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Abstract

Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) imaging mass spectrometry, also called

MALDI-imaging, is a label-free bioanalytical technique used for spatially-resolved chemical analysis of a sample.

Usually, MALDI-imaging is exploited for analysis of a specially prepared tissue section thaw mounted onto glass

slide. A tremendous development of the MALDI-imaging technique has been observed during the last decade.

Currently, it is one of the most promising innovative measurement techniques in biochemistry and a powerful and

versatile tool for spatially-resolved chemical analysis of diverse sample types ranging from biological and plant

tissues to bio and polymer thin films. In this paper, we outline computational methods for analyzing MALDI-

imaging data with the emphasis on multivariate statistical methods, discuss their pros and cons, and give

recommendations on their application. The methods of unsupervised data mining as well as supervised

classification methods for biomarker discovery are elucidated. We also present a high-throughput computational

pipeline for interpretation of MALDI-imaging data using spatial segmentation. Finally, we discuss current challenges

associated with the statistical analysis of MALDI-imaging data.

Introduction

In the last decade, matrix-assisted laser desorption/ioniza-

tion-time of flight (MALDI-TOF) imaging mass spectro-

metry (IMS), also called MALDI-imaging [1], has seen

incredible technological advances in its applications to bio-

logical systems [2-7]. While innovative ten years ago,

applications to human or animal tissues are now fairly

routine with established protocols already in place. New

types of samples are continuously being analyzed (e.g. bac-

terial thin films [3], whole animal body sections [8], plant

tissues [5], polymer films [9], and many more) with the

main focus on proteomics. Although new IMS techniques

are being introduced every year, our recent review [2]

shows that MALDI-imaging plays the leading role in the

new, rapidly developing field of IMS-based proteomics.

This paper consists of two parts. Firstly, we outline com-

putational methods for MALDI-imaging data analysis with

the emphasis on multivariate statistical methods, discuss

their pros and cons, and give recommendations on their

application. We hope to guide molecular biologists and

biochemists through the maze of existing computational

and statistical methods. While this paper does not eluci-

date the basics of existing methodologies, we try to give

clear and concise recommendations on when certain

methods should be applied. Secondly, we discuss current

computational and statistical challenges in analyzing

MALDI-imaging data. MALDI-imaging is a relatively new

field with only a limited amount of laboratories perform-

ing data acquisition, although this number grows rapidly.

Presently, this field has a high entry barrier for a computa-

tional scientist, since only a few datasets are publicly avail-

able. In addition, computational results are normally

presented in proteomics or mass spectrometry journals,

there fore the computational and statistical challenges are

not known in the statistical or bioinformatic communities.

We hope that the second part of this paper will attract

scientists from these communities to contribute to the fas-

cinating field of computational IMS.

As the field of MALDI-imaging is constantly evolving,

novel MALDI-based techniques were recently introduced

such as 3D MALDI-imaging [10], MALDI-FTICR- [11]

or MALDI-Orbitrap-imaging [12]; however, this paper

focuses primarily on conventional MALDI-imaging using

a TOF mass analyzer. We do not consider computational

methods developed for secondary ion mass spectrometry

(SIMS) [13], another leading IMS technique, mainly
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because SIMS is not used in proteomic analysis with its

mass range limited to below 1.0-1.5 kDa. Other emerging

IMS techniques such as desorption electrospray ioniza-

tion (DESI) [14], laser ablation inductively coupled

plasma mass spectrometry (LA-ICP-MS) [15], or nanos-

tructure-initiator mass spectrometry (NIMS) [16], are

not considered either. In general, all computational

methods discussed in this paper can be applied or are

already applied (such as PCA in the context of SIMS, see

later in the text) to all mentioned IMS techniques.

Although we tried to consider only computational meth-

ods available in existing software packages, some meth-

ods require in-house implementation.

MALDI imaging mass spectrometry

Matrix-assisted laser desorption/ionization-time of-flight

imaging mass spectrometry, also called MALDI-imaging,

emerged in the late 1990s [1,17] and has opened new

horizons for application of mass spectrometry in biology

and medicine [18]. Once a sample is prepared for analysis

(that involves mounting of tissue section, plant leaf or

thin agar layer onto a MALDI target plate followed by

matrix application), MALDI-imaging mass spectrometry

measures mass spectra at discrete spatial points, provid-

ing a so-called datacube or hyperspectral image, with a

mass spectrum measured at each pixel; see Figure 1.

A mass spectrum represents the relative abundances of

ionizable molecules with various mass-to-charge (m/z)

values, ranging for MALDI-TOF-IMS from several hun-

dred m/z up to a few tens of thousands m/z. An m/z-

value in MALDI mass spectrometry is usually interpreted

as the molecular mass, since ions with a charge of +1

prevail. An intensity of a spectrum at an m/z-value repre-

sents the relative abundance of a compound with this m/

z-value. Although MALDI is not a quantitative technique,

it can to some extent be used for semi-quantitative com-

parisons based on the relative abundance of molecules

within a spectrum or, after normalization of spectra

(more on it later), between spectra [19].

A state of the art MALDI-imaging dataset comprises a

huge amount of spectra (usually 5,000-50,000 spectra)

with each raw spectrum representing intensities measured

at a large number (usually 10,000-100,000) of small m/z-

bins and describing up to hundreds of different molecules.

For any given m/z-value, the signal intensity at this m/z-

value across all collected spectra can be visualized as a

pseudo-colored image where each pixel is colored accord-

ing to its spectrum intensity (sometimes called as a heat

map), which we call an m/z-image. Definitely, understand-

ing and interpreting such a multitude of spectra or m/z-

images requires computational data mining methods.

Although a dataset can be mined manually, this is a

tedious work. Moreover, manual mining normally results

in a few - sometimes arbitrarily selected - ions of interest,

neglecting the major part of information represented in

the IMS dataset.

An ultimate aim of processing, both manual and auto-

mated, of a MALDI-imaging dataset is to find m/z-values

which correspond to ions of interest. These ions may be

specific to a spatial region, e.g. be well co-localized with an

anatomical region, or express difference between two spa-

tial regions of one sample or between two different sam-

ples, e.g. be discriminative for a tumor region as compared

with a control region. MALDI-imaging, as a non-targeted

and label-free proteomic technique, delivers information

about the wide range of molecules present in a sample

and is well suited for discovery studies, e.g. for biomarker

discovery. Computational methods are of special impor-

tance in discovery studies because manual data examina-

tion normally results in only a few - sometimes arbitrarily

selected - ions. Such incomplete identification can under-

mine discovery. Once ions of interest are revealed with

MALDI-imaging, they can be identified using MS-based

proteomics identification methods; for a short review of

identification strategies used in combination with MALDI-

imaging, see [20].

For a broad review of technological principles and pro-

tocols used in IMS and, particularly, in MALDI-imaging,

see the recent issue of Methods in Molecular Biology

devoted to IMS [21]. Moreover, see recent surveys

[2,22,23] for a mass spectrometric perspective and [3] for

a microbiology perspective.

Computational methods
We have structured this section by grouping computa-

tional methods according to the tasks they perform:

firstly, pre-processing of spectra, then unsupervised data

mining methods which can be used for preliminary data

examination, then supervised classification applied e.g. in

biomarker discovery. A typical MALDI-imaging study

results in a set of ions of interest, which are visualized as

m/z-images corresponding to their m/z-values. In the last

subsection, we discuss visualization of such images.

Pre-processing

A MALDI-imaging dataset represents a set of mass spectra

with two spatial coordinates x and y assigned to each spec-

trum. In the current practice, the pre-processing of

MALDI-imaging mass spectra does not differ much from

spectra pre-processing in the conventional MALDI-MS of

dried droplets and includes (1) normalization, (2) baseline

correction, and, optionally, (3) spectra smoothing and (4)

spectra recalibration. Standard and well-known MALDI-

MS pre-processing methods can be applied to imaging

data. For a discussion of mass spectra pre-processing from

the MALDI-imaging perspective, see [24].

An important part of MALDI-imaging data pre-

processing is the spectra normalization, i.e. scaling each
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spectrum up to some factor for a better intercomparison

of intensities between different spectra. A standard

method is the so-called total ion count (TIC) normaliza-

tion, where for a spectrum its TIC (the sum of all intensi-

ties) is calculated and then all spectrum intensities are

divided by the TIC value. Although there are still debates

on this topic, recent extensive study [25], where TIC and

five other normalization methods were considered,

demonstrated the need for normalization. TIC is the most

popular method and is recommended in general. For

more careful analysis, Deininger et al. [25] recommends to

consider either TIC or median normalization and to select

the proper method by means of visual examination of

exemplary m/z-images after normalization.

Another pre-processing method, which is sometimes

considered separately from the traditional preprocessing

methods listed above, is the peak picking, i.e. selection of

m/z-values which correspond to high and relevant peaks.

The aim of the peak picking is to reduce the number of

m/z-values by neglecting those values corresponding to

Figure 1 MALDI-imaging data acquisition workflow. MALDI-imaging data acquisition workflow and data representation as a datacube or a

hyperspectral image with spatial coordinates x and y and with the mass spectral coordinate m/z. For every pair of coordinates (x, y) one gets a

mass spectrum, for every m/z-value one gets an m/z-image. The so-called jet colormap from blue (lowest intensity) to yellow to red (highest

intensity) was used for m/z-images.
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noise signals or to non-specific baseline signals; for more

on noise and baseline see [26], for more on the physical

TOF model influencing the peak shape see [27], for more

on statistical modelling of noise and baseline see [28].

Various peak picking methods for MALDI mass spectra

are available and are implemented in mass spectrometry

software packages. A recent comparison [29] shows that

the methods which take into account the shape of a peak,

and not just its intensity, perform the best. However,

peak picking in MALDI-imaging poses new problems

due to a large amount of spectra. Several approaches

have been proposed. Firstly, the peak picking can be

applied to the dataset mean spectrum. It is a very fast

method and is implemented, e.g. in the ClinProTools

software (Bruker Daltonik GmbH, Bremen, Germany).

However, this method is not sensitive, since it does not

favor high and relevant peaks presented only in a small

part of a sample. For example, if a peak is present only in

1% of spectra (for an image of 100×100 pixels, this is an

area of 10×10 pixels), then its contribution to the mean

spectrum will be reduced by 100 times as compared to a

low peak present in all spectra (e.g. a matrix peak).

A consensus approach has been proposed [30], where

among spectrum-wise picked peaks, those are selected,

which are found in at least 1% of spectra. A similar

approach, but requiring manual selection of regions of

interest (ROIs) was proposed in [31]. In [30] and [32], for

spectrum-wise peak picking, we applied the Orthogonal

Matching Pursuit method which has complexity O(n2),

where n is the length of a spectrum (usually 10,000-

100,000). In general, one should consider efficient (at

least O(n2)) peak picking methods when applied to

MALDI-imaging data. Designing and performing a spec-

trum-wise peak picking, one should keep in mind an

inherent balance between efficiency and sensitivity.

Firstly, processing all spectra makes the method poten-

tially more sensitive than processing just a part of the

spectra. Secondly, the more peaks are selected per spec-

trum, the more sensitive the method can be. However,

increasing sensitivity in both cases leads to longer proces-

sing times.

When constructing a list of dataset-relevant peaks out

of the spectrum-wise peak lists, m/z-values selected in

different spectra for the same peak can slightly differ.

This effect cannot be completely compensated by the

instrument calibration using reference markers (e.g.

using a mixture of peptides with known molecular

masses) and is caused by instrumental and experimental

variation. In order to counterbalance this effect, a peak

alignment procedure should be applied. Although the

peak alignment is a well-known task in mass spectrome-

try, there are no dedicated studies of peak alignment in

MALDI-imaging. Norris et al. briefly discuss peak align-

ment in the context of MALDI-imaging [24]. We have

proposed an original but simple procedure for alignment

of peaks with respect to the mean spectrum [32], another

group reported the use of the Matlab (The Mathworks

Inc., Natick, MA, USA) routine msalign [33].

Unsupervised data mining

Most statistical learning methods can be divided into two

groups, so-called unsupervised and supervised methods.

Unsupervised methods are used for data mining, can be

applied without any prior knowledge, and aim at revealing

general data structure. Supervised methods (mainly classi-

fication) require specifying at least two groups of spectra

which need to be differentiated, e.g. by finding m/z-values

differentiating spectra of tumor regions from spectra of

control regions. In the context of MALDI-imaging, two

unsupervised approaches have obtained recognition: com-

ponent analysis and spatial segmentation.

Component analysis represents a MALDI-imaging data-

set with few score plots (or score images) and coefficients

of contribution of each score image to each original m/z-

image [34]. Mathematically speaking, a set of score images

is a generating system of all m/z-images, that is, each m/z-

image from the dataset can be represented as a sum of

score images multiplied with respective coefficients. In the

framework of MALDI-imaging, the most well-known

component analysis method is the Principal Component

Analysis (PCA) [34]. Other methods have been also stu-

died: probabilistic latent semantic analysis [35], indepen-

dent component analysis and non-negative matrix

factorization [36]. For a recent comparison of component

analysis methods, see [37].

Principal Component Analysis

In this section, we consider PCA which is the most well-

known component analysis method used for MALDI-

imaging data representation. PCA is a well-established

statistical method and is often exploited for analysis,

visualization, and compression of biological data. PCA

and its variants [34] were early proposed for data mining

in MALDI-imaging. For an illustrative tutorial on PCA

for molecular biologists, see [38]. Using PCA, one can

represent the full dataset with a few score images corre-

sponding to first principal components. These score

images reveal spatial structures hidden in the dataset by

showing prominent spatial patterns (high intensity

regions). However, except for showing the spatial pat-

terns, the interpretation of score images provided by

PCA is problematic. PCA score images can have negative

values which are non-interpretable in terms of mass

spectra intensities. Additionally, PCA score images do

not define regions of interest and should be examined

and interpreted visually. Finally, the way PCA is used

currently (showing score images of first principal compo-

nents and finding m/z-values of highest loadings)
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sometimes fails in selecting m/z-images co-localized with

a score image. The m/z-images found using PCA some-

times look different from the corresponding score

images; see Figure 2 for an illustration of this shortcom-

ing. Some studies reported success in finding m/z-values

using PCA [39], but they used PCA to discriminate two

groups of m/z-values, each with unknown localization,

rather than finding m/z-values for a specific spatial

region. Deininger et al. [38] conclude that PCA is of use

for data evaluation to decide “whether the experiment

was successful or if preparation artifacts are present”.

Spatial segmentation

Spatial segmentation represents a MALDI-imaging data-

set with one image, a segmentation map, where regions

of distinct molecular composition are color coded, see

examples in Figure 3. The spatial segmentation is per-

formed by grouping all spectra by their similarity using

a clustering algorithm. Then, all pixels are pseudo-color

coded according to cluster assignment. Note that a

color is assigned to a cluster, not to a distinct region; a

segmentation map can have several spatially discon-

nected regions of the same color. Several advanced spa-

tial segmentation methods have been proposed:

hierarchical clustering with PCA used as preprocessing

[38,40], and two methods suppressing the pixel-to-pixel

variability which is inherent to MALDI-imaging: cluster-

ing with edge-preserving image denoising [30] and effi-

cient spatially-aware clustering [32]. The last approach

proposes a new spectral distance which accounts for

spatial relations between spectra and presents an effi-

cient distance-based method for finding segmentation

where distances are computed on the fly.

Hierarchical clustering is advantageous providing

clustering results in the form of a dendrogram which

can be interactively analyzed. It is implemented in the

flexImaging software (Bruker Daltonik) and was used in

e.g. [39,40]; for a histopathological discussion see a

recent review [20]. The main flaw of the hierarchical

clustering is that it requires the distance matrix of size

of n×n (n is the number of spectra) to be loaded into

memory, that hinders processing of datasets with a large

number of spectra. Moreover, it is subject to the pixel-

to-pixel variability leading to noisy segmentation maps,

see Figure 3. As for the parameters (distance, linkage)

Deininger et al. [38,40] recommend choosing the Eucli-

dean distance and the Ward linkage.

Clustering suppressing pixel-to-pixel variability has

been recently proposed [30,32]. Both methods outper-

form hierarchical clustering by providing smooth, noise-

less, and detailed segmentation maps. Although no

publicly available implementations are provided yet, the

second method [32] can be relatively easily implemented.

For examples of segmentation maps produced with var-

ious methods, see Figure 3.

Figure 2 PCA analysis of a MALDI-imaging dataset. Illustration of shortcomings of PCA analysis of a MALDI-imaging dataset of a rat brain

coronal section of 10 μm thickness (160 μm spatial resolution, 101×60 pixels, 5053 spectra). A. Score images of first six principal components

(PC). B. For each score image, the m/z-image with the highest loading is plotted. One can see that the visual correlation between a score image

(left) and its highest-loading m/z-image (right) is achieved only for PCs 1, 2, and 5, whereas not achieved for PCs 3, 4, and 6. Thus, the use of

loadings for interpreting score images is not recommended.
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Interpretation of a segmentation map

In contrast to PCA, spatial segmentation maps not only elu-

cidate the spatial structure of the dataset, but can be easily

interpreted in terms of m/z-values associated with a specific

part of revealed spatial structure. Each segmentation

map consists of a given number of clusters, each repre-

sented with its pseudo-color. After a visual examination, if a

cluster represents a region of interest, then the associated

m/z-values can be found as proposed in [30]. A spatial

mask corresponding to the selected cluster is considered

and for eachm/z-image its correlation with this mask is cal-

culated. Finally, co-localized m/z-values with highest and

significant (p-value smaller than 0.05) correlation should be

considered. An illustration is given in Figure 4. So far, this

simple but powerful method is not implemented in major

MALDI-imaging software packages and requires an in-

house implementation. Other more complicated methods

using spatial querying [41,42] have been proposed; the soft-

ware package presented in [41] is publicly available.

High-throughput pipeline for interpretation of MALDI-

imaging data using spatial segmentation

Here, we present our pipeline for interpretation of a

MALDI-imaging dataset using spatial segmentation

which was successfully applied to hundreds of MALDI-

imaging datasets at the Dorrestein Lab, University of

California San Diego; see Figure 5. The characterization

of natural products of bacteria was the main subject of

these studies, see e.g. [43], which involved analysis of

pairwise interactions of many bacterial species under dif-

ferent conditions. Our pipeline was able to process up to

a few hundreds of MALDI-imaging datasets per week,

representing the results in a concise way so that a few

tens of datasets a week could be easily interpreted by one

scientist. Our results were computed and, more impor-

tantly, interpreted in a time comparable with the dataset

acquisition time. In contrast, a manual analysis of a single

MALDI-imaging dataset takes days and, as we found, is

still not as exhaustive and sensitive as the automatic

analysis.

Based on our experience in developing and applying

the MALDI-imaging data analysis pipeline, the following

recommendations can be made. It is of crucial impor-

tance to represent the data in the most understandable

and compact way for a biologist or practitioner, other-

wise large amount of information extracted out of a

MALDI-imaging dataset will not be appreciated. Provid-

ing a segmentation map is only a part of data analysis

process. Interpretation of the segmentation map is as (or

even more) important as the segmentation itself. When

finding co-localized m/z-values based on a segmentation

map, one should consider all m/z-values but not only

those selected by a peak picking. Selecting too many

peaks during the peak picking prior to segmentation is

not always needed, often detailed segmentation does not

need many peaks. Selecting many peaks slows down the

segmentation and can introduce additional variation;

usually 50-200 peaks is a good choice, although it

depends on the analyzed mass range and samples. Mem-

ory requirements of a processing algorithm can be more

important than the computational efficiency because the

available memory is limited whereas the number of

Figure 3 Segmentation maps of the MALDI-imaging dataset. Optical image (A) and segmentation maps (B-F) of the dataset from Figure 2

but with 80 μm spatial resolution. B. Straightforward k-means clustering of spectra. C. Hierarchical clustering (Euclidean distance, complete

linkage) after PCA-reduction of spectra to 70% explained variance. D. Clustering after edge-preserving image denoising; moderate denoising,

reprinted from [30] with permission from American Chemical Society. E-F. Efficient spatially-aware clustering, moderate size of data-adaptive

neighborhood (E) and large size of non-adaptive neighborhood (F), reprinted from [52] with permission from Elsevier.

Alexandrov BMC Bioinformatics 2012, 13(Suppl 16):S11

http://www.biomedcentral.com/1471-2105/13/S16/S11

Page 6 of 13



spectra increases quadratically with increasing the spatial

resolution. One should consider memory-efficient meth-

ods which have O(n) memory requirements (n is the

number of spectra) and ideally do not require storing the

full dataset in the memory. Once a MALDI-imaging

pipeline is developed and tested, it should be integrated

with other computational tools for mass spectrometry

analysis, that requires at least providing export of all

valuable information into common format.

Supervised classification

In this section we consider how supervised classification

can be used for biomarker discovery. Classification

requires specifying at least two groups of spectra and

aims at differentiating these groups. Let us consider the

task of cancer biomarker discovery which involves com-

parison of tumor and control regions of a biopsy tissue.

One can also compare several tumor sections versus sev-

eral control sections, collected from one or several

patients. A classification algorithm, the so-called classi-

fier, considers two groups of spectra and undergoes train-

ing to be able to discriminate the groups of spectra. If the

training was successful that can be confirmed by a high

classification accuracy (also called as the correct rate or

the recognition rate) close to 100%, then one could apply

the classifier to new spectra to determine their class

(tumor or control), like in [44,45]. However, in biomarker

discovery studies one is interested not only in application

of the classifier to new spectra, but in interpreting the

differences between the tumor and control groups of

spectra which were found by the classifier, namely, in the

tumor-discriminative m/z-values. Later on, molecular

identities of these tumor-discriminative m/z-values can

be established using MS-based proteomics methods.

Currently, classification of MALDI-imaging spectra for

the search of biomarkers is an active area of research.

Lemaire et al. [46] used the StatView 5.0 software (SAS

Institute, Cary, NC) with symbolic discriminant analysis

and statistical tests for the search for a new ovary cancer

biomarker. Groseclose et al. [47] used the ClinProTools

software (Bruker Daltonik) with the support vector

machine algorithm to differentiate adenocarcinoma from

squamous cell carcinoma. Cazares et al. [48] used Clin-

ProTools with the genetic algorithm and the SAS 9.1

Figure 4 Interpretation of a segmentation map of the MALDI-imaging dataset. Spatial segmentation analysis of the MALDI-imaging dataset

from Figure 2 with our algorithm from [30]. A. Segmentation map (two clusters) overlaid with the optical photo of the section. B. Mean

spectrum of spectra from the second cluster. C. Pseudo-colored images of m/z-values spatially co-localized with the second cluster; each title

shows the m/z-value, Pearson correlation between the image and the cluster spatial map, and 90%-quantile image intensity.
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statistical software (SAS Institute) to discriminate pros-

tate cancer. Rauser et al. [20] used the R statistical pack-

age (http://www.r-project.org) with the support vector

machine and artificial neural network algorithms for

classification of HER2 receptor status in breast cancer

tissues.

However, in all above cited studies, the classification

methods developed for conventional MALDI mass spec-

trometry were used, which do not take into account

specifics of MALDI-imaging data. Classification methods

for MALDI-imaging data are still to be developed. Here,

we give several recommendations on the most impor-

tant points to consider when applying classification to

MALDI-imaging data.

Firstly, the compared groups are often imbalanced, that

is, they have significantly different sizes. Classification of

imbalanced data requires special classification and eva-

luation methods, otherwise the classification can be

biased towards a larger group. This issue is well-studied,

and advanced methods for its solution were proposed

[49-51]. In our experience, large number of spectra in

MALDI-imaging normally allows one to compensate

moderate imbalance (up to ten-fold) by simple decima-

tion of the larger group. Namely, we consider only each

k-th spectrum of the larger group, where k should be

adjusted to achieve the balance between groups sizes.

However, for compensating a strong imbalance, advanced

methods (e.g. sampling and cost-sensitive learning) are

recommended, see [49-51].

Secondly, although classification of conventional dried

droplets MS data is evaluated by how close the classifica-

tion accuracy is to 100%, one should not aim at achiving

this theoretically highest possible accuracy in classifica-

tion of MALDI-imaging spectra for the following reasons.

MALDI-imaging spectra show significant heterogeneity

because of technical reasons (noise, tissue mixture at the

available spatial resolution, ions diffusion). Moreover,

one cannot expect the annotation of a tumor region to

be of perfect quality because of manual mistakes and a

lack of the expert time. Additionally, the annotation does

not go down to the cellular or subcellular level, where

real differentiation between cells takes place. All this

leads to classification accuracies lower than 100%. How-

ever, if a classifier produces a low accuracy (close to 50%

for balanced groups), this indicates some problems and

the provided discriminative m/z-values should be consid-

ered with caution. In our experience, the good accuracy

values above 80%.

Thirdly, the discriminative m/z-values provided by the

classification should always be visualized as m/z-images

and manually examined whether their spatial patterns

are relevant (e.g. co-localized with the tumor area).

MALDI-imaging provides a unique way of evaluating

the relevance of m/z-values by their spatial pattern, that

Figure 5 Pipeline for interpretation of a MALDI-imaging dataset. Our pipeline for interpretation of a MALDI-imaging dataset using spatial

segmentation.
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should be done before starting tedious identification of

molecular identities of putative biomarkers.

Visualization of m/z-images

A computational analysis of a MALDI-imaging dataset,

either using unsupervised methods or using supervised

classification, delivers a list of m/z-values of interest. In

order to associate these m/z-values with their molecular

identities, one needs to perform their identification,

usually with MS-based proteomics methods. Before start-

ing identification, one usually examines provided m/z-

values comparing them with the m/z-values known in the

field. If the list contains m/z-values related to each other

in a known manner, this increases the confidence in that

they express biologically relevant information. For exam-

ple, a few m/z-values separated by one unit can corre-

spond to isotopes (in MALDI, ions usually have a charge

of +1). Two m/z-values separated by 17 units can corre-

spond to the same compound before and after the loss of

ammonia. The difference of 18 units corresponds to the

loss of water. The difference of 16 units corresponds

to oxidation of methionine (or another amino acid

side chain). Finally, m/z-values of interest undergo

identification.

Usually, a computational analysis can deliver a long

list of masses, and a simplification and shortening of

this list by not loosing the sensitivity of the automatic

processing is an important task. In the context of

MALDI-imaging, one method, called masses alignment,

was proposed by us [32] and successfully tested in

another study [52]. The main idea of this method is to

group masses corresponding to one peak and then

represent them with one m/z-value. For this purpose,

we use the dataset mean spectrum and align the selected

m/z-values, “moving them” uphill the dataset mean

spectrum so that they merge into the local maxima of

the mean spectrum; see Figure 6 for an illustration. This

method allowed us to reduce the number of m/z-values

without loss of information.

Once m/z-values are provided by a computational ana-

lysis, their m/z-images should be examined in order to

visually correlate their spatial patterns with known spatial

features of the sample. A usual MALDI-imaging study

results in many m/z-images and, as we demonstrated in

[2], the problem of their visualization remains important.

Recall that an m/z-image is a real-valued image showing

mass spectra intensities at the given m/z-value. Usually,

one visualizes an m/z-image using a pseudo-color scale,

assigning gradually changing colors to the intensities.

The first problem faced when using this visualization is

the so-called hot spots, that is separate pixels or small

groups of pixels with artificially high intensities. Such

Figure 6 A method of alignment of selected m/z-values. A method of alignment of selected m/z-values using the dataset mean spectrum.

The mean spectrum is shown in blue. Red triangles indicate m/z-values of interest before the alignment. Green arrows illustrate the process of

alignment. Green triangles show aligned peaks and their m/z-values. Reprinted from [52], Copyright 2011, with permission from Elsevier.
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pixels distort the pseudo-color scale so that other pixels

are shown with insufficient contrast. In order to automa-

tically correct the hot spots, we proposed [2] to suppress

5% of brightest pixels or to use an advanced contrast-

enhancing procedure like histogram equalization, see

Figure 7B-C for an illustration.

The second problem of visualization of m/z-images is

the strong pixel-to-pixel variation which is inherent to

MALDI-imaging technique. In [30], we analyzed this

variation and showed that it has multiplicative nature

with respect to the pixels intensity. That is, the higher

the intensity in some spatial region, the stronger the

noise in this region, which distorts the m/z-image and

hampers visual evaluation of prominent features.

In order to reduce this variability and suppress the

noise, we proposed to apply image denoising to an m/z-

image prior to visualization. Figure 7D illustrates appli-

cation of advanced edge-preserving image denoising

from [30].

Current computational challenges

In this section, we consider current challenges asso-

ciated with the statistical analysis of MALDI-imaging

data. We hope that this discussion will be of interest to

bioinformaticians and statisticians fostering computa-

tional research in this area.

Available software

The commercially available software for MALDI-ima-

ging delivered by mass spectrometry vendors is aimed at

data acquisition and does not provide capabilities for

statistical analysis yet. Bruker Daltonik (Bremen, Ger-

many) delivers flexImaging (visualization) and, option-

ally, ClinProTools (multivariate analysis, PCA,

classification) which however can be used for small

datasets only. Thermo Scientific (Waltham, MA, USA)

provides ImageQuest (visualization). Waters (Manche-

ster, UK) provides HDI Software (visualization) which

can be coupled with MassLynx (peak picking) and Mar-

kerLynx (PCA, orthogonal projection least squares),

although no publications involving MarkerLynx are

known yet. Shimadzu (Nakagyo-ku, Kyoto, Japan) pro-

vides Intensity Mapping (visualization, export). In addi-

tion to vendor-provided software, Novartis (Basel,

Switzerland) provides the BioMap software which can

be used for visualization and calculating basic statistics

of the full dataset or of regions of interest. AB Sciex

(Foster City, CA, USA) provides TissueView which is

Figure 7 Improving visualization of an m/z-image. Improving visualization of an m/z-image by contrast-enhancement and image denoising.

A. An m/z-image from a MALDI-imaging dataset for a transverse section of mouse brain. B. After contrast-enhancement by correcting 5% of the

brightest pixels. C. After contrast-enhancement by histogram equalization. D. After histogram equalization and edge-preserving denoising.

Reprinted from [2] with permission from John Wiley and Sons.
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based on the BioMap software. Currently, in-house

developments are necessary and Matlab is probably the

most popular development and computing environment

in the MALDI-imaging field.

Specific challenges of analyzing MALDI-imaging data

Two general considerations proved to be important in our

practice when developing methods for processing

MALDI-imaging data. Firstly, a MALDI-imaging dataset is

large, that requires computational methods to be runtime

and memory efficient. A typical dataset is comprised of

5,000-50,000 spectra, each having 10,000-100,000 intensity

values. Datasets generated using upcoming high spatial

resolution and high mass resolution MALDI-imaging

techniques (e.g. MALDI-FT-ICR-imaging) or using 3D

MALDI-imaging are several fold larger. At the same time,

the first examination of acquired data is usually done on a

workstation attached to the mass spectrometer. Processing

single datasets on the same workstation is desirable, that

imposes additional constraints regarding memory

demands and computational costs. Ideally, the processing

time should not exceed the acquisition time which is a few

hours for a typical MALDI-imaging dataset. Secondly,

MALDI-imaging data suffers from the strong pixel-to-

pixel variation which can be significantly suppressed by

using methods respecting spatial relations between pixels.

As demonstrated by us, performing image denoising prior

to clustering [30,41] or considering each spectrum

together with its spatial neighbors [32] leads to smoother

and more detailed results. The advantage of respecting

spatial relations between spectra was demonstrated for

other problems as well [53].

Statistical modelling of pixel-to-pixel variability could

help developing processing methods. However, this, as

well as modelling of other statistical effects in MALDI-

imaging data (noise, baseline generation, variability in

the shape of a peak), is a scarcely studied field. Although

a physical model of the time of flights distribution for

MALDI-TOF mass spectrometry was proposed already

in 2005 [27], a little progress is seen since then. The

problem of statistical modelling for MALDI-imaging

data is addressed only marginally [30]. Successful mod-

elling of this data would provide a way of evaluation of

computational methods by using simulated data. Addi-

tionally, the statistical modelling can be used for devel-

opment of computational methods taking into account

the statistical models, e.g. model-based classification

methods or statistical image processing, as it was illu-

strated for SIMS data processing [54].

Quality assurance

Quality assurance for MALDI-imaging data is not devel-

oped yet. There exist no standard operation procedures

for estimating the quality of a full dataset or single

spectra. We have recently proposed a visualization

method for a quick quality check [2], but there is a lot to

be done in this area. Automatic quality evaluation of sin-

gle spectra of a MALDI-imaging dataset is of special

importance, since, due to biochemical complexity of a

sample, and various weakly studied effects of matrix allo-

cation and MALDI ionization, some spectra show artifi-

cial patterns leading to hotspots and distorting

computational analysis. Such artificial spectra could be

detected and removed by methods of outliers detection

developed specifically for MALDI-imaging.

Noise-tolerant statistical learning

When preparing a training set of spectra in a MALDI-

imaging biomarker discovery study, the annotation is

normally done by a visual examination of a sample and

by a manual annotation of regions representing different

classes (e.g. tumor and control). However, due to the

rough character of this annotation, and due to inherent

chemical complexity on the scale resolved by MALDI-

imaging, the annotation can be incorrect for a significant

portion of spectra. For instance, some pixels in the region

annotated as a control one, can contain tumor cells. In

statistical learning, this effect is referred to as classifica-

tion noise or noise in labels [55]. When classifying spec-

tra of a MALDI-imaging dataset, classification methods

tolerating classification noise or, in general, methods

with high generalizability should be considered.

Combination with other 2D imaging modalities

Combination of MALDI-imaging and microscopy images

of stained tissue used in immunohistochemistry can be

used for improvement of MALDI-imaging data analysis.

This approach is of special importance because the spa-

tial resolution of MALDI-imaging is lower than of micro-

scopy and the pixel-to-pixel variability is significantly

stronger. Implementation of this approach requires spe-

cial co-registration methods.
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