
electronics

Article

MALGRA: Machine Learning and N-Gram Malware
Feature Extraction and Detection System

Muhammad Ali 1 , Stavros Shiaeles 2,* , Gueltoum Bendiab 2 and Bogdan Ghita 1

1 School of Engineering, Computing, and Mathematics, University of Plymouth, Plymouth PL4 8AA, UK;
muhammad.ali@plymouth.ac.uk (M.A.), bogdan.ghita@plymouth.ac.uk (B.G.)

2 School of Computing, University of Portsmouth, Portsmouth PO1 2UP, UK; gueltoum.bendiab@port.ac.uk
* Correspondence: stavros.shiaeles@port.ac.uk

Received: 29 June 2020; Accepted: 17 October 2020 ; Published: 26 October 2020
����������
�������

Abstract: Detection and mitigation of modern malware are critical for the normal operation of
an organisation. Traditional defence mechanisms are becoming increasingly ineffective due to
the techniques used by attackers such as code obfuscation, metamorphism, and polymorphism,
which strengthen the resilience of malware. In this context, the development of adaptive,
more effective malware detection methods has been identified as an urgent requirement for protecting
the IT infrastructure against such threats, and for ensuring security. In this paper, we investigate
an alternative method for malware detection that is based on N-grams and machine learning. We use
a dynamic analysis technique to extract an Indicator of Compromise (IOC) for malicious files,
which are represented using N-grams. The paper also proposes TF-IDF as a novel alternative
used to identify the most significant N-grams features for training a machine learning algorithm.
Finally, the paper evaluates the proposed technique using various supervised machine-learning
algorithms. The results show that Logistic Regression, with a score of 98.4%, provides the best
classification accuracy when compared to the other classifiers used.

Keywords: malware; dynamic analysis; sandbox; SNDBOX; N-grams; API call; machine learning;
Logistic Regression; Naive Bayes; Random Forests; Decision Tree

1. Introduction

Malware is a broad term that refers to any piece of software designed intentionally to damage the
normal functionality of a computer or a network [1]. Malicious behaviour may involve illegal activities
such as stealing sensitive information (such as login credentials, credit cards, or other privacy-related
information), gaining unauthorized access to private systems, or espionage. Current malware target
widely and indiscriminately from individuals and residential customers to IT systems within large
organisations or critical country-wide infrastructures (including nuclear plants and water supply
systems), which traditionally have been considered highly secure [2]. Within this spectrum, according
to recent reports [3,4], there is a significant increase in the production of malware variants that are
targeting critical infrastructures. In addition, existing malware variants are continuously evolving,
as malware writers improve their detection avoidance mechanisms. The most recent SonicWall Cyber
Threat Report [5] indicates that the SonicWall service discovered nearly 440,000 malware variants in
2019, which averages to over 1200 malicious software being released every day. In the same context,
a recent security report by Panda Lab identify the existence of over 2 million new malware binaries in
2019 [6].

Given the above statistics and observations, it can be concluded that current security mechanisms
face an uphill struggle dealing with the levels and complexity of newly released malware variants [6,7].
A multitude of techniques and mechanisms [8–13] have been proposed by researchers for malware

Electronics 2020, 9, 1777; doi:10.3390/electronics9111777 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-9803-2232
https://orcid.org/0000-0003-3866-0672
https://orcid.org/0000-0002-9843-5496
https://orcid.org/0000-0002-1788-547X
http://dx.doi.org/10.3390/electronics9111777
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/9/11/1777?type=check_update&version=2

Electronics 2020, 9, 1777 2 of 21

analysis and detection, focused on following and replicating the behaviour of the malware and
dynamically adapting to it.

The aim of this paper is to propose an effective feature extraction and representation algorithm that
improves the classification accuracy of existing malware detection systems. The proposed detection
system is based on N-grams and machine learning and, due to its capabilities inherited from the
domain of machine learning, provides a cheaper, more adaptive solution to replace the traditional
expensive malware analysis.

1.1. Malware Detection

A malware detector is a program that is used to scan information systems to detect, identify
and prevent IT infrastructure from malicious software; therefore, three main goals of detection systems
are scanning of the system, detecting the malicious software and removing the malware. Presently,
the malware detection system uses signatures of existing malware with limited heuristics to detect
sophisticated malware such as the polymorphic and metamorphic strain of malware. A malware
detection program MD is defined as a computational function whose job is to examine any software
that might be malicious of clean, therefore, MD: S->malicious , clean. The latest and even traditional
antivirus software examines the software S to discover whether it is malicious or benign by comparing
the signature of the given software S with the database containing the signatures of known malware
msig. If the signature of software S is matched then it is flagged as a malware else cleanware and the
above definitions can be represented as:

MD(S) =

{
Malicious if msig ∈ S

Clean , otherwise

Two primary malware detection methodologies are widely utilized by security experts:
static analysis also known as code analysis and dynamic analysis. These two approaches help
researchers quickly and thoroughly identify the damage a malware can produce as well as provide
appropriate countermeasures to be utilised by antivirus or Intrusion Detection Systems such
as signatures.

1.2. Malware Analysis Techniques

Malware analysis is the study of investigating malware to understand its behaviour; it also
articulates how to study the different components of malicious software. From the interaction point of
view, there are two types of malware analysis, namely static and dynamic.

1.2.1. Static Analysis Technique

This type of analysis is performed by determining the signature of the malicious binary file.
This signature is a unique identifier for each binary file, calculated based on the hash of the
file [3]. Numerous approaches have been proposed by researchers [14–18] to perform static analysis.
Examples of static analysis include extracting the byte code sequence from the binary by disassembling
the binary file to extract the opcode sequences and mining control flow graph from assembly file and
sometimes mining API calls from the binary file. All these extraction methods are based solely on
the characteristics of a binary file. Each of the techniques mentioned above constitutes feature sets,
which are later used for detecting the malware. There are several advantages of static analysis, such as
being quite fast and not requiring any control environment to execute malicious software. However,
malware writers also employ specific coding methods, such as metamorphism and polymorphism,
which dynamically modify the content of the binary code without significantly altering its functionality
but rendering static analysis unusable. In order to eliminate these issues, analysis must focus on the
resulting behaviour and functionality of the code rather than its content.

Electronics 2020, 9, 1777 3 of 21

1.2.2. Dynamic Analysis Technique

To overcome the deficiencies of the static analysis method, dynamic analysis techniques [19–22]
execute malicious software and trace its behaviour by analysing the actual program instructions and
monitor the malicious code behaviour while executed in a sandbox environment. Sandbox technology
is a safe environment for malware analysis, as it allows the malware to execute in an isolated
environment in a form of a “black hole” containing the untrusted programs and, should the malicious
software attempt to access remote hosts, it can block or redirect traffic to prevent it from accessing
the live network. Dynamic analysis has been considered as an effective technique for understanding
and classifying metamorphic and polymorphic malware in particular, as it observes the interaction
of malware with the operating system in a quarantined environment to collect the behavioural
characteristics that would ultimately help in creating a effective defence mechanism.

Researchers have proposed numerous techniques [7,23,24] which reuse the concepts
from a wide range of computational approaches, including graph theory, machine learning,
information visualization and so on. In addition to the aforementioned benefits, machine
learning-based algorithms are considered to be the most effective technique because of the self-learning
capabilities they possess and the popularity they have gained among the research community.
This approach analyses the available malware file information by using different features derived
from static and dynamic analysis of the malware [23]. Then, extracted features are used to train the
classification model to discriminate between malware and legitimate software. Finally, the trained
model is used to provide predictions about unknown software. Although much work has been done
in this area using different dynamic and static malware features, there is still a need for improvement
in identification and mitigation of malware. More specifically, there is a significant need for an efficient
features extraction approach that can accurately describe the malicious behaviour of a malware,
and implicitly increase the accuracy of the malware detection mechanism. In this paper, we present
such an effective feature extraction and representation algorithm that can improve classification
accuracy for malware detection systems. Furthermore, the paper provides both theoretical foundations
and experimental results to validate the designs of the proposed approach.

The novelty of this paper is based on the designing of a classification system that is based on
N-grams and machine learning algorithms to detected malware using new features by utilizing the
proposed feature extraction and representation algorithm. At first, we used the dynamic analysis
method for which we utilized an AI-based sandbox to extract an Indicator of Compromise (IOC)
from malicious files. In the next step, we applied our proposed algorithm to create N-grams features.
In scenario one, we have taken the Application Programming Interface (API) calls along with the
memory location of their arguments to construct valid N-grams whereas in scenario 2 the N-grams
were constructed by taking the function calls along with the address of its argument. The purpose
of taking two different settings is to explore those features, which result in optimal accuracy based
on our results for other methods, that could vary. The paper also proposes Term Frequency–Inverse
Document Frequency (TF-IDF) as a viable novel statistical alternative used to identify the most
significant N-grams features for training a machine learning algorithm. Finally, the paper evaluates
the proposed technique using various supervised machine learning algorithms. The results show that
Logistic Regression with a score of 98.4 % provides the best classification accuracy compared to the
other classifiers used if we take scenario 1 setting whereas Logistic Regression gives 84.5% accuracy if
we apply scenario 2 settings. Furthermore, this research also aims to take two different features set
setting and to compare which one is the best in terms of accuracy. We are confident that this study will
help security researchers in building effective malware detection systems.

The rest of this paper is structured as follows: Section 2 gives an overview of related work.
Section 3 presents the proposed methodology. Section 4 discusses experimental methodology and
steps. Section 5 includes the conclusion and future work.

Electronics 2020, 9, 1777 4 of 21

2. Related Work

Malware analysis and detection are crucial tasks to counter malicious attacks and prevent them
from conducting their harmful acts. However, it is not always an easy task, especially when dealing
with new and unknown malware that has never been seen. Conventional security mechanisms are
rely on a specific set of signatures and employ static analysis techniques such as model checking and
theorem proving to perform detection [1,3]. The malware functionality is explored by examining its
static properties that imply maliciousness of the analysed file [3], then a signature (or a pattern) that
identifies its unique characteristics can be crafted, so that specific malware can be identified in the
future, including similar variants [1,25]. In this context, various malware detection techniques based on
signatures and static analysis have been proposed by the research community [1,23,25]. Many of these
works used the opcode sequence (or operational code) as a feature in malware detection by calculating
the similarity between opcode sequences, or frequency of appearance of opcode sequences [26–28].
For instance, work in [26] proposed a new method to detect variants of known malware families
based on the frequency of appearance of opcode sequences. However, this technique can only deal
with known malware variants. Work in [29] presented a method to detect obfuscated calls relating
to “push”, “pop” and “ret” opcodes. They have proposed a state machine technique to cope with
obfuscated calls. The proposed approach contains many deficiencies, such as authors being unable to
cope with the scenario when push and pop instructions are decomposed into multiple instructions.
Researchers in [30] extracted the opcode distribution from PE files, which can be used to identify
obfuscated malware. However, this research was not effective in detecting malware, as some of the
prevalent opcodes were not able to correctly identify malware.

Several other works have addressed malware detection using a Control Flow Graph (CFG) to
extract the malicious program structure [31,32]. Most of these detection methods were based on
comparing the CFG shapes associated to the original malware with that of variants [1]. For instance,
the study in [31] compared basic block instructions of an original malware with those of its variants
by using the Longest Common Sub-sequence (LCS). In [33], the authors extracted the system call
dependency graphs from a corpus of malware containing 2393 executables. The resulting analysis
method led to an accuracy of 86.77%. The main drawback of such malware detection techniques,
which are based on static analysis of the malware program, is their vulnerability to evasion techniques
like packing and obfuscation [1,23], which modify the malware payload by compressing or encrypting
the data and severely limit the attempts to statically analyse the malware. When employing such
obfuscation methods (packing, polymorphism, oligomorphism and metamorphism), attackers may
successfully recycle existing malware by converting the malware binaries to packed and compressed
files which reveal no information and therefore bypass the signature-based detection system [34].

To overcome the limitations of static analysis, many dynamic (or behaviour) analysis techniques
have been developed. These techniques execute the malicious software in a controlled, confined and
simulated environment in order to model the behaviour of the malware [1]. This kind of detection
methods can detect malicious files based on normal and abnormal activities perceived in the isolated
environment, with normal activities referring to the processes produced by benign applications
and abnormal activities including the specific characteristic behaviours of malware [35]. In addition,
dynamic analysis methods capture the interaction between the execution of the malicious sample and
the operating system, thereby collecting the artefacts that allow security analysts to develop a technical
defence. To hinder such efforts, advanced and sophisticated malware samples have the ability to check
for the presence of a virtual machine or a simulated operating system environment. When detecting
that it is being analysed by the sandbox agent, some malware modifies its behaviour, causing the
analysis to yield incorrect results. The latest research work suggests [36,37] that traditional sandboxes
are not evasive resistance because they hook data by dropping their agent in a controlled environment
that can be easily detected by advanced strains of malware. As a result, they either stop their executing
or execute with limited functionality.

Electronics 2020, 9, 1777 5 of 21

N-Grams

An N-gram is a substring of a given sample of text or speech string with a length n. This
string can include several types depending upon the application. For example, it can include letters,
words, phonetics, syllables, etc. N-grams are created by splitting a text string into substrings of fixed
length. For example, world MALWARE 3-grams will look like this “MAL”, “ALW”, “LWA”, ”WAR”,
“ARE”. As a result of the string-based nature of analysis files, this technique has been widely adopted
by the security researchers to represent the features of malware. The IBM research group [30] is
considered to be a pioneer in using N-grams for malware analysis, having started work in the area
since the 1990s. More recently, researchers also introduced the concept of using N-grams to create
malware signatures. However, one of the main drawbacks of this line of research was that the early
studies lacked an experimental methodology to prove the claim. Santos et al. [38] demonstrated that
unknown variants of malware could be detected effectively using the N-grams technique by extracting
code and text fragments from a corpus of malware that was executed in the control environment.
Furthermore, signatures of these executables were created to train/test the classifier. In [33], a similar
study was proposed, where N-grams were used to represent the features e.g., API calls, arguments,
etc. and to reduce the features space to a manageable size, a feature reduction technique was applied
which results in only those N-grams that significantly influence the accuracy. Similarly, Ref. [39]
also demonstrated a classification method using N-grams. In this method, 2312 malware samples
were executed in a controlled environment to obtain Indicators of Compromise (IOC) using dynamic
analysis. The primary focus of the study was using the API log data to construct feature vectors. The
N-gram technique was used to represent these features and, in a later stage, TF-IDF was employed to
calculate the frequency of occurrence of these N-grams. Finally, the N-grams with a higher frequency
of occurrence were used for model training and testing. The experimental results of the study depict
the average precision and recall as 55% and 90%, respectively.

In [40], N-grams profiles were used as a malware detection mechanism and to design an effective,
robust system. The feature vectors were created based on the frequency of N-grams, which were
extracted from 25 malware and 40 clean files. Finally, the study claimed to achieve 94 %
classification accuracy using the K nearest neighbour algorithm. Kolter and Maloof in [41] introduced
an N-grams-based malware detection system. This method uses 4-grams as features and uses the
information gain method to find the top 500 N-grams as the most significant features for classifying
malware. The research utilizes several learning algorithms to train/test model, such as Naive Bayes,
Support Vector Machines, Boosted Tree, etc. However, the experimental results and ROC curves
depict that the Boosted Decision Tree produces good classification accuracy as compared to other
algorithms. In [42], Shabtai et al. used static analysis for malware detection with different N-gram
sizes N = (1; 6). In the study, several classifiers were implemented to check the efficiency and efficacy
of the system.Finally, it was observed from experimental the results that system is performing better at
N = 2 as compared to other values of N-grams.

In [43], a similar study was done by Moskovitch et al. using N-gram opcode analysis to investigate
the detection of malware. Although this study had implemented different classification methods
as compared to the previous study, even then the experiential results show that N = 2 is best in
terms of malware detection. Different machine learning algorithms have been widely used for
malware detection, including classification, clustering, time series, etc. Decision Tree, Random Forest,
Logistic Regression, Support Vector Machine, etc. are the most common classifying algorithms.

Classification is a controlled process that is usually separated into 2 phases: the first step includes
the preparation of classification using a classification algorithm centred on the specimen characterizing
and based on a specific area. There are a variety of classification algorithms used in the literature to
classify malware. Such classification algorithms are discussed in-depth as below:

Decision Tree algorithms create a model of decision-making dependent on real data component
values. Any node without leaves in the trees is a measure of an anti-category feature in the study
set of each anti-leaf branch division, and a leaf network is a class or class allocated for that node.

Electronics 2020, 9, 1777 6 of 21

A direction from either the root to a leaf vertex defines a ranking law [44]. The Application Program
Interface, creatively named as the testing item by PE, uses a shifting window mechanism to remove this
functionality and adopts the Decision Tree Algorithm for identifying unknown malware, which has
been suggested by [45] to detect uncertain malware. The consequence reveals that the Decision
Tree is beyond the Naive Bayesian algorithm, and the consistency is more reliable than the other
two algorithms.

The Random Forest is an aggregate learning method that creates a plurality of decision-making
bodies and produces a forecast, which is the fashion of the different trees groups. For individual
trees to expand, a collection from the training database (local set) is chosen with the remaining
samples to approximate fitness. Trees are generated by separating the regional game at any nodes
from a sampled subset of variables as per the importance of a random variable. The study in [46]
proposed a methodology focused on string knowledge dependent on vulnerability classification
utilizing numerous well-recognized detection algorithms, such as IB1, AdaBoost and Random Forest.
The studies have shown that the grouping strategies of IB1 and Random Forest are the most successful
for this area. Since the spread of polymorphic and metamorphic malware, dynamic analysis has been
established as an effective method to model the behaviour of these malware samples in a controlled
environment [25,47].

In this study, we aim to improve the current state of the art in malware analysis by presenting the
design and experimental evaluation of a malware detection system, with the following contributions:

(a) Malware behavioural modelling using advance sandbox: In contrast to other studies and
research work where the traditional sandboxes such as Cuckoo, Norman, Joe, etc. were used to
model the behaviour of malware as from our previous research work [36], we found that they are not
so effective in capturing the behaviour of advanced and sophisticated malware; therefore, we have
utilized AI-based sandbox in this work to perform dynamic analysis and to model the behaviour of
the malware.

(b) Feature extraction and representation algorithm: we presented an effective feature extraction
and representation algorithm that helped in building the malware detection system with optimal
accuracy based on our results for other methods it could vary. We select a set of observable features
from analysis files generated during dynamic analysis and whose values can be used to infer whether
a given sample is malware or not. We evaluate the most significant features in terms of its usefulness
for malware detection.

(c) Optimise Classification: We present the design of a classification system that uses Naive Bayes,
Decision Tree, Random Forest to detected malware using new features.

(d) Experimental Evaluation: We evaluate the accuracy of the classification system on a corpus of
more than 60 malicious and 60 clean samples. To evaluate our methodology, K-fold cross validation is
used and experimental results show that our proposed detection system achieved 98.43% detection
accuracy with a very minimum false positive rate.

3. Proposed Methodology

In this paper, we proposed an innovative approach to extract the most significant malware features
that can result in optimal accuracy for the methods tested based on our results, however this may vary
for other methods. The behavioural modelling of the malicious samples was captured in the form of
log files, generated using the dynamic analysis technique. In the next phase, the N-grams technique
was utilized to create N-grams features set and in order to reduce the feature space, the TF-IDF method
is applied. Lastly, feature sets were converted into binary vectors that will be used by the machine
learning algorithms for training and testing purposes. In this context, four learning algorithms have
been used to evaluate the performance of the proposed approach including the Logistic Regression
(LR), Random Forest (RF), Decision Tree (DT) and Naive Bayes (NB). The whole proposed methodology
is shown in Figure 1.

Electronics 2020, 9, 1777 7 of 21

Figure 1. Architecture of proposed scheme.

3.1. Outline of the Proposed Work

In this section, we have discussed our methodology for classifying malware and benign samples
as shown in the Figure 1. Following are the steps adopted in our approach.

1. Collection of the malicious and clean sample in PE file formats.
2. Extracting the features from executables by performing dynamic analysis.
3. Generating N-grams for n = (1, 6) for both malware and benign samples.
4. Reducing feature space by applying the feature reduction technique.
5. Generating different N-grams models using the classifier e.g., Naive Bayes, Decision Tree, etc.
6. Test samples are validated using each N-gram model. The standard evaluation metrics

(True Positive Ratio—TPR, False Negative Ratio—FNR, True Negative Ratio—TNR, and False
Positive Ratio—FPR) were used to find the sensitivity and accuracy.

3.2. Stages of Proposed Methodology

This section discusses the stages of the proposed methodology. It comprises of three stages as
delineated in Figure 1. Stage 1 is a monitoring stage in which behaviour modelling of samples were
done using an AI-based sandbox, Stage 2 is feature engineering in which N-grams features were
created using strings information as extracted from the text files. Stage 3 describes the use of machine
learning algorithms (classification algorithms) to determine whether an input sample is malicious or
benign. The details of each stage is explained in the following sections.

• Monitoring stage

In this stage, the data corpus was collected from the virus share [48], a website containing a large
repository of malicious as well as clean samples. The 60 selected malicious samples belong to a different
class of malware, including trojan, backdoor, worm, etc. and 60 legitimate samples were collected
from the trust entities websites. Furthermore, these samples were executed in SNDBOX, an AI-based

Electronics 2020, 9, 1777 8 of 21

sandbox (https://app.sndbox.com/login) to model the behaviour of malicious samples. The reason
for using this AI-based sandbox is that it has an invisible agent that deceives malware by executing
its full range of intended functionality, revealing its true malicious nature, intent and capabilities,
which is one of the fundamental requirements to model the behaviour of most advanced as well as
sophisticated malware and such detection was not possible with traditional agent-based sandboxes as
revealed by the latest research [37].

• Feature Engineering Stage

In general, features engineering (which include feature extraction, selection and representation) is
a crucial step in machine learning tasks and has a significant influence on the performance that the
classification model can achieve. It refers to the process of transforming the raw, vague and broad
collection of inputs into different sets of features is referred to as a feature extraction process. The main
objective of this process is to select significant features that can help in building effective malware
detection system. Like in other domains, feature extraction is also considered as the most crucial stage
of malware detection because it helps determine the most effective representation of malicious samples.

Malware researchers have proposed numerous methods for features engineering such as,
binary features extraction, frequency feature extraction, frequency weight feature extraction,
hidden Markov model, N-grams, etc. Furthermore, the feature vectors of fixed length created
from the above process were used by a machine-learning algorithm to create a learning model.
Therefore, when it comes to developing an efficient model, feature engineering is the most vital step.
Innumerable methods have been proposed by the research community to represent features that are in
the form of opcodes, API calls and sequences of code of bytes to fixed-size feature vectors using several
techniques. One of the most significant techniques to feature representation is the use of N-grams.

To evaluate the proposed method, a routine was written to python to extract the string information
from the analysis files. This study mainly focuses on two scenarios and in the first scenario, we have
taken the API calls along with the memory location of their arguments (the function along their
counts are shown in Table 1) to construct valid N-grams, whereas in scenario 2 the N-grams were
constructed by taking the function calls along with the address of its argument as shown in the
Figure 2. The purpose of taking two different settings is to explore those features that can produce
good classification accuracy. Therefore, all the other features were discarded and API-N-grams for
n = (1, 6) were generated for both scenarios, and later on used to create a feature vector. For each
N-grams set, we sorted it according to the frequency of occurrence and eliminated grams below
a threshold to reduce the feature space as shown in the Table 1.

Table 1. List of strings extracted from analysis files.

API Calls Count

ZwOpenFile 42
ZwCreateSection 33

ZwFlushInstructionCache 22
ZwWriteFile 12

ZwOpenKeyEx 59
ZwCreateUserProcess 2
ZwTerminateProcess 1

Furthermore, the effective feature set was calculated using the TF-IDF algorithm, a statistical
method used to evaluate how relevant a word is to a document in a document corpus. It is calculated
by multiplying two metrics, to find the occurrence of a word in a given document. In any given
collection of documents, the occurrence of certain words is more as compared to others such as “of”,
“the”, “a”, etc. Therefore, the same idea was applied to selected features, that certain calls pertain to all
operations of any program that might or might not be malicious, so we have utilized the TF-IDF value

https://app.sndbox.com/login

Electronics 2020, 9, 1777 9 of 21

to determine the feature weighting. The TF-IDF weight of a term is computed using below mentioned
formulas:

TF(w, d) = fd(w): frequency of w in document d

IDF(w, D) = log 1 + |D| 1 + df(d,w)

where ‘TF’, which stands for term frequency, is an occurrence of a specific word ‘w’ in document ‘d’,
and ‘IDF’ stands for inverse term frequency is the number of times the word occurs in a document
whereas df(d, w) is the number of documents the word ‘w’ appears in. In this research work,
we measured IDF of a sequence based on whether that sequence is unique or exist in all samples of
malware. It is a logarithmically scaled fraction of a value calculated by dividing the total number
of malware by the number of malware containing that API calls. Thus, the proposed work utilized
the TF-IDF method to determine the feature weighting and to find which feature set is giving the
best accuracy.

Figure 2. Creation of N-grams for scenario 1.

• Learning and Verification Stage

In the last stage, N-grams features were converted into binary vectors to train machine learning
algorithms. Supervised learning algorithms were also utilized for training/testing the purpose.
For example, Logistic Regression, Naive Bayes, Decision Tree and Random Forest were implemented.
The experimental results show the performance of the proposed scheme, where the LR produced the
best accuracy results in comparison with other learning algorithms, with an overall accuracy rate of
98.43% in case of scenario 1 and 84.5% in case of scenario 2.

3.3. Proposed Algorithm

To extract the features from text files generated by dynamic analysis, we propose an algorithm
formally described in Algorithm 1. Let D be the data corpus containing samples, Si and S be a set
containing both malicious and clean samples, we can write:

MVC ← S

Whereas S= {S1, S2, . . . Sn}
i= 1,2,3,...n

and finally data corpus D containing samples can be written as:

D = Si (1)

The log files were generated for all the samples included in the data corpus D using dynamic
analysis, the significant features were extracted from the logs files as they are of significant importance
because they allow the application program to access low-level hardware using these calls and lots
of studies suggested that [49–51] cybercriminals use the same set of API calls to perform malicious

Electronics 2020, 9, 1777 10 of 21

activities in the system. In the next step, the N-gram method was used to generate API-N-grams with
a sorted table categorized according to the frequency of occurrences. Each N-gram set was sorted and
grams below a specific threshold (less than 500 was discarded) were eliminated to reduce feature space.
In the next step, we made a table by eliminating the N-grams with a lower frequency while keeping
those with a higher frequency. Finally, these selected N-grams constitute the feature sets.

Algorithm 1: Methodology.
Result: Feature Extractions, representation and conversation to feature vectors
Data: Dataset ‘D’: contains both malicious and clean samples

1 MVC ← Si
/* M are malicious, C are clean and S are samples */

2 begin

3 foreach SiεD do
4 Generate behaviour analysis files from the dynamic analysis in AI-based sandbox;
5 Extract the API calls along with its arguments from behaviour analysis files and discard other

features e.g registry values, DNS calls etc.;
6 Creating 1, 2, 3. . . . Till 6 n-grams for API calls along with its arguments;
7 Make a sorted table of API-n-grams according to the frequency of occurrence;

8 foreach SiεD do
9 foreach API-n-gram do

10 Calculate the frequency of API n-gram using
11 TF-IDF

12 if frequency of API n-gram > than defined threshold (Taken 500 as a threshold) then
13 Add that API-n-gram to Unique list & Sort it
14 with the frequency of occurrence

15 foreach API-n-gram in sorted Unique list do
16 Add corresponding API-n-gram to
17 feature vector

18 Creation of binary feature vectors for n-grams

4. Experimental Methodology and Steps

The whole methodology can be presented in the following four steps:

4.1. Dataset Collection

Data are the most important part of any prediction. The quality of the data used is instrumental
in testing hypotheses and reaching accurate conclusions. Therefore, the most vital part of any
type of research should be the collection of a trusted and accurate dataset. We urge that explicit
care should be taken with the source, method and quality of collecting data. These days, many
websites contain vast repositories of both malicious and benign data samples, one example used in this
research is Virushare [48]. After quality-sourced data, we conducted an experimental investigation on
60 malicious and 60 benign samples as shown in the following tables. The benign dataset included
various application software while the malicious dataset included both polymorphic and metamorphic
malware belonging to different families such as trojans, viruses, rootkits, worms, etc.

4.2. Dataset Preparation

In any research, data constitute the input/output variables required to make a prediction that
comes either in unstructured which implies that data are undefined and not properly labelled, or come

Electronics 2020, 9, 1777 11 of 21

in structured forms, which implies that data are properly labelled. In our proposed work, we have
taken the structured form of data which was labelled and categorized as malicious and benign using
virus total and VTI reputation scoring engines. VirusTotal, a website owned by Google, used to
inspect any submitted samples against more than 70 antivirus scanners database along with websites
blacklisting services, where as SNDBOX uses VTI score to label the data and both of these engines
were utilized in this research work to label the data.

In this study, we aimed to get those features which have a significant impact on the accuracy of
the system and for this reason the focus was to experiment on a small dataset consisting of 60 clean
and 60 malicious samples. It is worth noting that even if there are works with more samples there
is not any other work utilising the sandbox we used which provides far better information than
Cuckoo and other sandbox available [37]. The amount of data we had collected from the analysis
of the 120 sample utilising SNDBOX was really huge. The importance of this work rely on the
feature extraction methodology and we plan to use more samples on later state after we develop
robust classifier using these features vectors. Furthermore, once we were able to develop our system,
we experimented with the impact of a slightly larger dataset in regards to the accuracy by increasing
the number to 90 benign and malware (180 in total) samples and observed that classifier accuracy was
not affected by the sample size. Hence, it was found that if the feature engineering stage is completed
properly with effective and efficient tools (like in this study using AI-based sandbox and proper feature
engineering technique) then the balanced dataset is of secondary importance. However, in the case of
an imbalanced dataset, the results would be different and it will affect the accuracy as values will be
missing which are important for the feature engineering.

4.3. Cloud-Based Virtual Lab

We created a cloud-based virtual lab to run the samples (Figure 3). The analysis testbed included
a cloud-based sandbox (SNDBOX) used to export all of the information from the samples collected
from the virus share. With SNDBOX as the main malicious software analyser, we analysed each sample
in various programs such as Windows 7 Ultimate SP1 environments for 60 s with Adobe Acrobat
Reader DC 2019, Adobe Flash Player 3,1Google Chrome 70.0.3., Java 8 Update 19, Microsoft.NET
Framework 4.7, Microsoft Office Standard 2010, Python 2.7.15 and WinRAR 5.61. The results of each
analysis request were saved as a subfolder containing all the raw logs, pcap files, images, JSON files
and any other information obtained during the analysis

Electronics 2020, 9, 1777 12 of 21

Figure 3. Flow diagram of proposed scheme.

4.4. Pre-Processing and Feature Generation

In this stage, the samples were pre-processed and cleaned to remove noise and irrelevant entries
from the log files generated using dynamic behavioural analysis. In this research, the focus was on
extracting the features which have significant impact on accuracy; therefore, only those artifacts were
taken and the rest of the artifacts were discarded. In scenario one we have taken API calls along with
the memory location of their arguments to construct valid N-grams whereas in scenario 2 the N-grams
were constructed by taking the function calls along with the address of its argument. The purpose of
taking two different settings is to explore those features that can produce good classification accuracy.
In the next stage, the N-grams with n = (1, 6) were created (as shown in the Figures 4–6) for these
selected indicators of compromise and stored in a table based on frequency of occurrence. The reason
for such values (n = 1 through 6) is that lots of research work

Figure 4. Box plot for malware API frequency distribution.

Electronics 2020, 9, 1777 13 of 21

Figure 5. Malware API N-gram frequency distribution.

Figure 6. Malware API N-gram frequency distribution.

Several studies, such as [52,53], have mentioned that N-gram performs well between this range
with a lower error rate. Moreover, the feature vector was created as follows. First, we generated the
set of one till six API-call-grams (for both scenarios 1 and 2) for each file generated through dynamic
analysis, then we sorted each of these N-grams set and a unique sorted list was constructed by applying
TF-IDF to reduce the feature space, later on, a table was generated containing N-grams for the calls
corresponding to each sample file in data corpus. Finally, these sorted function grams constitute
the features. In the Table 2, we have presented an example of a feature vector generated using our
proposed algorithm.

Electronics 2020, 9, 1777 14 of 21

Table 2. A sample dynamic feature vector.

Class 1-Gram 2-Gram 3-Gram . . . 6-Gram

Malware 1 0 1 . . . 1
clean 0 1 0 . . . 0

4.5. Classification Algorithm and Evaluation Metrics

In the following section, we described its accuracy, F-measure and precision. Accuracy is
defined as the ratio of the number of right predictions out of the total number of predictions and is
represented as:

Accuracy =
TP + TN

Totalsample

A false positive rate is when a clean file is wrongly classified as a malicious file by the system and
is represented as:

False Positive Rate =
FP

TN + FP

True positive rate is when a malicious or clean file is rightly classified and written as

True Positive Rate =
TP

FN + TP

where TP = True Positive, TN = True Negative, FP = False Positive and FN = False
Negative, respectively.

In this step, we applied the supervised machine learning algorithms, such as Logistic Regression,
Random Forest, Decision Tree and Naive Bayes, because they possess stronger reliability compared
to other, more unsupervised approaches. Additionally, we randomized the data corpus and split
it 80/20 into training and testing datasets using the IPython Jupyter notebook (v 5.7.2) to keep
different proportions. The result of these experiments revealed that the best classification accuracy was
produced by the Logistic Regression as compared to other learning algorithms, with an accuracy of
98.43% for scenario 1 and 84.5% in case of scenario 2. To validate the proposed methodology, 10-fold
cross-validation was applied; the data corpus was randomly divided into ten disjoint sets known
as folds and the purpose is that both the training and testing phase should be executed ten times.
In each iteration step, one fold is used for the testing set and the remaining nine folds for training set,
so as a result, each sample of data corpus was used 10 times for training and once for testing. Finally,
the performance of each classifier was evaluated in the form confusion matrix as shown in the Figure 7
(scenario 2), a specific table layout that displays the performance level of a classification system.

Electronics 2020, 9, 1777 15 of 21

Figure 7. Confusion matrix.

As it can be observed, the proposed combination of features and algorithm performs consistently
better than their counterparts from previous studies, both in the case of investigating API calls in Table 3
and function calls in Table 4. As highlighted, logistic regression is the most successful segregation
algorithm in both scenarios. For completeness, we also list in the malware samples in Table 5 and the
clean samples in Table 6 below.

Table 3. Result of scenario 1 and comparison with other studies.

Classifiers Model Accuracy Study [54] Study [55–57] Study [58] Study [49]

Naive Bayes 92.91% 91.6% 91% 89%
Decision Tree 97.64% 84%

Random Forest 97.64% 96.65% 94.9 % 96.2 91%
Logistic Regression 98.43% 97.7%

Table 4. Scenario 2 results of experiment.

Classifiers Model Accuracy Precision Recall f1 Score

Naive Bayes 82.83% 0.98 0.73 0.84
Decision Tree 78.79% 0.80 0.87 0.83

Random Forest 79.8% 0.80 0.89 0.84
Logistic Regression 84.5% 0.81 0.97 0.89

Electronics 2020, 9, 1777 16 of 21

Table 5. Malware samples that were used.

Category Virus Name Type: Spy-Steal Data C and C Backdoor Stealth

1 Trojan Trojan.Generic.pafish X
2 Trojan Trojan.Win32win32.duqu
3 Trojan Trojan.Generic.Cerber.exe X
4 Trojan Trojan. Win32Mole.exe X
5 Trojan Trojan. Win32.Spora.exe X
6 Trojan Trojan.Win32GrandCrab-01.exe X
7 Trojan Trojan. Win32.Delf.xo X
8 Trojan Trojan. Win32.DarkTequila.exe
9 Trojan Trojan. Win32.psiphon.exe X

10 Trojan Trojan.Generic.yigzwl X
11 Trojan Trojan.Generic.Vcffipzmnipbxzdl X
12 Worm Win32.Gamarue X X X
13 Worm W32.Cridex.A.worm X X X
14 Worm Worm.VBS.Agent X
15 Worm Worm.Win32.3DStars X X
16 Worm Worm.Generic3.PEM X
17 Worm Worm.Win32.Mira.A X
18 Worm Worm.Generic2.CMVO X X
19 Worm Worm.Win32.Cake X
20 Worm Worm.Win32.Fever X X
21 Worm Worm.Win32.Monkey.exe X
22 Worm Worm.Win32.Mydoom.a.exe X X
23 Worm Worm.Win32.Pikachu.exe X
24 Worm Worm.Win32.Postman.exe X
25 Worm Worm.Win32.Sharpei.a.exe X
26 Worm Worm.Win32.Silver.exe X
27 Worm Worm.Win32.Sobig.exe X X
28 Worm Worm.KOOBFCE.SMC X X
29 Worm W32/Wabot X X
30 Worm Worm.vid.exe X
31 Worm Email-Worm.Win32.Mydoom.l X X
32 Worm Email-Worm.Win32.Naked X
33 Worm Worm.Christmas-wishes.doc X
34 Worm Win32.WannaCry.EXE X X X
35 Worm Win32.F7F105F9.exe
36 Worm Win32.2tetup.exe X
37 Worm Win32.GrandCrab-01.exe X
38 Worm Win32.GlobeImposter.exe X
39 Botnet Win32.Lolbot.aoi X
40 Botnet WORM/IrcBot.tlq X X X
41 Botnet W32.JorikLolbot.O!tr X X
42 Botnet Win32.SdBot.aamk X X X
43 Botnet W32.ZBot.42352 X X X
44 Botnet Win32.Jorik.SdBot.e X
45 Botnet MSIL.NanoBot.ibh X
46 Botnet Win32.Zbot.vtii X X X
47 Botnet Win32.Ngrbot.anak X
48 Botnet Win32.Alinaos.G X X
49 Botnet GenericKD.2143403 X
50 Botnet Win32/ChkBot.A X
51 Botnet MSIL/Lizarbot.A X X X
52 Botnet Win32.Jorik.Lolbot.f X X X
53 Botnet Win32.Zbot.sbdj X X X
54 Botnet MSIL.NanoBot.bi X X
55 Botnet Win32.Ngrbot.uyk X
56 Botnet Win32.Boht.qo X X
57 Botnet W32/Zbot.AJJU!tr X X X
58 Botnet Win32.VBInject X
59 Botnet Trickbot X
60 Botnet obfuscated.js X

Electronics 2020, 9, 1777 17 of 21

Table 6. Clean samples that were used.

Category Sample Name Type

1 Normal grammarlyaddinsetup.pe32 Executable
2 Normal Poweriso6-x64. Executable
3 Normal Vlc-2-2-1-win32 Executable
4 Normal Wireshark-win64-2.6.5 Executable
5 Normal ProtonVPN.exe Executable
6 Normal Notepad.exe Executable
7 Normal McAfeeWebAdvisor.exe Executable
8 Normal Putty2.exe Executable
9 Normal FTPDesktopClient.exe Executable

10 Normal SQLiteStudio-3.2.1.exe Executable
11 Normal KeePass-2.40-Setup Executable
12 Normal LinuxLiveUSB Creator 2.9.4.exe Executable
13 Normal flashplayer32-install.exe Executable
14 Normal Firefox Setup 14.0.1 Executable
15 Normal 7za.EXE Executable
16 Normal GoogleUpdateSetup.exe Executable
17 Normal Epson512523eu.exe Executable
18 Normal Microsoft-Toolkit.exe Executable
19 Normal Googlewebdesigner-win.exe Executable
20 Normal PDFSAMInstaller.exe Executable
21 Normal FoxitReader-Setup.exe Executable
22 Normal TeamViewer-Setup.exe Executable
23 Normal Internet.Download.Manager.exe Executable
24 Normal TrueCrypt.exe Executable
25 Normal SkypeSetup.exe Executable
26 Normal HottNotes4.1Setup.exe Executable
27 Normal Normal TorchSetup Executable
28 Normal GitHubDesktopSetup Executable
29 Normal Nektar Bolt v1.0 CE.exe Executable
30 Normal ForkInstaller.exe Executable
31 Normal hashcat32.exe Executable
32 Normal AdobePatchInstaller.exe Executable
33 Normal TWUploader.exe Executable
34 Normal vmnat.exe Executable
35 Normal SenseDriver.exe Executable
36 Normal ISSetup.dll DLL
37 Normal SrvCtl.dll DLL
38 Normal panfinder.exe Executable
39 Normal strings.exe Executable
40 Normal procexp.exe Executable
41 Normal games.exe Executable
42 Normal acc.exe Executable
43 Normal KutoolsforExcelSetup.exe Executable
44 Normal DTools.exe Executable
45 Normal winsdkweb.exe Executable
46 Normal ClipboardHistory.exe Executable
47 Normal MEGAsync.exe Executable
48 Normal AnyDesk.exe Executable
49 Normal npp.7.6.Installer.exe Executable
50 Normal CVHP.exe Executable
51 Normal WinSCP-5.13.6-Setup.exe Executable
52 Normal coreftplite64.exe Executable
53 Normal eagleget-setup.exe Executable
54 Normal NetAssemblyInfo.exe Executable
55 Normal angrybird.exe Executable
56 Normal fdminst-lite.exe Executable
57 Normal sigcheck.exe Executable
58 Normal RBInternetEncodings500.dll DLL
59 Normal cryptolibcps-5.0.43.exe Executable
60 Normal Truecrypt.exe Executable

Electronics 2020, 9, 1777 18 of 21

5. Conclusions and Future Work

In conclusion, this study proposes a malware detection system approach for malware based on
N-grams and machine learning using the dataset collected from Virushare. We analysed the corpus
of data using AI-based sandbox (SNDBOX) to generate behaviour reports that contained artifacts
of malicious files. The next step proposed a representation algorithm that was utilized to extract
features into a multi-dimensional vector space, including API calls and its arguments. In a later
stage, we developed the features set using the N-grams method. Finally, they were transformed
into binary vectors for training/testing machine learning classifiers such as Decision Tree, Random
Forest, Logistic Regression and Naive Bayes. We measured the efficiency and efficacy of the classifiers
using a confusion matrix. The experimental results indicate that Logistic Regression produces the best
possible classification accuracy, compared to others.

In the future, we are planning to do further research on the capability of N-grams analysis in
malware detection. Furthermore, we are also planning to take large datasets belonging to different
categories of malware, such as trojan, botnet, worm, ransomware, spyware, etc. In future studies,
we are also planning to increase the number of features from API calls to registry values, DNS requests,
HTTPS requests, system changes, etc. to train/test it with deep learning algorithms.

Author Contributions: Conceptualisation, M.A. and S.S.; methodology, M.A.; software, M.A. and S.S.; validation,
M.A., S.S. and B.G.; formal analysis, M.A.; investigation, M.A.; resources, S.S. and B.G.; writing—original draft
preparation, M.A., S.S. and B.G.; writing—review and editing, S.S., B.G., G.B.; visualization, G.B., S.S. and B.G.;
supervision, S.S. and B.G.; project administration, S.S., B.G. and G.B.; funding acquisition, S.S. All authors have
read and agreed to the published version of the manuscript.

Funding: This project has received funding from the European Union’s Horizon 2020 research and innovation
pro-gramme under grant agreement No. 786698. This work reflects authors’ view and Agency is not responsible
for any use that may be made of the information it contains.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

TP True Positive
TN True Negative
FP False Positive
FN False Negative

References

1. Or-Meir, O.; Nissim, N.; Elovici, Y.; Rokach, L. Dynamic malware analysis in the modern era—A state of the
art survey. ACM Comput. Surv. (CSUR) 2019, 52, 1–48. [CrossRef]

2. Barría, C.; Cordero, D.; Cubillos, C.; Palma, M. Proposed classification of malware, based on obfuscation.
In Proceedings of the 2016 6th International Conference on Computers Communications and Control
(ICCCC), Oradea, Romania, 10–14 May 2016; pp. 37–44.

3. Bencsáth, B.; Pék, G.; Buttyán, L.; Félegyházi, M. Duqu: Analysis, detection, and lessons learned.
In Proceedings of the ACM European Workshop on System Security (EuroSec), Bern, Switzerland,
10 April 2012.

4. Stone, R. A Call to Cyber Arms. 2013. Available online: https://science.sciencemag.org/content/339/6123/
1026 (accessed on 27 June 2020).

5. Sonicwall. Sonicwall Cyber Threat Report: Threat Actors Pivot Toward More Targeted Attacks,
Evasive Exploits. Available online: https://www.sonicwall.com/resources/2020-cyber-threat-report-pdf/
(accessed on 27 June 2020).

6. Pandalabs. Panda Security Launches Its Threat Insights Report 2020. Available online: https://
www.pandasecurity.com/emailhtml/2004-report-threath-20/Threat-Insights-Report-en.pdf (accessed on
27 June 2020).

http://dx.doi.org/10.1145/3329786
https://science.sciencemag.org/content/339/6123/1026
https://science.sciencemag.org/content/339/6123/1026
https://www.sonicwall.com/resources/2020-cyber-threat-report-pdf/
https://www.pandasecurity.com/emailhtml/2004-report-threath-20/Threat-Insights-Report-en.pdf
https://www.pandasecurity.com/emailhtml/2004-report-threath-20/Threat-Insights-Report-en.pdf

Electronics 2020, 9, 1777 19 of 21

7. Kwon, D.; Kim, H.; Kim, J.; Suh, S.C.; Kim, I.; Kim, K.J. A Survey of Deep Learning-Based Network Anomaly
Detection; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–13.

8. Mohaisen, A.; Alrawi, O.; Mohaisen, M. Amal: High-fidelity, behavior-based automated malware analysis
and classification. Comput. Secur. 2015, 52, 251–266. [CrossRef]

9. Alam, S.; Horspool, R.N.; Traore, I.; Sogukpinar, I. A framework for metamorphic malware analysis and
real-time detection. Comput. Secur. 2015, 48, 212–233. [CrossRef]

10. Nauman, M.; Azam, N.; Yao, J. A three-way decision making approach to malware analysis using
probabilistic rough sets. Inf. Sci. 2016, 374, 193–209. [CrossRef]

11. Yakura, H.; Shinozaki, S.; Nishimura, R.; Oyama, Y.; Sakuma, J. Malware analysis of imaged binary samples
by convolutional neural network with attention mechanism. In Eighth ACM Conference on Data and Application
Security and Privacy; ACM: New York, NY, USA, 2018; pp. 127–134.

12. Ming, J.; Xin, Z.; Lan, P.; Wu, D.; Liu, P.; Mao, B. Impeding behavior-based malware analysis via replacement
attacks to malware specifications. J. Comput. Virol. Hacking Tech. 2017, 13, 193–209. [CrossRef]

13. Vasiliadis, G.; Polychronakis.M.; Ioannidis, S. GPU-assisted malware. Int. J. Inf. Secur. 2015, 14, 289–297.
[CrossRef]

14. Kim, K.S.; Shin, H.J.; Kim, H.S. A Bit Vector Based Binary Code Comparison Method for Static Malware
Analysis. JCP 2018, 13, 545–554. [CrossRef]

15. Hassen, M.; Carvalho, M.M.; Chan, P.K. Malware classification using static analysis based features.
In Proceedings of the IEEE Symposium Series on Computational Intelligence, Honolulu, HI, USA,
27 November–1 December 2017; pp. 1–7.

16. Mithal, T.; Shah, K.; Singh, D.K. Case studies on intelligent approaches for static malware analysis.
In Emerging Research in Computing, Information, Communication and Applications; Springer: Singapore, 2016;
pp. 555–567.

17. Nagano, Y.; Uda, R. Static analysis with paragraph vector for malware detection. In Proceedings of the 11th
International Conference on Ubiquitous Information Management and Communication, IMCOM, Beppu,
Japan, 5–7 January 2017; pp. 1–7.

18. Seideman, J.D.; Khan, B.; Vargas, A.C. Malware biodiversity using static analysis. In International Conference
on Future Network Systems and Security; Springer: Cham, Switzerland, 2015; pp. 139–155.

19. Carlin, D.; O’Kane, P.; Sezer, S. Dynamic analysis of malware using run-time opcodes. In Data Analytics and
Decision Support for Cybersecurity; Springer: Cham, Switzerland, 2017; pp. 99–125.

20. Kakisim, A.G.; Nar, M.; Carkaci, N.; Sogukpinar, I. Analysis and evaluation of dynamic feature-based malware
detection methods. In International Conference on Security for Information Technology and Communications; Springer:
Cham, Switzerland, 2018; pp. 247–258.

21. Vemparala, S.; Di Troia, F.; Corrado, V.A.; Austin, T.H.; Stamo, M. Malware detection using dynamic
birthmarks. In Proceedings of the 2016 ACM on International Workshop on Security And Privacy Analytics; ACM:
New York, NY, USA, 2016; pp. 41–46.

22. Fang, Y.; Yu, B.; Tang, Y.; Liu, L.; Lu, Z.; Wang, Y.; Yang, Q. A new malware classification approach based on
malware dynamic analysis. In Australasian Conference on Information Security and Privacy; Springer: Cham,
Switzerland, 2017; pp. 173–189.

23. Liu, L.; Wang, B.S.; Yu, B.; Zhong, Q.X. Automatic malware classification and new malware detection using
machine learning. Front. Inf. Technol. Electron. Eng. 2017, 18, 1336–1347. [CrossRef]

24. Shijo, P.; Salim, A. Integrated static and dynamic analysis for malware detection. Procedia Comput. Sci. 2015,
46, 804–811. [CrossRef]

25. Afianian, A.; Niksefat, S.; Sadeghiyan, B.; Baptiste, D. Malware dynamic analysis evasion techniques:
A survey. arXiv 2018, arXiv:1811.01190

26. Santos, I.; Brezo, F.; Nieves, J.; Penya, Y.K.; Sanz, B.; Laorden, C.; Bringas, P.G. Idea:
Opcode-sequence-based malware detection. In International Symposium on Engineering Secure Software
and Systems; Springer:Berlin/Heidelberg, Germany, 2010; pp. 35–43.

27. Santos, I.; Devesa, J.; Brezo, F.; Nieves, J.; Bringas, P.G. Opem: A static-dynamic approach for
machine-learning-based malware detection. In International Joint Conference CISIS’12-ICEUTE 12-SOCO 12
Special Sessions; Springer: Berlin/Heidelberg, Germany, 2013; pp. 271–280.

http://dx.doi.org/10.1016/j.cose.2015.04.001
http://dx.doi.org/10.1016/j.cose.2014.10.011
http://dx.doi.org/10.1016/j.ins.2016.09.037
http://dx.doi.org/10.1007/s11416-016-0281-3
http://dx.doi.org/10.1007/s10207-014-0262-9
http://dx.doi.org/10.17706/jcp.13.5.545-554
http://dx.doi.org/10.1631/FITEE.1601325
http://dx.doi.org/10.1016/j.procs.2015.02.149

Electronics 2020, 9, 1777 20 of 21

28. Zhang, X.; Sun, M.; Wang, J.; Wang, J. Malware Detection Based on Opcode Sequence and
ResNet. In International Conference on Security with Intelligent Computing and Big-Data Services; Springer:
Berlin/Heidelberg, Germany, 2018; pp. 489–502.

29. Lakhotia, A.; Kumar, E.U.; Venable, M. A method for detecting obfuscated calls in malicious binaries.
IEEE Trans. Softw. Eng. 2005, 31, 955–968. [CrossRef]

30. Brooks, R.A.; Maes, P. Artificial life IV: Proceedings of the Fourth International Workshop on the Synthesis and
Simulation of Living Systems; MIT Press: Cambridge, MA, USA, 1994;

31. Anju, S.; Harmya, P.; Jagadeesh, N.; Darsana, R. Malware detection using assembly code and control flow
graph optimization. In Proceedings of the 1st Amrita ACM-W Celebration on Women in Computing in India; ACM:
New York, NY, USA 2010; pp. 1–4.

32. Vinod, P.; Laxmi, V.; Gaur, M.S.; Kumar, G.; Chundawat, Y.S. Static CFG analyzer for metamorphic Malware
code. In Proceedings of the 2nd International Conference on Security of Information and Networks; ACM: New York,
NY, USA, 2009; pp. 225–228.

33. Altaher, A.; Ramadass, S.; Ali, A. Computer virus detection using features ranking and machine learning.
Aust. J. Basic Appl. Sci. 2011, 5, 1482–1486.

34. Moser, A.; Kruegel, C.; Kirda, E. Limits of static analysis for malware detection. In Proceedings of the
Twenty-Third Annual Computer Security Applications Conference (ACSAC 2007), Miami Beach, FL, USA,
10–14 December 2007; pp. 421–430.

35. Ab Razak, M.F.; Anuar, N.B.; Othman, F.; Firdaus, A.; Afifi, F.; Salleh, R. Bio-inspired for features optimization
and malware detection. Arab. J. Sci. Eng. 2018, 43, 6963–6979. [CrossRef]

36. Ali, M.; Shiaeles, S.; Papadaki, M.; Ghita, B.V. Agent-based vs agent-less sandbox for dynamic behavioral
analysis. In Proceedings of the 2018 Global Information Infrastructure and Networking Symposium (GIIS),
Thessaloniki, Greece, 23–25 October 2018; pp. 1–5.

37. Ali, M.; Shiaeles, S.; Clarke, N.; Kontogeorgis, D. A proactive malicious software identification approach for
digital forensic examiners. J. Inf. Secur. Appl. 2019, 47, 139–155. [CrossRef]

38. Santos, I.; Penya, Y.K.; Devesa, J.; Bringas, P.G. N-grams-based File Signatures for Malware Detection.
ICEIS (2) 2009, 9, 317–320.

39. Nakazato, J.; Song, J.; Eto, M.; Inoue, D.; Nakao, K. A novel malware clustering method using frequency of
function call traces in parallel threads. IEICE Trans. Inf. Syst. 2011, 94, 2150–2158. [CrossRef]

40. Liangboonprakong, C.; Sornil, O. Classification of malware families based on n-grams sequential pattern
features. In Proceedings of the 2013 IEEE 8th Conference on Industrial Electronics and Applications (ICIEA),
Melbourne, Australia, 19–21 June 2013; pp. 777–782.

41. Kolter, J.Z.; Maloof, M.A. Learning to detect and classify malicious executables in the wild. J. Mach.
Learn. Res. 2006, 7, 2721–2744.

42. Shabtai, A.; Moskovitch, R.; Feher, C.; Dolev, S.; Elovici, Y. Detecting unknown malicious code by applying
classification techniques on opcode patterns. Secur. Inf. 2012, 1, 1. [CrossRef]

43. Moskovitch, R.; Feher, C.; Tzachar, N.; Berger, E.; Gitelman, M.; Dolev, S.; Elovici, Y. Unknown malcode
detection using opcode representation. In European Conference on Intelligence and Security Informatics; Springer:
Berlin/Heidelberg, Germany, 2008; pp. 204–215.

44. Ben-Haim, Y.; Tom-Tov, E. A Streaming Parallel Decision Tree Algorithm. J. Mach. Learn. Res. 2010,
11, 849–872.

45. Zhu, L.; XU, Y. Application of C4.5 algorithm in unknown malicious code identification. J. Shenyang Univ.
Chem. Technol 2013, 27, 78–82.

46. Tian, R.; Islam, R.; Batten, L.; Versteeg, S. Differentiating malware from cleanware using behavioural
analysis. In Proceedings of the 2010 5th International Conference on Malicious and Unwanted Software,
Nancy, Lorraine, France, 19–20 October 2010; pp. 23–30.

47. Egele, M.; Scholte, T.; Kirda, E.; Kruegel, C. A survey on automated dynamic malware-analysis techniques
and tools. ACM Comput. Surv. (CSUR) 2008, 44, 1–42. [CrossRef]

48. VirusShare. Malware Repository Platform. Available online: https://virusshare.com (accessed on
6 December 2019).

49. Salehi, Z; Ghiasi, M.; Sami, A. A Miner for Malware Detection Based on API Function Calls and Their
Arguments. In Proceedings of The 16th CSI International Symposium on Artificial Intelligence and Signal
Processing, Shiraz, Fars, Iran, 2–3 May 2012; pp. 563–568.

http://dx.doi.org/10.1109/TSE.2005.120
http://dx.doi.org/10.1007/s13369-017-2951-y
http://dx.doi.org/10.1016/j.jisa.2019.04.013
http://dx.doi.org/10.1587/transinf.E94.D.2150
http://dx.doi.org/10.1186/2190-8532-1-1
http://dx.doi.org/10.1145/2089125.2089126
https://virusshare.com

Electronics 2020, 9, 1777 21 of 21

50. Okamoto, K.; Tamada, H.; Nakamura, M.; Monden, A.; Matsumoto, K.I. Dynamic software birthmarks
based on API calls. IEICE Trans. Inf. Syst. 2006, 89, 1751–1763.

51. Sami, A.; Yadegari, B.; Rahimi, H.; Peiravian, N.; Hashemi, S.; Hamze, A. Malware detection based on
mining API calls. In Proceedings of the 2010 ACM Symposium on Applied Computing, Sierre, Switzerland,
22–26 March 2010; ACM: New York, NY, USA, 2010; pp. 1020–1025.

52. Pektaş, A.; Eriş, M.; Acarman, T. Proposal of n-gram based algorithm for malware classification.
In Proceedings of the Fifth International Conference on Emerging Security Information, Systems and
Technologies, Nice/Saint Laurent du Var, France, 21–27 August 2011; pp. 7–13.

53. Raff, E.; Zak, R.; Cox, R.; Sylvester, J.; Yacci, P.; Ward, R.; Tracy, A.; McLean, M.; Nicholas, C. An investigation
of byte n-gram features for malware classification. J. Comput. Virol. Hacking Tech. 2018, 14, 1–20. [CrossRef]

54. Sayfullina, L.; Eirola, E.; Komashinsky, D.; Palumbo, P.; Miche, Y.; Lendasse, A.; Karhunen, J.
Efficient detection of zero-day android malware using normalized bernoulli naive bayes. In Proceedings of
the IEEE Trustcom/BigDataSE/ISPA, Helsinki, Finland, 20–22 August 2015; Volume 1, pp. 198–205.

55. Garg, V.; Yadav, R.K. Malware Detection based on API Calls Frequency. In Proceedings of the 4th International
Conference on Information Systems and Computer Networks, Mathura, India, 21–22 November 2019;
pp. 400–404.

56. Salehi, Z.; Sami, A.; Ghiasi, M. Using feature generation from API calls for malware detection.
Comput. Fraud Secur. 2014, 9, 9–18. [CrossRef]

57. Kumar, B.J.; Naveen, H.; Kumar, B.P.; Sharma, S.S; Villegas, J. Logistic regression for polymorphic malware
detection using ANOVA F-test. In Proceedings of the International Conference on Innovations in Information,
Embedded and Communication Systems, Coimbatore, India, 17–18 March 2017; pp. 1–5.

58. Devesa, J.; Santos, I.; Cantero, X.; Penya, Y.K.; Bringas, P.G. Automatic Behaviour-based Analysis and
Classification System for Malware Detection. ICEIS 2010, 2, 395–399.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s11416-016-0283-1
http://dx.doi.org/10.1016/S1361-3723(14)70531-7
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Malware Detection
	Malware Analysis Techniques
	Static Analysis Technique
	Dynamic Analysis Technique

	Related Work
	Proposed Methodology
	Outline of the Proposed Work
	Stages of Proposed Methodology
	Proposed Algorithm

	Experimental Methodology and Steps
	Dataset Collection
	Dataset Preparation
	Cloud-Based Virtual Lab
	Pre-Processing and Feature Generation
	Classification Algorithm and Evaluation Metrics

	References

