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Abstract
Purpose of Review The prevalence of obesity has increased
substantially in the current generations of Western countries,
and the burden of obesity-related complications has been
growing steadily. In men, obesity is not only a major risk
factor for serious chronic diseases, concern is growing that
the reproductive capacity, and more particularly, their off-
spring’s health may be affected. Obesity-related impaired
spermatogenesis is associated with a decrease in microscopic
and molecular sperm characteristics and pregnancy success.
We hypothesize that epigenetics is an important mediator
explaining interactions between an obesogenic environment
and sperm/offspring outcomes.
Recent Findings Recent studies have explored inter- and
transgenerational epigenetic effects in sperm cells and in off-
spring. Father-to-child effects have been reported in relation to
preconceptional nutritional and life-style related factors.
Summary Here, we summarize the current understanding
about obesity and molecular or epigenetic underlying mecha-
nisms in sperm. We identify the obesogenic environment of

the father before conception as a potential origin of health or
disease in the offspring and include it as part of a new concept,
the Paternal Origins of Health and Disease (POHaD).

Keywords Obesity . Environment . Male fertility . Sperm .

Fathers . Epigenetics . Offspring health

Introduction

Overweight and obesity are defined as abnormal or excessive
fat accumulation that impairs health. The World Health
Organization (WHO) classifies adults with a BMI (kg/m2)
equal to or greater than 25 as overweight and a BMI equal
to or greater than 30 as obese. In general, a high BMI is a
major risk factor for various metabolic changes such as glu-
cose intolerance, insulin resistance, hyperleptinaemia, and
hypogonadism in men [1, 2]. Co-morbidities associated with
obesity are increased risk of cerebrovascular diseases, cardio-
vascular disease, type 2 diabetes, and cancer. Since 1980,
obesity has more than doubled worldwide. WHO data of
2014 show that the USA takes the lead with a prevalence of
72.8% obese or overweight adult men. Nearly half of them
have been classified as obese (or 33.6% of the US male pop-
ulation) [3].

In this review, we first discuss (epi) genetic origins of obe-
sity and related environment. Environmental factors that do
not change the DNA sequence can instead alter the epigenome
causing increased risk for chronic diseases, including meta-
bolic disorders and obesity [4]. In brief, the epigenome en-
compasses regulatory information that acts through histone
modifications, the function of non-coding RNAs, and DNA
methylation, a chemical process that adds a methyl group to
DNA. This occurs at a CpG site, where a cytosine nucleotide
is located next to a guanine nucleotide linked by a phosphate
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[5, 6]. Depending on its methylation status, genes can be
turned on or off. In this way, metabolic and other important
pathways can affect homeostasis in the body and result in
phenotypic changes relatively quickly.

We further describe the current knowledge on microscopic
andmolecular characteristics of sperm in relation to obesity. In
order to understand the role of the epigenome as a potential
key mediator, we include some epigenetic findings. Finally,
we explore the epigenetic effects of obesity in sperm. This is
also summarized in a hypothetic and schematic overview in
Fig. 1.

Obesity: Genetic and Epigenetic Origins?

Supposing that BDarwinian evolution^ took place in an
Benergy-poor^ environment, the genetic legacy that promotes
obesity may have been a protective factor for survival in an-
cient human history [7]. As a result, the majority of people
nowadays seem to have a combination of obesity-
susceptibility genes, while others seem to be relatively resis-
tant to overweight and obesity despite living in the same en-
vironment [7]. Body mass variation is known to have a large
genetic component; heritability of BMI ranges between 30
and 70% [8]. Several major genes contribute to obesity by
disrupting the hypothalamic pathways controlling satiety and
food intake. However, alterations in these genes such as leptin
(LEP), leptin receptor (LEPR), and Melanocortin 4 receptor
(MC4R) are relatively rare [9]. Instead, several molecular
pathways are involved in obesity and it has been considered
as polygenic in origin. Disturbed biological functions in ener-
gy expenditure, lipid and glucose metabolism, and adipose
tissue development and inflammation have been related to

obesity [10]. However, despite reported relations between
multi-genetic variations and BMI, the sudden increase of obe-
sity rates has occurred only recently. After World War II, in-
dustrialization and economic growth led to an increasingly
urbanized and sedentary workforce [7]. Coupled with ease
of access to food, this basic reduction in energy expenditure
and increase in caloric intake has contributed to what is now
termed the Bobesogenic^ environment [8]. Although the inter-
play between nutritional intake and energy expenditure is the
main aspect in regulating bodyweight, many indirect lifestyle
factors and other environmental traits contribute to an individ-
ual’s susceptibility of becoming over weighted or obese.
Although some Bindirect factors^ need further proof of a caus-
al relation, examples include stress, depression, sleep depriva-
tion, medication, and obesogenic factors such as organic chlo-
rine derivatives and endocrine disruptors from food packag-
ing. As a result of individual differences in genetic legacy,
some individuals are not or less able to keep a stable and
healthy body weight in the current BWestern^ environment.
The accumulation or a cocktail of multiple environmentally
harmful exposures may be the reason why our world is facing
a rapid increase in obesity rates.

Evidence suggests that the environment can change molec-
ular or epigenetic profiles in the exposed individual, ultimate-
ly resulting in obesity (Fig. 1). For instance, nutritional fac-
tors, which do not change the genome, can instead alter DNA
methylation causing increased risk for chronic diseases or
obesity [4]. The epigenome is supposed to react quite rapidly
to environmental changes, compared to adaptation through
genetic variation. Conversely, a recent report by Wahl et al.
suggests that adiposity may also influence DNA methylation
[11•]. The testes are an organ of rapidly growing cells that is
susceptible to epigenetic changes (or damage) [12•] (Fig. 1).
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Fig. 1 Hypothetical overview of obesity-related associations with sperm
characteristics and the role of the epigenome. Obesity is a result of several
environmental exposures, summarized as the obesogenic environment.
The fundamental cause of obesity or excessive body fat can be found in
an imbalance between consumed and expended energy. Although this is a
simple concept, the metabolic system balancing energy intake and
expenditure is complex and is not fully understood. Epigenetic
mechanisms play a role in this regulatory system, and the epigenome
itself is susceptible to environmental factors as well. Obesity causes

sperm aberrancies at the level of chromatin, DNA, ROS, epigenetic
factors, morphology, and other clinical characteristics. The mechanisms
of interaction between these molecular and physical features of sperm are
largely unknown. Some associations have been reported (arrows). But, it
is unclear if clinical sperm characteristics are affected by epigenetic
changes (dashed arrow). The acquired sperm aberrancies can ultimately
result in fertility problems or disorders in the offspring. The next question
rises if this epigenetic Bmessage^ will be retained in future generations
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Wahl et al.’s epigenome-wide study provided a link between
BMI and widespread changes in DNAmethylation in humans
[11•]. A potential role of the epigenome in pathogenesis of
obesity-related issues has been suggested, and the authors
concluded that disturbances in DNA methylation may predict
future development of chronic diseases, such as diabetes type
2 [11•]. Other epigenetic alterations related to obesity are sit-
uated at the level of the germ line. It is hypothesized that the
epigenetic plasticity allows the environment to leave a mark
on the germ line, which can be passed on to the next genera-
tion(s) [13•].

Obesity and the Male Germ Line

Effects of Obesity on Sperm Quality

Currently, biomarkers to predict male fertility include standard
clinical sperm tests, such as semen volume, sperm concentra-
tion, motility, progression, morphology, leukocyte quantifica-
tion, and some other characteristics, such as liquefaction, vis-
cosity, PH, and color. Cutoff reference values for these char-
acteristics have been defined by the WHO [14, 15]. Studies
focusing on the impact of obesity on these variables do not
always obtain similar results. A study in Denmark including
1558 military recruits showed that overweight men had a 21
and 24.9% reduction in sperm concentration and total sperm
count, respectively. Normal motility and semen volume were
unaffected [16]. Belloc et al. published a large single-centre
study (10,665 men) on the potential impact of BMI on sperm
characteristics. They reported a significant association be-
tween obesity and volume, concentration and total sperm
count after adjustment for male age and abstinence duration.
It should be noted that BMI was self-reported and most sub-
jects were seekingmedical advice in the fertility clinic because
of fertility issues [17].

The effective and causal relation between BMI and clinical
sperm tests remains controversial. Recent meta-analyses re-
ported opposing conclusions. Sermondade et al. evaluated
21 studies, representing a sample size of about 13,000 men.
They showed that obese men had higher odds for oligozoos-
permia (OR was 1.42; CI 95%, 1.12–1.79) or azoospermia
(OR was 1.81; CI 95%, 1.23–2.66), compared to men with
normal weight [18]. A review by MacDonald et al. included
31 studies, of which 5 were suitable for a meta-analysis of
BMI and standard clinical semen tests, representing nearly
5000 participants. Paternal obesity was not associated with
standard sperm counts, including concentration, sperm count,
volume, and motility [19]. A meta-analysis published by
Campbell et al. included 30 papers, with a total of about
115,000 participants. Obese men were more likely to experi-
ence infertility and had an increased percentage of sperm with

low-mitochondrial membrane potential, DNA fragmentation,
and abnormal morphology [20].

Besides BMI, some studies also included body fat distribu-
tion such as waist and hip circumference, to search for asso-
ciations with sperm characteristics. Eisenberg et al. found that
waist circumference was inversely correlated with semen vol-
ume and total sperm count in men who did not have fertility
problems [21]. Fejes et al. found that waist circumference of
infertile men was negatively correlated with progressive mo-
tile sperm count [22]. Others also reported a negative associ-
ation between waist circumference, sperm concentration, and
total motile sperm count [23]. Interestingly, an intervention
study provided evidence that adverse sperm characteristics
related to obesity are reversible. Häkonsen et al. showed in
43 men with a BMI > 33 kg/m2 that a 3- to 4-month weight
loss program increased total sperm count and semen volume.
These results were accompanied by an improvement in sex
hormone profiles [24]. However, it is difficult to discern
whether these effects resulted from body fat loss, lifestyle
intervention, or both [24]. Reis et al. were not able to confirm
these findings in bariatric patients. They found no changes
2 years after ten morbidly obese patients had undergone bar-
iatric surgery and concluded that sperm counts do not recover
well after an extensive body fat reduction in this particular
subgroup [25]. Interestingly, case series have reported a reduc-
tion in sperm counts in a period of 12 to 18 months after
bariatric surgery. This may be due to nutritional deficiencies
and the elevated release of toxins [18, 26].

Nutritional factors, such as consumption of high-energy
diets (HEDs), have also been related to impaired sperm con-
centration, motility, and morphology [27•]. Jensen et al. also
investigated the association between dietary fat intake and
sperm quality. A higher intake of saturated fat was associated
with significantly lower sperm concentration and total sperm
count [28]. Another study also found a negative correlation
between dietary trans fatty acid intake and sperm concentra-
tion [29].

Effects of Obesity on Male Fertility and Offspring

Successful pregnancy rates and live birth rates are often
used as key endpoints to define fertility. Epidemiologic
studies have demonstrated that a high-paternal BMI in-
creases time to pregnancy [30, 31] and decreases clinical
pregnancy rates [32, 33]. Time to pregnancy is even higher
if both man and woman were overweight or obese [31]. In
men, it is well known that obesity and redundant fat mass
have a noticeably negative impact on his reproductive sys-
tem. Conversion of androgens into estrogens in adipose
tissue of obese men causes a sexual hormone imbalance,
resulting in hypogonadism. Furthermore, adipose tissue
produces pro-inflammatory cytokines (such as IL-6 and
TNF-alpha) and oxidative stress in the male reproductive
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tract. Others have widely documented and discussed the
link between obesity and hormonal profiles [34–36], as
well as obesity-related inflammatory responses [37–39].
We here focus on obesity-related effects in sperm that have
been linked with (transgenerational) epigenetic effects.
This is particularly interesting; it is currently unclear how
male obesity affects the sperm epigenome and in utero
development. Furthermore, according to a growing body
of literature, if pregnancy succeeds, paternal obesity or
nutritional conditions may influence offspring health
[12•, 13•, 40–48].

Effects of Obesity on Molecular Composition of Sperm

DNA Fragmentation

Besides the effects of BMI on classical sperm parameters,
more recent literature includes the molecular composition of
sperm cells. This is assessed by evaluating the degree of DNA
fragmentation and/or oxidative stress. Several studies report
the DNA fragmentation index (DFI) or the percentage of
sperm that has increased levels of double or single-strand
breaks in nuclear DNA. DFI is often used as an indicator of
pregnancy success. In healthy men, DFI is 3 to 5%, while a
DFI of 30% or higher is associated with reduced fertility [49].
Obesity and overweight have been related to a high DFI or to
DNA/chromatin damage in sperm cells [50–52]; suggesting
an obesity-related effect on the molecular composition of
sperm. A meta-analysis showed also a link between sperm
DNA damage and increased pregnancy loss [53]. However,
Zini et al. could not link their observation with embryo quality
or early growth.

Reactive Oxygen Species

DNA damage is a downstream effect of increased cellular
oxidative stress. For instance, infertile men present higher
levels of oxidative DNA damage in spermatozoa, including
high levels of 8-hydroxy-20-deoxguanosine, which is a major
oxidized base adduct formed in sperm cells when DNA is
targeted by an excess of reactive oxygen species (ROS). It is
well documented that the degree of oxidative stress can be
evaluated through measurement of ROS. These are unstable
chemical species containing oxygen such as peroxides, super-
oxide, hydroxyl radicals, and singlet oxygen. Major sources of
ROS production in sperm cells are their plasma membrane
and mitochondria [54]. Other potential sources of ROS in
seminal fluid are macrophages and polymorphonuclear leuko-
cytes [55]. It should be noted that ROS are also considered
normal by-products of the cellular metabolism. However, a
state of oxidative stress occurs when ROS production is un-
controlled and/or ROS scavenger system is inefficient.

Sperm cells have a high number of mitochondria because
of their motile capacities. DNA of these organelles or mito-
chondrial DNAs (mtDNAs) in particular are extremely sensi-
tive to oxidative stress. Furthermore, mutations at the level of
mtDNAs exacerbate the function of the electron transport
chain (ETC), which also contributes to an increase in ROS
production. Furthermore, spermatozoa are extremely prone
to oxidative injury because they are relatively deficient in
ROS-scavenger enzymes. In brief, these factors cause them
to be largely dependent on the antioxidant protection that ex-
ists within the testicular milieu and throughout the male repro-
ductive tract [56].

Relations between obesity, ROS, and sperm characteristics
have been investigated by several research groups, both in
animal models and in humans. Studies in animal models have
shown that impaired spermatogenesis linked to HED con-
sumption can be attributed to unbalanced ROS generation.
In response to high-energy intake, beta-oxidation in the testes
increases [57]. Interestingly, rats fed with HED have lower
expression of two key inducers of ROS-detoxifying enzymes.
This contributes to a decrease in testicular ROS-defense,
which is associated with a deficient mitochondrial function,
causing compromising testicular bio-energetic capacity and a
decline in sperm quality [58]. In humans, Tunc et al. could
partially confirm this observation. They reported a positive
association between BMI and ROS, but no correlation was
found between ROS and sperm DNA integrity or motility.
Noteworthy, their study included a small number of partici-
pants (only 81 men) [59]. Effects from a high-fat paternal diet
on ROS and sperm DNA damage have been confirmed by
others [60, 61]. The production of ROS has generally been
accepted to negatively affect sperm motility and potentially to
lead to damage of DNA or other important structures such as
plasma membranes [62, 63].

Other dietary factors such as low-protein and high-sugar
intake have been associated with obesity and ROS produc-
tion. While little is known about the possible influences of
protein intake on male fertility, high-sugar intake is known
to affect male reproductive function. In a cross- sectional
study of 189 young men (18–22 years old), sugar-
sweetened beverages (SSB) were associated with lower
sperm motility. Interestingly, this association was not me-
diated by an increased BMI. The effect was only observed
in lean people and not in overweight or obese people. This
can be due to a true biological interaction where a strong
detrimental effect of excess body weight on motility out-
weighs the relation between SSB and poor semen quality.
Therefore, the relation between SSB and poor semen qual-
ity can only be observed among men with normal BMI
who already had a higher baseline semen quality [64].
Although results of this cross-sectional design should be
interpreted with care, a possible explanation could be that
sugar intake increases insulin resistance, which in turn
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increases oxidative stress [65, 66]. As indicated earlier, elevat-
ed levels of oxidative stress can result in sperm DNA damage,
lipid peroxidation, and reduced motility [67, 68]. Ruff et al. in
2013 confirmed in a mice model that sugar intake affects male
reproductive function. Male mice who consumed 25 EN% of
a glucose/fructose mixture, modeling high-fructose corn syrup
had 25% fewer offspring than control male mice [69].

It has been shown that in addition to DNA damage through
direct attack of free radicals on DNA molecules, ROS signal-
ing is an important factor of epigenetic processes such as
DNA methylation and histone modification. Although the ex-
act mechanism is not known, this suggests how HED con-
sumption can be captured in the sperm epigenome and thereby
possibly affect health of the offspring [70]. To our knowledge,
no human data are available on epigenetic effects in sperm
from a Bhigh-carbohydrate diet^ or sugar-rich diet.

An increasing number of reports also highlight the exis-
tence of a complex interplay between cytokines and ROS.
Some cytokines can stimulate pro-oxidant and antioxidant
systems and influence the generation of ROS. On the other
hand, ROS can also promote production of cytokines [26, 71,
72]. In the current review, we do not further elaborate on this
subject, but focus on the epigenetic components.

Transgenerational Epigenetic Consequences
of Paternal Obesity on the Germ Line

As described above, obesity results from a range of environ-
mental factors, including but not limited to dietary and life-
style factors. These factors can alter epigenetic patterns, in-
crease the risk of chronic diseases and change phenotypic
characteristics of the individual, but future generations can
also be affected.

The first evidence for obesity-related effects from father
to offspring was published by Ng et al. They reported that
paternal high-fat diet (HFD) exposure programs β-cell dys-
function in rat F1 female offspring [73]. Female offspring of
HFD fathers had an early onset of impaired insulin secretion
and glucose tolerance worsened over time, compared to off-
spring from control fathers. DNAmethylation changes were
measured in a key pancreatic islet gene, Il13ra2, in these
offspring. In 2014, Ng et al. added that the transcriptome of
retroperitoneal white adipose tissue of offspring rat was also
concomitantly affected [74]. However, no analyses were
performed on germ cells of males. Genetic association anal-
yses suggest that the epigenome of multiple tissues is influ-
enced by adiposity [11•]. Hence, developing sperm cells
may be one of tissues carrying methylation changes.
Epigenetic changes in the male gametes may be the under-
lying cause of these transgenerational effects.

Fullston et al. investigated the effect of diet-induced pater-
nal obesity on the molecular profiles of testes and sperm.Male

mice fed on a HFD showed altered microRNA content in
mature sperm and a 25% reduction in global methylation of
germ cell DNA [75]. Palmer et al. evaluated the presence of
Sirtuin-6 (SIRT6), a histone deacetylase, in testicular germ
cells throughout spermatogenesis in mice. They measured
the effects of diet-induced obesity with HFD on SIRT6 levels
and activity. SIRT6 levels were significantly decreased in
mice that were fed with HFD. This was also associated with
increased damage of sperm DNA [76]. Terashima et al. exam-
ined the effects of HFD on chromatin of spermatozoa in mice
[77]. They investigated H3 retention and genomic imprints at
seven imprinted loci in sperm. Additionally, they examined
liver gene expression in male offspring. They did not find any
changes in DNA methylation associated with a high-fat diet
[77]. Instead, they detected differential histone H3-occupancy
at genes involved in the regulation of embryogenesis and dif-
ferential H3K4me1-enrichment at transcription regulatory
genes in HFD fathers. Compared to controls, the hepatic
mRNA level of seven genes (out of 20 evaluated) was signif-
icantly altered in HFD male offspring.

Protein restriction in rodents affects sperm small RNA
(sRNA) levels, including transfer RNAs (tRNAs) [78].
Grandjean et al. in 2015 demonstrated that microinjection of
extracted RNA from mice testis that received a Western-like
diet into zygotes resulted in a metabolic phenotype in the
offspring similar to that of offspring from males who were
administered a Western-like diet [79••]. Similarly, Chen
et al. demonstrated that injection of transfer RNA-derived
small RNAs (tsRNA) originating from sperm from HFDmice
males into normal zygotes caused differential expression of
genes that belong to metabolic pathways. This was measured
in early embryos, but offspring showed metabolic disorders as
well [80•].

In humans, studies on potential effects of obesity and
overnutrition on sperm epigenetics are limited. For in-
stance, to our knowledge, no human studies have ex-
plored a function of RNA fragments in the transmission
of dietary conditions from father to child. Consales et al.
investigated the impact of demographic and lifestyle fac-
tors on sperm global methylation levels in 269 healthy
men. Global DNA methylation levels were quantified in
repetitive DNA sequences (LINE-1, Satα, and Alu). No
correlation was found between BMI and sperm DNA
methylation [81]. Smoking was the only factor that
showed a significant positive association with the LINE-
1 methylation level. Alu and Satα methylation levels were
not associated with lifestyle factors.

However, when exploring DNA methylation at an individ-
ual gene level or in genome-wide studies, differential methyl-
ation by obesity-status has been reported. For instance, in
sperm from a population of 69 young and healthy volunteers,
DNA methylation percentages were found to be significantly
different in obese or overweight men versus normal weight
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men at differentially methylated regions (DMRs) of imprinted
genes [82•]. Donkin et al. provided a comprehensive epige-
netic approach on sperm samples from obese and lean Danish
men and confirmed an association between obesity and epi-
genetic differences in sperm cells [83•]. Unfortunately, only
10 obese and 13 leanmen were included and not all epigenetic
analyses were performed in all samples. An interesting finding
was that bariatric treatment resulted in significant epigenetic
changes in sperm cells. Here too, the study cohort was small:
only six bariatric patients were followed.

Epigenetic changes can persist for multiple generations,
predisposing the offspring with a different methylation pattern
and altered molecular programming [12•, 13•, 45, 84]. Altered
methylation profiles at multiple imprint regulatory regions in
children born to obese parents were detected after comparison
with DNA methylation profiles of children born to non-obese
parents [85•, 86]. Subsequently, in a separate study, altered
DNA methylation percentages at several differentially meth-
ylated regions were also detected in sperm, suggesting that the
male overweight/obesity status is traceable in the sperm epi-
genome [82•].

Conclusion

We hypothesized that an obesogenic environment not only
causes phenotypic changes such as predisposition to obe-
sity in the individual, but it can also affect sperm quality,
pregnancy success, and offspring health. In response to
obesity-related factors, several cellular pathways and
mechanisms are activated. The interplay between epige-
netic changes, molecular, and physiological aspects in
sperm becomes apparent in fertility rates and developmen-
tal outcomes. Hence, epigenetic changes that have oc-
curred in the germ line can be passed on to future gener-
ation(s). Besides well-documented maternal and in utero
influences, we are now reaching a new era in which the
environment of future fathers will become relevant as
well. This issue has currently been one of the major ques-
tions in the new and intriguing field of transgenerational
epigenetics, given that it reflects an important concern
society is faced with. Currently, future fathers are not
involved in any life-style related preconceptional recom-
mendations. However, if obesity can be shown to be a
new determinant contributing to the development of det-
rimental health conditions in offspring, this may well need
to change. The current concepts of the Developmental
Origins of Health and Disease (DOHaD) are being used
to guide policies that support mother and children’s
health. However, it is of public interest to explore both
the maternal and the paternal segment of the DOHaD-
related research. The latter has recently been coined as
the Paternal Origins of Health and Disease or BPOHaD.^
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