow cells from 8–12-week-old BALB/c

mice, then depleted lineage positive cells by using a mix-

ture of phycoerythrin (PE)–conjugated monoclonal anti-

bodies directed against surface antigens (derived from

blood cells including CD11b, CD5, CD8a, CD4, Gr-1,

CD45R, Ter119) were purchased from BD Biosciences

(San Jose, CA) and PE magnetic beads were purchased

from Miltenyi Biotech (Surrey, U.K.). Purified Lin (-)

cells were then further purified using a cocktail solution

of supravital dyes. Principally, Lin- cells were suspended

in FACS stain buffer (1XHBSS buffer) containing

Rhodamine-123 and Hoechst-33342 for 15 min; labeled

cells were then sorted on FACS-STAR (Becton Dickinson),

the Lin-Rholow/HoechstBright(LRB) represented late stage

progenitor cells and the Lin-Rholow/HoechstLow(LRH)

represented more primitive progenitor cells, were highly

enriched from Lin- population and used for Malat1 ex-

pression analysis.

Statistical analysis

The mean value and standard deviation of three independ-

ent experiments were used. P values were calculated

with a paired student’s T test (two tailed hypothesis). A

P value of < 0.05 between experimental sample (group)

and control sample (group) was considered to be statis-

tically significance.

Availability of supporting data

The Malat1 sequences and the phylogenetic tree of 20

species of mammals in Fig. 1c are available in Dryad re-

pository, DOI: doi:10.5061/dryad.017t8.

The expression datasets of 7 tissues from 12 different

primate species in Fig. 2 are from http://www.nhprtr.org/

data/2014_NHP_tissuespecific and http://www.ncbi.nlm.

nih.gov/ieb/research/acembly/av.cgi?db=human.
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