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MALDI-TOF mass spectroscopy 
of yeasts and �lamentous fungi for research 
and diagnostics in the agricultural value chain
David Drissner1 and Florian M. Freimoser2*

Abstract 

Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS; MALDI biotyping) has 

become a standard tool for the accurate, rapid, and economical identification of pathogens in the clinical diagnostics 

laboratory. The method is continuously being improved, and new applications for distinguishing strains, identify-

ing metabolites or functional characteristics (e.g., antibiotic resistance), and detecting microbes directly in patient 

samples have been developed. Adopting these methods in other disciplines than clinical diagnostics, for example, in 

agriculture, food safety and quality testing, or ecology, will open up new opportunities for diagnostics and research. 

This review focuses on MALDI-TOF MS approaches for the identification of yeasts and filamentous fungi. In contrast to 

bacterial diagnostics, MALDI biotyping of fungi is more challenging and less established. We thus start by discussing 

the role of MALDI-TOF MS as a tool for species identification; in particular with respect to DNA-based identification 

methods. The review then highlights the value of custom-made reference spectra for MALDI biotyping and points out 

recent advancements of MALDI-TOF MS, mainly from the field of clinical diagnostics that may be adopted and used 

for fungal diagnostic challenges. The overview ends with a summary of MALDI-TOF MS studies of yeasts and filamen-

tous fungi of agricultural relevance. 
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Introduction
Matrix-assisted laser desorption ionization time-of-

flight mass spectrometry (MALDI-TOF MS; also called 

MALDI biotyping) has become increasingly popular for 

the identification of microorganisms and their functions 

and is now approved for the routine identification of bac-

teria and fungi in clinical diagnostic laboratories [1–3]. 

It is the goal of this review to highlight recent techno-

logical advancements of MALDI biotyping and to illus-

trate applications of this tool for research in agriculture 

and the agricultural value chain. �is outlook focuses 

on MALDI-TOF MS applications in mycology, because 

these are usually more demanding than bacterial identifi-

cations [4, 5] and will thus greatly benefit from the recent 

advances in bacterial MALDI-TOF MS diagnostics. In 

this context, it is important to note that MALDI-TOF 

MS is not an alternative to DNA sequence-based species 

identification, but rather a complementary method. In 

order to make use and realize the potential of MALDI-

TOF MS it may thus be helpful bringing to mind the 

advantages and disadvantages of this method; in particu-

lar as compared to DNA-based assays and techniques.

MALDI biotyping and DNA-based identi�cation 
complement each other
�e identification of fungi usually involves a DNA 

sequence-based analysis that determines the identity of 

a given isolate based on sequence similarity; often tak-

ing advantage of the universal fungal barcode sequence of 

the nuclear ribosomal internal transcribed spacer (ITS) 

[6]. Second and third generation sequencing techniques 

now allow the sequencing of thousands or millions of 

barcodes, or even entire genomes, in parallel and such 
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high-throughput technologies are available to virtually 

every laboratory. �ese barcode (amplicon) and metage-

nome sequencing methods allow identifying hundreds or 

thousands of species simultaneously and are thus power-

ful tools to describe the composition of entire microbial 

communities (Fig.  1a) [7–9]. However, although mas-

sive parallel DNA sequencing generates a wealth of data, 

often more data are generated than needed and storage 

of the data and extraction of the required information is 

challenging and often limiting [10]. In addition, prepara-

tion and quality control of the template libraries for DNA 

sequencing is time consuming and costly (Table  1). In 

specific cases, for the repeated identification of a defined 

number of species, it may thus be best not to gener-

ate the largest amount of data, but rather to generate 

exactly the amount of data needed in the fastest and most 

economical way. It is in this realm, where MALDI biotyp-

ing shines (Fig. 1a; Table 1).

In contrast to DNA sequencing-based approaches, 

MALDI-TOF MS uses whole cells or crude, acidic 

extracts, and mass spectra for the identification of indi-

vidual species [2, 11]. �e simple sample preparation, 

short measurement times, easy preparation of reference 

spectra, and low costs per sample are important advan-

tages of MALDI-TOF MS, as compared to specific, DNA-

based assays that are often laborious to establish and 

usually require costly reagents (Table 1) [1, 12]. MALDI-

TOF MS is also highly flexible and can be combined 

with additional extraction or processing steps in order to 

identify specific biomarkers, metabolites, or biochemical 

functions. Because of these advantages, MALDI biotyp-

ing has become a standard in routine clinical diagnostics 

and MALDI-TOF MS devices have become readily acces-

sible, also for researchers in other disciplines than clinical 

diagnostics [4, 13, 14]. �is opens up new possibilities for 

functional hypothesis-driven research.

Unless it is the goal to identify entire microbial com-

munities, MALDI-TOF MS is the method of choice for 

species identification, because it is fast, economical, and 

many common bacteria and an increasing number of 

fungi can be identified. In those cases where MALDI-

TOF MS does not reveal the identity of a particular 

organism, classical Sanger sequencing or DNA-based 

assays (e.g., qPCR or LAMP assays) are used for identi-

fication (Fig. 1a; Table 1). Once the organism is identified 

based on such an assay, the generation of new MALDI-

TOF MS reference spectra will allow identifying this 

species or isolate in the future (Fig. 1b). �e iterative pro-

cedure comprises DNA-based identification and MALDI-

TOF MS reference spectrum generation for each new 

organism continually increases the number of species 

that can be identified and thus the benefit of a particu-

lar MALDI-TOF MS system (comprises robust software, 

reliable algorithms, and databases). In particular in large 

culturomics projects, an integration of MALDI-TOF MS 

in the identification pipeline results in a comprehensive 

database of reference spectra that allows identifying a 

plethora of species and even challenges, or rather com-

plements, DNA sequencing-based analyses of microbi-

omes [15, 16].

Custom-made reference spectra improve 
MALDI-TOF MS-based identi�cation
DNA-based identification methods benefit from large, 

public, DNA  sequence repositories, and many openly 

accessible or downloadable analysis tools. In contrast, 

MALDI-TOF MS reference spectra, as well as analysis 

tools, are usually proprietary, only commercially avail-

able, and heavily focused on medical applications. Even 
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Fig. 1 MALDI biotyping and DNA-based identification complement 

each other. a MALDI biotyping is the method of choice for the iden-

tification of a defined number of species. b Generating MALDI-TOF 

MS reference spectra for fungal species identified by DNA-based 

methods allows the rapid and economical detection of this species 

by MALDI biotyping in the future
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organisms commonly found in environmental, agricul-

tural, or food samples are thus often not recognized by 

standard, commercial MALDI-TOF MS systems. In addi-

tion, MALDI-TOF MS spectra are not universal, such as 

a DNA sequence, but depend on the crude cell extract or 

the physiological state of the fungal cells that are applied 

onto the target plate and used for recording mass spectra. 

Consequently, the age and growth conditions of a micro-

bial culture, as well as the settings of the ionizing laser, 

flight tube, and mass detector, can influence a MALDI 

biotyping experiment.

Many of these problems can be overcome by generat-

ing custom-made, specific MALDI-TOF MS reference 

spectra for the particular application in question [5]. 

Since these reference spectra are generated with the same 

MALD-TOF MS device, settings, and sample prepara-

tion as the experimental samples, the scores obtained 

with these references are usually higher as compared to 

generic reference databases [5, 17–19]. Custom-made 

reference spectra thus allow ample flexibility with respect 

to different sample preparation protocols and experimen-

tal set-ups in a particular lab or for specific applications. 

For example, reference spectra for different cell densi-

ties of a particular organism may allow an estimation of 

cell densities [20]. It is of course also possible to gener-

ate reference spectra for fungi grown on different agar 

plates, different physiological states, different extraction 

protocols, or directly applied bacterial or yeast cells (as 

opposed to crude extracts).

�e integration of custom-made reference spectra in 

a commercial MALDI-TOF MS system is only the first 

step towards a truly open platform for MALDI-TOF 

MS-based species identification. Although it is easy 

to generate reference spectra, a comprehensive public 

repository of MALDI-TOF MS reference spectra is lack-

ing. Such a resource would greatly facilitate the exchange 

of reference spectra between research groups and thus 

allow identifying microorganisms for which no refer-

ence spectra have been generated in a particular lab [21]. 

Until now, only few MALDI-TOF MS spectra databases 

for microbial identification are publicly available. �e 

FoodBIMS database comprises reference mass spectra 

of food-borne bacteria [22] (http://bioinformatica.isa.

cnr.it/Descr_Bact_Dbase.htm). SpectraBank is a freely 

accessible database that also comprises mainly bacterial 

reference spectra [23], and the free Spectra site hosts an 

extended database of MALDI-TOF MS reference spec-

tra for bacteria and fungi (which is made available by 

the Public Health Agency of Sweden (Folkhälsomyn-

digheten): http://spectra.folkhalsomyndigheten.se/spec-

tra/welcome.action).

In addition to MALDI-TOF MS data repositories, 

instrument- and provider-independent analysis tools 

for microbial biotyping using mass spectra are urgently 

needed. SPECLUST is an application to perform clus-

ter analyses of MALDI-TOF MS spectra and was for 

example used to separate the bacterium Ralstonia sola-

nacearum into different species [24, 25]. More recently, 

Starostin et  al. [26] developed a tool to use geomet-

ric distances between MALDI-TOF MS spectra rep-

resented in a multi-dimensional space to distinguish 

closely related Bacillus strains. Mass-up is a comprehen-

sive, open-source tool for the processing and analysis of 

MALDI-TOF MS data [27]. Besides classification, it has 

also biomarker discovery, principle component analy-

sis, and clustering functions implemented and was, for 

example, used to fingerprint bacterial isolates or classify 

peritoneal dialysis patients by mass spectrometry-based 

Table 1 MALDI-TOF- and DNA sequencing-based approaches complement each other

Properties and comparison of MALDI biotyping and DNA sequencing-based approaches (of barcodes/PCR products or genomic DNA) methods for the identi�cation 

of fungi. References: [100, 101]

The advantages of each method are shown in italics

MALDI biotyping qRT-PCR/lamp assay Sanger sequencing NGS sequencing

Starting material Crude extracts or whole cells DNA extract from mixed 
sample

DNA extract from pure 
sample

DNA extract from com-
munity

Premises Reference spectrum Specific assay developed Clone or PCR product avail-
able

None/PCR product

Equipment costs (machines) High Low-medium High High

Cost per sample Negligible Low-medium Medium High

Time for sample preparation Short Short-long Long Long

Time for analysis Short Medium Medium Medium-long

Data Mass spectrum of one 
sample

Detection of one DNA frag-
ment

DNA sequence of 400–
1000 bp

In total 50 Mbp–1000 Gbp

Number of species/strains 
detected

Usually 1 per sample 1 per assay 1 per sample Up to many thousands

Cultivation step required Usually yes No Usually yes No

http://bioinformatica.isa.cnr.it/Descr_Bact_Dbase.htm
http://bioinformatica.isa.cnr.it/Descr_Bact_Dbase.htm
http://spectra.folkhalsomyndigheten.se/spectra/welcome.action
http://spectra.folkhalsomyndigheten.se/spectra/welcome.action
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profiling [28, 29]. For baseline correction, normaliza-

tion, peak detection, and matching, it uses open-source 

packages such as MALDIquant [30] and MassSpec Wave-

let [31], which are also available as separate R packages. 

Finally, BIOSPEAN (http://software.cr-hana.upol.cz/bio-

spean/login.php) is a web-based application and database 

that was specifically developed for analyzing whole-cell 

MALDI-TOF MS data and includes peak picking, genera-

tion of MS databases, and data sharing among users [32].

�e public deposition of MALDI-TOF MS spectra, 

together with information concerning culture condi-

tions and experimental details is highly desirable and 

could largely expand the potential of MALDI-TOF MS 

for agricultural and food diagnostics, as well as ecologi-

cal research. Standardized extraction buffers (an acidic 

extraction using formic acid and acetonitrile seems often 

used) and particularly matrix solutions (e.g., α-cyano-

4-hydroxycinnamic acid, HCCA) would much improve 

comparability of results among different laboratories. 

However, since different types of cells and organisms 

require different extraction buffers and matrices for the 

best MALDI-TOF MS spectra, including this information 

in the reference spectra and in biotyping experiments 

seems necessary.

Clinical MALDI-TOF MS applications bene�t fungal 
diagnosis and research
�e low sample preparation costs and fast measurement 

time, in addition to its accuracy, are highly attractive 

properties of MALDI-TOF MS; in particular for clini-

cal applications. MALDI biotyping of clinically relevant 

microorganisms is thus more advanced than of other 

microbes and new methods are first introduced and 

tested with clinical samples. Consequently, the majority 

of MALDI-TOF analyses of fungi so far have dealt with 

clinical isolates [33]. In particular, the rapid and eco-

nomical identification of Candida species is an impor-

tant medical application [34–39], but filamentous fungi 

present in clinical samples have been studied by MALDI 

biotyping as well [40–43]. Overall, MALDI-TOF MS is 

an accurate, reliable, and rapid method for the identifi-

cation of human pathogenic fungi, and new applications 

for clinically relevant yeasts and filamentous fungi are 

continuously being developed [43–45]. A comparison 

of two commercially available systems, VITEK MS (bio-

Mérieux) and MALDI Biotyper (Bruker Daltonics) with 

their associated databases, has shown similar identifica-

tion efficiencies of clinically relevant yeasts for the two 

systems [46, 47], while other studies found differences 

between biotyping systems [48, 49]. �e identification 

power is improved by including in-house generated refer-

ence spectra in the databases [17, 43, 46] (also see above). 

In addition, it was shown that the sample preparation 

method and quality of the database are crucial for accu-

rate identification [38]. In general, identification rates 

for yeasts are above 90% and higher when using acidic 

extracts, as compared to direct transfer of whole cells 

[38, 50]. In many cases, clinical diagnostics of human 

pathogenic bacteria and fungi drives the development of 

new MALDI biotyping approaches that will also benefit 

fungal diagnosis and research in other areas. It therefore 

seems worthwhile discussing new MALDI-TOF MS tech-

niques that are mainly used in the clinical setting in order 

to highlight the potential and outline opportunities for 

MALDI-TOF MS of yeasts and filamentous fungi.

Shortening the cultivation time for faster MALDI-TOF MS 

identi�cation

In clinical diagnostics, as in agricultural and food safety 

diagnostic, time-to-result and cost are the most impor-

tant criteria for selecting analytical methods and may, 

in the most extreme situation, literally be a matter of 

life or death. �e cultivation step, protein extraction, 

and pure cultures, in many cases required for a success-

ful MALDI-TOF MS identification, may thus prevent 

this method from being used [51]. �erefore, efforts are 

undertaken and considerable progress has been made to 

address these shortcomings. For the diagnosis of bacte-

rial pathogens responsible for bloodstream infections the 

mean incubation time to identify Gram-positive bacteria 

was 5.9 h, which dropped to 3.1 h if a crude acidic extract 

was prepared [52]. In other studies, 97 to 69.5% of bac-

teria were correctly identified after a short incubation of 

positive blood cultures on solid media of only 3 to 5  h 

[53–56], which enabled identification on the same day as 

the positive blood sample was detected. By increasing the 

sample concentration (by reducing the sample spot size), 

creating reference spectra for different cell densities, and 

immunoaffinity enrichment of bacteria, it was possible to 

detect as few as 10 to 100 bacterial cells after a blood cul-

ture time of only 4 h [20]. �ese examples illustrate the 

vastly shortened time-to-result of clinical MALDI-TOF 

MS applications: the duration of the cultivation step has 

been reduced to just a few hours and is thus in the same 

range as DNA amplification steps. In other studies of 

positive urine or blood samples, or of cerebrospinal fluid, 

the cultivation step was omitted entirely, and pathogenic 

bacteria and yeasts were directly identified [57–59].

MALDI-TOF MS applications beyond species identi�cation

MALDI-TOF MS is not only used for taxonomic iden-

tification, but also able to draw functional conclusions 

about clinically relevant properties of a particular isolate 

[60]. Since MALDI-TOF MS is, in principle, able to iden-

tify any ionizable compound [61], it can detect antibiotic 

resistance (e.g., via the identification of specific proteins 

http://software.cr-hana.upol.cz/biospean/login.php
http://software.cr-hana.upol.cz/biospean/login.php
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or degradation products of antibiotics), but has also been 

used to reveal recombinant proteins, plasmid insertions 

in bacteria, or other biomarkers and diagnostic peptides 

in bacteria [62–66].

Recently, MALDI-TOF MS has been employed to rap-

idly and simultaneously detect and identify the Alter-

naria mycotoxins alternariol, monomethyl ether, and 

tentoxin in cereal grains [67]. It may be promising adapt-

ing this method for the identification of mycotoxins in 

further food products in the near future. �e identifi-

cation of clinically relevant anaerobic bacteria has also 

greatly benefited from MALDI-TOF MS approaches. �is 

slow growing and fastidious group of pathogens has been 

mainly diagnosed by biochemical tests, but MALDI-TOF 

MS approaches have successfully identified such anaero-

bic pathogens and could delineate antibiotic-resistant 

and antibiotic-susceptible strains within the same species 

[68–70]. In the case of pathogenic yeasts, the sibling spe-

cies of the Cryptococcus gattii/Cryptococcus neoformans 

complex, which cannot be discriminated by routine bio-

chemical techniques, have been distinguished by MALDI 

biotyping [71]. Similarly, MALDI-TOF MS could reliably 

separate closely related members of the genus Saccha-

romyces (S. arboricola, S. bayanus, S. cariocanus, S. cer-

evisiae, S. kudriavzevii, S. mikatae, S. paradoxus, and S. 

pastorianus) [72]. Finally, MALDI-TOF MS more rapidly 

identified reduced susceptibility to caspofungin or tria-

zoles in Candida and Aspergillus species, as compared 

to classical determination of the minimum inhibitory 

concentration [39, 73, 74]. With yeast cells from positive 

blood cultures and prepared by using the Sepsityper kit 

(Bruker Daltonics), direct MALDI-TOF MS identified 

the Candida species in 62.5% of the samples and anti-

fungals susceptibility results were obtained for 72.7% of 

the blood samples [35]. Alterations in protein profiles of 

fungi following the exposure to antifungal compounds 

could be similarly used to monitor fungicide resistance in 

agriculturally relevant species.

Sample processing can broaden the use of MALDI 

biotyping

As for the highly sensitive species identification, dis-

cussed above, sample processing (e.g., tryptic digestion, 

acidic/organic extraction, nano-liquid chromatography) 

can greatly increase the sensitivity and specificity of a 

MALDI-TOF MS method and thus enable subspecies 

identification [66, 75]. A further possibility is the func-

tional modification of the MALDI target plates them-

selves, which was for example performed with antibodies 

for direct immunoaffinity MALDI-TOF MS of hapto-

globin or by dioxide coating in order to enrich phospho-

peptides [76, 77]. In order to increase the number of mass 

peaks that may be used as biomarkers or the sensitivity of 

a MALDI-TOF MS analysis, samples have been success-

fully treated with detergent, sonication, corona plasma 

discharge, or heat [78–80]. In another study, target bacte-

ria were separated and enriched without prior cultivation 

by using magnetic nanobeads that were functionalized 

with specific antibodies [20]. A rapid sample pretreat-

ment consisting of removal of interfering blood cells and 

centrifugation and washing steps, which can also be per-

formed with a commercially available kit (Sepsityper), is 

crucial for obtaining high identification rates of micro-

organisms, including yeasts, directly in positive blood 

cultures [81, 82]. �ese examples highlight that sample 

pretreatments are promising tools that may also benefit 

applications in agricultural diagnostics.

MALDI-TOF MS of polymicrobial samples and infected 

material

A standard MALDI biotyping experiment requires pure 

cultures of the microbial species to be identified. How-

ever, the identification of microorganisms from mixed 

or complex samples derived, for example, from patients, 

the environment, or infected plant tissue or food by 

MALDI-TOF MS is an important goal. So far, only a few 

reports have demonstrated the identification of bacteria 

and microalgae in mixtures by using biomarkers or cor-

relation coefficients [83–85]. �ese studies have shown 

that ion suppression can affect the detection of specific 

masses of one or the other microorganism and thus com-

plicate species identification in mixed samples [83, 84, 

86]. On the other hand, novel mass peaks only observed 

in the mixed sample were discovered and may serve as 

biomarkers for mixtures or contaminations [83, 86]. For 

samples that contain more than two organisms, species 

identification based on biomarkers that invariably indi-

cate the presence of a particular species performed better 

than correlation-based methods [84].

Fungal MALDI biotyping as a tool for agricultural 
diagnostics and research
MALDI biotyping of yeasts and filamentous fungi is 

more difficult than bacterial identifications, because the 

former result in less mass peaks and fewer reference 

spectra are available [4, 5]. In contrast to clinically rele-

vant fungi, only a limited number of fungal plant patho-

gens, postharvest diseases, or food contaminants have 

been detected by MALDI biotyping. �e non-medical 

applications of MALDI-TOF MS for fungal diagnostics 

and research that we are aware of are summarized in 

Table  2. �ese studies document that in particular the 

genera Fusarium, Trichoderma, and Saccharomyces are 

being used as models for the development of MALDI-

TOF MS applications and for assessing the potential of 

this technology. In contrast to clinical studies, naturally 
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Table 2 Overview of MALDI-TOF MS studies of agriculturally relevant fungi

Samples/organisms Highlights Reference

Alternaria Detection of the Alternaria mycotoxins alternariol, alternariol monomethyl ether, and tentoxin 
by MALDI-TOF MS

Sivagnanam et al. [67]

Alternaria Separation of A. dauci, A. porri, A. solani, and A. tomatophila into three clusters by molecular 
analyses and MALDI-TOF MS

Brun et al. [102]

Alternaria Identification of 60 isolates of 12 Alternaria species by intact cell MALDI-TOF MS with small 
mycelium samples

Chowdappa et al. [103]

Aspergillus Optimization of protein extraction for 24 Aspergillus species from as few as 10,000 spores and 
identification of 11 proteins

Sulc et al. [104]

Aspergillus Identification of 12 Aspergillus strains by preparing crude extracts by bead beating Hettick et al. [105]

Aspergillus Characterisation of A. ibericus strains by MALDI-TOF MS and comparison with related species Kallow et al. [106]

Aspergillus Analysis of several aflatoxigenic and non-aflatoxigenic strain belonging to four Aspergillus 
species

Li et al. [107]

Aureobasidium Analysis of extracellular liamocins (mannitol oils) produced by A. pullulans Price et al. [108]

Aureobasidium Determination of oil structures of different A. pullulans strains Manitchotpisit et al. [109]

Beer spoilage microor-
ganisms

Detection and distinction of beer spoilage yeasts and bacteria from brewing yeasts Turvey et al. [19]

Bremia, Oidium Identification of ribosomal proteins and histones as markers for the biotyping of plant patho-
gens

Beinhauer et al. [97]

Chalara In vitro and in vivo identification of C. fraxinea by secondary metabolites collected in methanol 
extracts

Pham et al. [110]

Clonostachys Cluster analysis of MALDI-TOF MS data of 45 Clonostachys strains from different substrates Abreu et al. [111]

Downy and powdery 
mildews

Identification of the obligate biotrophic mildew fungi Bremia lactucae and Oidium neolycoper-
sici, also from infected leaves

Chalupova et al. [96]

Fusarium Identification and characterisation of F. verticillioides and fumonisins by MALDI-TOF MS and 
MALDI-TOF MS/MS

Chang et al. [112]

Fusarium Differentiation of Fusarium subspecies based on spores collected and prepared from isolates Marchetti-Deschmann 
et al. [113]

Fusarium Optimisation of MALDI biotyping of three Fusarium species (16 isolates) and identification of 
proteins following on-target tryptic digestion

Dong et al. [114]

Fusarium Optimized sample preparation for strongly colored Fusarium conidia Dong et al. [115]

Fusarium Mixed volume spore preparation for five Fusarium species Kemptner et al. [116]

Fusarium Differentiation of Fusarium species with ferulic acid as the matrix and the dried-droplet tech-
nique

Kemptner et al. [117]

Gibberella Characterisation of G. zeae conidia by on-target trypsin digestion Dong et al. [118]

Metarhizium Reference spectra for distinguishing 51 isolates of the M. anisopliae species complex Lopes et al. [119]

Monilinia Identification of Monilinia brown rot fungi directly from infect fruits Freimoser et al. [18]

Monilinia Identification distinction of four Monilinia species cultivated in vitro Horka et al. [120]

Penicillium Discrimination of 12 Penicillium species based on crude extracts obtained by bead beating Hettick et al. [121]

Penicillium Six Penicillium species directly detected on citrus and apple fruits Chen et al. [122]

Puccinia Identification of different species and pathotypes of P. triticina and P. graminis by intact spore 
MALDI-TOF MS

Beinhauer et al. [123]

Rhizopus, Trichoderma, 
Phanerochaete

Comparison of sample preparation, matrices, and double-stick tape for collection of fungal 
material

Valentine et al. [124]

Saccharomyces Fingerprinting of 33 Saccharomyces strains commonly used for wine fermentation Usbeck et al. [88]

Saccharomyces Comparison of SAPD-PCR (specifically amplified polymorphic DNA) and MALDI-TOF MS for 
identifying related Saccharomyces species

Blattel et al. [72]

Saccharomyces Identification of yeasts involved in chichi fermentation Vallejo et al. [98]

Saccharomyces MALDI-TOF MS characterization of protein biomarkers desorbed from S. cerevisiae by formic 
acid

Amiri-Eliasi et al. [125]

Sepedonium Characterisation of mycoparasitic Sepedonium species and analysis of low-molecular weight 
peptides

Neuhof et al. [126]

Spoilage yeasts Optimization of MALDI-TOF MS assay for Saccharomyces, Wickerhamomyces and Debaryomyces 
isolated from beverages

Usbeck et al. [87]

Trichoderma Analysis of 129 Trichoderma strains by MALDI-TOF MS as well as ITS and tef1 sequencing De Respinis et al. [127]
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occurring yeasts have been rarely studied by MALDI-

TOF MS, except in the context of fermentations, for 

example, during winemaking and brewing [19, 72, 87, 

88]. In general, the large majority of (non-clinical) fun-

gal MALDI-TOF MS studies were directed towards 

phytopathogens (e.g., Aspergillus, Fusarium, Monilinia, 

Penicillium, Puccinia, mildews) or potential biocontrol 

strains (e.g., Trichoderma, Metarhizium). MALDI biotyp-

ing tools for other important soilborne or phyllosphere 

plant pathogens have not been established. Examples 

include Armillaria and �ielaviopsis, genera of world-

wide root pathogens that attack hundreds of plant spe-

cies [89, 90] or important oomycete pathogens such as 

Pythium, Plasmodiophora, or Phytophthora [91]. Also in 

the phyllosphere, pathogens such as Venturia inaequalis, 

the causative agent of apple scab [92], the apple blotch 

fungus Diplocarpon mali (Marssonina coronaria) [93, 

94], and many others may be identified by MALDI bio-

typing and thus facilitate monitoring and studying these 

diseases. It is also worthwhile realizing that MALDI-TOF 

MS methods for identifying the majority of the fungal 

diseases recommended by the European and Mediterra-

nean Plant Protection Organisation (EPPO) to be regu-

lated as quarantine pests (List A1: https://www.eppo.int/

QUARANTINE/listA1.htm, List A2: https://www.eppo.

int/QUARANTINE/listA2.htm) do not exist. �e lack of 

MALDI-TOF MS protocols for such a wide range of eco-

nomically important plant pathogens is surprising and 

highlights avenues for future research.

As in clinical diagnostics, the need to identify fungi 

often goes along with the goal to identify a particular 

organism directly in the environment, infected plant tis-

sue, or food, which can harbor complex microbial com-

munities and potentially host tissue. Examples of in situ 

identifications of microorganisms by MALDI-TOF MS 

include plant invasive Rhizobia [95], obligate biotrophic 

fungal pathogens [96, 97], or Monilinia brown rot fungi 

[18]. In food science, MALDI biotyping has been mainly 

used for the identification of food-borne yeasts, which 

were pre-cultivated prior to MALDI-TOF MS analysis 

[87, 98, 99]. In own, unpublished work, we have devel-

oped an approach for identifying food quality and safety-

relevant fungi directly from contaminated apple juices by 

MALDI biotyping without pre-cultivation of the fungus. 

MALDI-TOF MS spectra of Byssochlamys fulva derived 

from both approaches—without and with pre-cultivation 

of the fungus in liquid medium—revealed the same pro-

tein profiles and allowed accurate species identification 

(Fig. 2). �ese studies and results document the potential 

of MALDI-TOF MS to identify fungal pathogens directly 

in infected tissue or food.

In particular for the diagnosis of plant pathogens, food 

contaminants, and spoilage organisms, biomarker-based 

identification will permit identifying key species in com-

plex mixtures by MALDI-TOF MS. However, so far the 

MALDI-TOF MS-based identification of fungal mixtures 

has not yet been reported.

Conclusions
Although numerous fungi have been identified by 

MALDI-TOF MS already, this technology is far from 

being a standard tool for the identification of fungi and 

their functions. Overall, the examples highlighted here 

demonstrate that the potential of MALDI-TOF MS for 

clinical diagnostics, and diagnostic and research appli-

cations in general, is far from being exhausted. None of 

the recent methodological improvements (e.g., direct 

smear after short cultivation times, sample concen-

tration, immunoaffinity enrichment, subspecies iden-

tification, functionalization of MALDI target plates, 

biomarker-based identification in polymicrobial samples) 

is inherently limited to clinical samples or only bacte-

ria. Translating these improvements and developments 

to other areas of diagnostics (e.g., of plant pathogens or 

Table 2 continued

Samples/organisms Highlights Reference

Trichoderma Characterisation and clustering of Trichoderma strains, their peptaibiotics, and hydrophobins Degenkolb et al. [128]

Trichoderma Detection of peptaibols in 28 Trichoderma species Neuhof et al. [129]

Trichoderma Direct identification of hydrophobins in Trichoderma isolates by MALDI-TOF MS Neuhof et al. [130]

Trichoderma, Rhizoctonia Visualization of metabolites produced during the antagonistic interaction of T. atroviride and R. 
solani

Holzlechner et al. [131]

Verticillium Identification of six pathogenic Verticillium isolates with a protocol involving sonication Tao et al. [132]

Wood decay fungi Differentiation of closely related indoor wood decay fungi by MALDI-TOF MS (Serpula lacry-
mans, S. himantioides, Coniophora puteana, C. marmorata, and Antrodia vaillantii, A. sinuosa)

Schmidt and Kallow [133]

Yeasts and filamentous 
fungi

MALDI lipid phenotyping as an alternative method for characterizing and identifying fungi Stübiger et al. [134]

Yeasts Identification of food-borne yeasts (≥33 species, 96 isolates) by MALDI-TOF MS and conven-
tional methods

Pavlovic et al. [99]

https://www.eppo.int/QUARANTINE/listA1.htm
https://www.eppo.int/QUARANTINE/listA1.htm
https://www.eppo.int/QUARANTINE/listA2.htm
https://www.eppo.int/QUARANTINE/listA2.htm
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food spoilages) and to other microorganisms, such as 

filamentous fungi and yeasts, will thus enable experimen-

tal research in bacterial and fungal diagnostics, ecology, 

physiology, or pathology.
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