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Abstract: Sex determination pathways consist of a hierarchical cascade of genes, with a 

bewilderingly diversity of primary signals. Houseflies have a unique polymorphic sex 

determination system in which a dominant male determiner M either resides on the Y chromosome 

or on different autosomes. We identified a Musca domestica male determiner  (Mdmd) gene 

originating from a duplication of the spliceosomal factor CWC22/nucampholin, as M. Targeted 

Mdmd disruption results in complete sex reversal to fertile females due to a shift from male to 

female expression mode of downstream pathway components. Presence of Mdmd on the Y and on 

autosomes carrying M indicates that Mdmd translocated to different genomic sites. Thus an 

instructive signal in sex determination can arise by duplication and neofunctionalization of an 

essential splicing regulating gene. 

 

One Sentence Summary: Polymorphic sex determination in houseflies results from translocation 

of a male-determining paralog of splice regulator CWC22. 

 

Main Text: Genetic mechanisms for sex determination are not conserved among organismal 

groups. Insects illustrate this diversity, where systems vary at the chromosomal, gene and gene-

regulation level between species (1-3). For example, under male heterogamety (XX-XY system) 

sex can be determined by a dominant Y-linked gene or by X-chromosome dosage (4). The insect 

sex determination pathway is conserved at the key transductory axis, the transformer (tra) and 

doublesex (dsx) genes, but highly diverse for the upstream instructive signals (5-7). The 

polymorphic sex determination system of the housefly, Musca domestica, reflects this diversity in 

regulation and genes (8-11). Males can carry a dominant male-determiner (M-factor) on the X or 

Y chromosome or any of the five autosomes (10, 12-15).  



 

 

M acts as the instructive signal for male development in the housefly. It regulates transformer (Md-

tra), a binary switch that directs female differentiation when active and male differentiation when 

inactive. Md-tra is regulated at the splicing level. The active state of Md-tra is initially established 

by maternally provided Md-tra. Once activated, zygotic Md-tra will perpetuate its female 

promoting function by a positive splicing feedback loop throughout development. Paternally 

inherited M prevents this maternal activation of the zygotic Md-tra self-regulatory loop. Early 

embryonic presence of male-specific splice products of Md-tra indicates that this regulation 

already starts at the cellular blastoderm stage (11). 

We hypothesized that M encodes a product present only in early male embryos to prevent 

establishment of Md-tra function. Exploiting Musca genetics, we isolated and sequenced RNA 

from unisexual embryos (fig. S1). Amongst the top 14 male-specifically expressed sequences that 

were absent in the female M. domestica genome assembly (16), we identified five orphan contigs 

of the same transcription unit (Fig. 1A and table S1), which we termed Mdmd (for Musca 

domestica male determiner). Subsequent analysis revealed that these sequences are present in 

males that carry an M-factor on chromosome Y, II, III, or V (Fig. 1B). RT-PCR amplification 

confirmed exclusive presence of Mdmd transcripts in male embryos (Fig. 1C). Zygotic Mdmd 

transcripts first appear in 2-3h old embryos (cellularized blastoderm stage) coinciding with the 

first zygotic expression of Md-tra (11). Mdmd expression is then maintained throughout male 

development until adulthood (Fig. 1D). Mdmd encodes a protein with high homology to 

Complexed with Cef-1/Nucampholin (CWC22/Ncm), a spliceosome-associated protein that is 

required for pre-mRNA splicing and exon-junction complex (EJC) assembly (17). A BLAST 

survey of Mdmd over female genome scaffolds (16) identified a paralog (LOC101896466) of 

Mdmd structurally closely related to ncm genes of other insect species. In contrast to Mdmd, ncm 



 

 

is present and expressed in both sexes (Fig. 1, B, C and D). Based on its high sequence identity to 

the ncm gene in Drosophila and its conserved synteny evidenced by linkage to bicoid stability 

factor, we refer to this autosomal gene as the ortholog of ncm and named it Md-ncm. Mdmd shares 

a high degree of identity with Md-Ncm in the MIF4G (85 %) and MA3 (79%) domains and 

flanking sequences but displays a substantial level of divergence in the amino-terminal and 

carboxy-terminal regions (Fig. 1A and fig. S2). Sequence alignments reveal that Md-ncm groups 

with prototype ncm genes of other insect species. However, the Mdmd sequences from different M 

strains form a distinct outgroup suggesting that after the duplication event Mdmd rapidly diverged 

from Md-ncm (Fig. 1E and fig. S3).  

Multiple non-functional copies were found next to the Mdmd gene in the MIII genome (fig. S4). 

These copies may have arisen from local amplification to preserve Mdmd functionality in a non-

recombining region (fig S4). Because of its long ORF Mdmd is particularly vulnerable to the 

accumulation of deleterious mutations. We identified a similar arrangement of multiple Mdmd 

copies in MII, MV and MY males (fig. S4). This suggests that the various M loci originated from a 

common ancestral Mdmd sequence which first locally multiplied and then translocated as a cluster 

to different sites in the genome (fig. S5). 

Upon silencing of Mdmd by injecting dsRNA into syncytial embryos of different M strains, all of 

the surviving M carrying individuals developed externally as males, but 56 to 88% contained fully 

differentiated ovaries instead of testes with the notable exception of MI males (Fig. 2, A, B and C, 

fig. S6). From this result, we infer that Mdmd is essential for specifying the male gonadal and 

germline fate, which is consistent with genetic findings that M and its target Md-tra govern the 

sexual identity of both soma and germ line (11). Incomplete feminization may be explained by the 

transient nature of embryonic RNAi. A 70% reduction of Mdmd transcript levels is observed in 



 

 

MIII/+ embryos 10h after dsRNA injection, whereas after 20h levels are comparable to those in 

control individuals suggesting a recovery of Mdmd expression (Fig. 2D and E). As substantial 

levels of Mdmd transcripts were also detected in non-gonadal tissues of male adults with ovaries, 

restored activity of Mdmd at late stages apparently prevented systemic female differentiation (Fig. 

2E). To conclusively test whether Mdmd is required for overall male differentiation, loss-of-

function alleles were generated in Mdmd coding sequences by NHEJ mediated disruption with 

Cas9. Upon targeting Mdmd in the MIII strain, we recovered 59 fertile males, of which at least ten 

sired female progeny carrying dominant markers tightly linked to the MIII locus, indicating loss of 

its male determining function (fig. S7). These M containing individuals are phenotypically normal 

fertile females (Fig. 3A). Sequence analysis confirmed that these females carry structural 

aberrations in the Mdmd cluster (Fig. 3B). Lines M32 and M36 are most informative as the lesions 

specifically disrupt the ORF of Mdmd (Fig. 3C) and only abolish the protein coding function of 

this Mdmd copy. We conclude that the Mdmd gene is indispensable for normal male development 

and may be the only gene in the cluster providing male function. Consistent with the role of M as 

an upstream repressor of Md-tra, individuals that have Mdmd abolished by CRISPR/Cas9 

exclusively express the female splice variants of Md-tra and Md-dsx (Fig. 3D).  

 

Based on sequence similarity, we inferred that Mdmd is a paralog of Md-ncm (CWC22), which 

codes for a spliceosome-associate protein indispensable for the assembly of the Exon Junction 

Complex (EJC) (17,18). The essential functions of CWC22 are likely to be provided by Md-ncm 

as embryonic silencing of this gene leads to early lethality in both males and females (fig. S8). 

However, the effect of EJC on splicing is limited to certain genes (19). Changes in expression 

levels of EJC components also affect splice site selection of alternatively spliced genes (20). As 



 

 

tra is one of the targets on which EJCs preferentially assemble in Drosophila (19), it is conceivable 

that Md-ncm plays a crucial role in splicing regulation of Md-tra. Because the target of M, Md-tra, 

is alternatively spliced, this post-transcriptional regulatory function makes Mdmd an excellent 

candidate M-factor. Mdmd may act as a direct regulator of Md-tra by selectively promoting the 

male or preventing the female splicing mode. Alternatively, the high level of sequence similarity 

to its paralog opens the possibility that Mdmd behaves as a dominant negative, interfering with the 

functions of Md-ncm in promoting female splicing of Md-tra. Further study needs to elucidate the 

precise role of this gene in Md-tra splicing and can contribute to a better understanding of 

alternative splicing regulation.  

 

There likely exists an enormous undiscovered source of primary signal genes for sex determination 

in insects. Recently, two male determiners were characterised from mosquitoes, Nix in Aedes 

aegypti (21) and Yob in Anopheles gambiae (22). These genes show neither sequence homology to 

each other nor to Mdmd, further pointing towards the species-specific acquisition of novel male 

determiners in insects. Moreover, Mdmd appears to be absent in the M. domestica strain that has 

an M factor mapped to chromosome I (fig. S4), suggesting that even intraspecific variation exists 

at the level of the primary signal. As insect sex determination is based on alternative splicing, its 

role in splicing regulation may have pre-equipped ncm for attaining a sex determination function. 

The recruitment of a CWC22 duplicate for male function may be unique for the housefly as ncm 

paralogs have thus far not been found in other higher dipterans. Our study thus demonstrates that 

novel genes originating from duplication and neo-functionalization can adopt critical roles in 

essential developmental processes. 
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Fig. 1. Mdmd is a male-specific paralog of the M. domestica CWC22 ortholog, Md-ncm. (A) 

Comparison of the two paralogs, Mdmd and Md-ncm. Mdmd was initially identified by extending 

five male-specific RNA contigs (red lines). Each exon contains a highly conserved domain, 

MIF4G (yellow) and MA3 (blue). Nucleotide identity is indicated in percentages. (B) Genomic 

amplifications with paralog-specific end primers show that Mdmd sequences are present only in 

males of XY, MII, MIII and MV strains, whereas Md-ncm is present in both males and females (+/+) 

of each strain. (C) RT-PCR confirming presence of Mdmd transcripts in 1-5h old male embryos 

(MIII/+), but not in female embryos (+/+). (D) Developmental expression profiles of Mdmd and 

Md-ncm based on RT-PCR with intron spanning primers. The upper bands in both profiles 

correspond to unspliced RNA and/or genomic DNA contamination, while the lower bands 

represent spliced transcripts (E) Neighbor Joining phylogenetic tree (branch label: % consensus 

support) of Mdmd and ncm/CWC22 genes (see also MrBayes tree in fig. S3B). 

Fig. 2. Embryonic silencing of Mdmd is transient and leads to ovarian differentiation in 

males. (A-C) MIII/+ individuals injected with dsRNA against Mdmd. (A) Adult abdomen with 

male genital structures (claspers) and inside fully differentiated ovaries (ov) (B) Dissected ovaries 

from the same male. (C) DAPI stained ovaries containing normal cysts composed of nurse cells 

(nc) and egg chambers (ec). (D) Relative levels of Mdmd mRNA 10h and 20h after injections with 

dsRNA against Mdmd and dsRNA against M112 control in MIII/+ male embryos. (E) RT-PCR 

analysis of Mdmd transcripts and female transcripts of Md-tra (Md-traF) in normal (+/+) ovaries 



 

 

(ov) and (MIII/+) testes (tes) and in Mdmd dsRNA-injected (MIII/+) gonadectomized bodies (gb), 

testes (tes) and ovaries (ov). 

 

 

Fig. 3. CRISPR/Cas9 induced disruption of Mdmd causes complete male to female 

transformation. (A) F1 female of line M32 with pw+, bwb+ phenotype (left), male sibling with 

pw+, bwb+ phenotype (middle) and female sibling with pw, bwb phenotype (right). (B) 

CRISPR/Cas9 targeted sites sgF3 and sgFA in Mdmd (red stripes). Genomic amplifications of 

Mdmd and Md-ncm in F1 females of lines M6, M29, M31, M32, and M36. Upper panel F1-R4 

primers amplify ORF of MdmdIII, middle panel primers 1s/1as amplify 5' region in different Mdmd 

copies, and lower panel primers Md-ncm. Absence of F1-R4 amplicons in M6, M29 and M31 

indicates large deletions. (C) In M32 female, a deletion of 14 bp uncovers the sgF3 target site 

upstream of the MIF4G domain causing a frame-shift. In M36, a deletion of 146 bp removes the 

same target site and extends into the MIF4G domain. (D) Expression of Md-tra and Md-dsx in sex-

reverted females of lines M6, M29, M30, M31 and M32. Female splice variants are absent in 

control males (MIII/+), but present in control (+/+) and MdmdΔ females. Male splice variant of 

Md-dsx, Md-dsxM, is only detected in control males (MIII/+). Expression of Cytochrome P450 

(CyP) was used as an internal standard. 
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