
Malicious Code Detection for Open Firmware

Frank Adelstein, Matt Stillerman
ATC-NY

33 Thornwood Drive, Suite 500
Ithaca, NY 14850-1250, USA

fadelstein or matt @atc-nycorp.com

Dexter Kozen
Department of Computer Science

Cornell University
Ithaca, New York 14853-7501, USA

kozen@cs.cornell.edu

Abstract

Malicious boot firmware is a largely unrecognized but
significant security risk to our global information infra-
structure. Since boot firmware executes before the operat-
ing system is loaded, it can easily circumvent any operating
system-based security mechanism. Boot firmware programs
are typically written by third-party device manufacturers
and may come from various suppliers of unknown origin. In
this paper we describe an approach to this problem based
on load-time verification of onboard device drivers against
a standard security policy designed to limit access to system
resources. We also describe our ongoing effort to construct
a prototype of this technique for Open Firmware boot plat-
forms.

1. Introduction

Our critical infrastructure for transportation, communi-
cation, financial markets, energy distribution, and health
care is dangerously dependent on a computing base vulner-
able to many forms of malicious attack and software failure.
The consequences of a coordinated attack on our informa-
tion infrastructure could be devastating [22]. One serious
vulnerability that has largely been ignored up until now is
malicious boot firmware.

Most computing devices are powered up by a boot se-
quence—a series of computational steps in which the hard-
ware is initialized and the operating system loaded and
started. Boot firmware is the program that controls this pro-
cess. Boot firmware typically runs in privileged mode on
bare hardware. It has essentially limitless access to periph-
eral devices. The boot program runs before the operating
system is loaded, prior to the start of most security mea-
sures. Thus malicious boot firmware has the potential to
cause very serious harm. This harm falls into three general
categories:

� It could prevent the computer from booting, thus ef-
fecting a denial of service.

� It could operate devices maliciously, thereby damaging
them or causing other harm.

� It could corrupt the operating system as it is loaded.

This last form of attack is perhaps the most serious, since
most other security measures depend on operating system
integrity. Even the most carefully crafted security mecha-
nisms implemented at the operating system, protocol, ap-
plication, or enterprise levels can be circumvented in this
manner.

On a typical computing platform, the boot firmware is
composed of many interacting modules. There is usually
a boot kernel, which governs the bootup process, as well
as boot-time device drivers supplied by the manufacturers
of various components. The purpose of a boot driver is to
initialize the device, perform diagnostic checks, establish
communication with other devices connected to it, allocate
system resources, and other similar tasks. The driver often
resides in ROM on the device itself and is loaded and run at
boot time.

To interact successfully, these pieces must respect well-
defined abstraction boundaries and communicate only via
standardized interfaces. Yet at boot time, the pieces all run
in the same address space in privileged mode. There is no
isolation and no external enforcement of good citizenship.
It would be well within the means of determined opponent
to introduce malicious code into a device driver for a key-
board or mouse, for example.

One line of defense is to ensure the integrity of firmware
via digital signatures [2] or chain-of-custody and physical
protection. This strategy requires that we assume that the
boot firmware was originally benign. Such a belief could
be based on trust in the supplier or in some detailed exam-
ination of the code. It simply ensures that the code has not
been changed after it was approved. Thus, the strategy is
a means for preserving an existing relationship of trust, but
not of establishing trust.



This strategy could be costly in practice. There may be a
large, far-flung network of vendors for whom trust must be
established. Moreover, there are mechanisms for automati-
cally updating device drivers and firmware with patches via
the Internet. Firmware that is updated regularly would need
to be reexamined each time.

In this paper we describe an alternative technique that
provides a basis for trust in boot firmware, regardless of
its source. The technique involves automatic verification of
boot firmware modules as they are loaded. We also describe
ongoing work to construct a prototype verification system
using this technique for computers compliant with the Open
Firmware boot standard.

Our verification technique is based on Efficient Code
Certification (ECC) proposed in [6]. ECC is related to other
recent language-based approaches to the security of mobile
code [12, 15]. Each time an untrusted firmware module
is loaded, it is verified against a standard security policy.
Inexpensive static checks on the compiled code suffice to
guarantee dynamic properties of the program. Among other
things, the security policy asserts that device drivers must
access other devices only through a strict interface and must
only access memory or bus addresses allocated to them.

ECC verification relies on a certifying compiler that pro-
duces particularly well-structured and annotated code, so
that the verifier can analyze it statically. The verification
step essentially prevents the compiler from being bypassed,
spoofed, or counterfeited. Confidence in the safety of ver-
ified device drivers only requires trust in the verifier, not
in the compiler nor the code it produces. By “trust” here
we mean that the user must have some other rational basis
for believing in the integrity and correctness of the verifier
– that it is in the trusted computing base (TCB). The com-
piler and its output, on the other hand, do not have to be in
the TCB. Any device driver code, whether produced by the
compiler or not, must be verified.

This technique, while a strong countermeasure to ma-
licious firmware, cannot protect against all forms of at-
tack. For example, certain denial-of-service attacks and ma-
licious hardware are difficult or impossible to detect by this
method. However, it does raise the bar by making it more
difficult to operate devices maliciously at boot time. Our ap-
proach is complementary to existing and proposed schemes
that employ digital signatures, trusted suppliers, and code
inspection. Those techniques would be appropriate to pro-
tect the integrity of the TCB, which will be relatively static.

Our prototype, currently under development, is compli-
ant with the Open Firmware standard [5] and operates in
that context. Open Firmware is an IEEE standard for boot
firmware that was developed in the mid 1990’s and is by
now in fairly widespread use (e.g., by Sun and Apple).
Several commercial implementations are available. One
key feature of Open Firmware that is responsible for its

power and flexibility is its incorporation of boot-time de-
vice drivers and other modules written in fcode, a machine-
independent compiled form of the Forth programming lan-
guage. Open Firmware boot systems include an fcode in-
terpreter, allowing a single implementation of fcode-based
firmware to be reused across multiple platforms. The fcode
driver is typically stored in ROM on the device itself and re-
loaded into main memory during the boot cycle. It is these
fcode device drivers that are the subject of verification in
our prototype.

The verifier is part of the Open Firmware boot kernel
and is loaded from boot ROM when the machine powers
up. The verifier, along with the fcode interpreter and other
parts of the Open Firmware kernel, are considered part of
the trusted computing base. The complementary protection
schemes mentioned above will be appropriate for protection
of this software because it is assumed to be static and sup-
plied by a single vendor.

The security policy is a combination of type safety and
various architectural constraints. The policy is designed
to rule out the most obvious forms of attack. The con-
straints are a formalization of conventions that all legiti-
mate fcode programs should adhere to, as well as restric-
tions that make verification easier without imposing undue
limitations on the programmer. Those conventions are not
strict requirements of Open Firmware, yet any firmware that
violates them would likely be incorrect or malicious. For
instance, each device driver conventionally operates its own
device directly, and accesses the other devices only via their
drivers.

A cornerstone of the ECC technique is a certifying com-
piler. Our prototype compiler translates Java Virtual Ma-
chine code (bytecode) to Forth fcode. We expect develop-
ers to use Java as the source language and compile to Java
bytecode with a standard Java compiler such as the javac
compiler from Sun Microsystems as the first stage. We are
also developing a Java API so that these programs can ac-
cess Open Firmware services and data structures. This API
is not just a matter of convenience—it is a key element in
our eventual assurance argument. The API presents a safer
interface than the standard one; we will verify that untrusted
code uses this interface and does not bypass it.

2 Open Firmware

Open Firmware is a standard for boot firmware plat-
forms [5]. This standard enables vendors to write machine-
independent and instruction set-independent boot firmware,
including boot-time drivers. The major advantage to this
approach is that Open Firmware-compliant firmware will
work across a wide range of hardware. Sun Microsystems
Open Boot works this way and was the inspiration for this
standard.



fcode

ROM
storage

peripheral
device

other
software

fcode
programs

fcode
interpreter

?

�
probe

Figure 1. Fcode Loading in Open Firmware

Manufacturers of peripherals need only write one boot-
time device driver. The same driver will work with any
Open Firmware implementation on any platform. This
driver is stored in ROM on the device itself.

The major tasks of boot firmware are:

� to determine the physical configuration of the host and
peripherals and build the device tree data structure to
represent this,

� to initialize those devices that require it, and

� to load the operating system (or runtime program) and
start it running.

Open Firmware provides an abstract model of this process.
A hardware-specific adaptation layer whose interface is de-
fined in the standard supports this abstraction.

A key feature of Open Firmware is the incorporation of
an interpreter for Forth fcode (Fig. 1). Forth is a stack-based
programming language with a long history of use on mi-
croprocessors. Fcode is a standard compiled form of Forth
that is very compact. Forth programs are called words, and
a compiler that produces fcode from Forth is called a to-
kenizer. The mapping from Forth to fcode is completely
defined in the Open Firmware standard.

Open Firmware boot systems contain an fcode inter-
preter. Such systems dynamically load and execute fcode
modules during the boot cycle. Our system uses ECC-style
verification, described in Section 3 below, to detect unsafe
fcode programs.

Portions of the boot firmware (other than the adaptation
layer) can be written in Forth and will run identically on
different hardware platforms. This software will employ
the standard boot data structures and hardware abstractions.
In particular, peripheral devices are all accessed through a
standard API consisting of a set of Forth words that each de-
vice of a particular type must define. The boot-time driver
for each device is supplied in the form of an fcode program
that when executed causes all required words to be defined
appropriately. It also builds the portion of the device tree

that represents this device. That fcode program is stored in
ROM on the device itself. Open Firmware defines a stan-
dard method to retrieve the driver-defining code from any
device. During the boot process, all of these programs are
retrieved and executed, thus constructing an API for each
device.

3 ECC

The ECC project (for Efficient Code Certification) [6]
was conceived as a way to improve the runtime efficiency of
small, untrusted, run-once applications such as applets and
active messages while still ensuring safe execution. Run-
once means that the cost of verification cannot be amortized
over the lifetime of the code, so certificates should be as
concise and easy to verify as possible.

ECC guarantees certain dynamic safety properties of
compiled code by performing efficient static checks. In par-
ticular, it permits implementation of a module that, at boot-
time, verifies the safety of the boot firmware before it is run.
This technique relies on certain general mathematical theo-
rems that relate the control flow safety, memory safety, and
stack safety of a running program to the block structure of
its compiled form. As a practical matter, the technique re-
lies on a certifying compiler that produces particularly well-
structured code, so that a verifier can perform appropriate
static checks just prior to runtime. The user need only trust
the verifier, which is a particularly simple program that can
be persuasively validated by inspection.

ECC attempts to identify the minimum information nec-
essary to ensure a basic but nontrivial level of code safety
and to encapsulate this information in a succinct certificate
that is easy to produce and to verify. Performance and ease
of implementation are important concerns. ECC is able to
ensure

� control flow safety—the program never jumps to a ran-
dom location in the address space, but only addresses
within its own code segment containing valid instruc-
tions;

� memory safety—the program does not access random
places in memory, but only valid locations in its own
data segment, system heap memory explicitly allo-
cated to it, or valid stack frames; and

� stack safety—the state of the stack is preserved across
subroutine calls.

These safety conditions are mutually dependent in the sense
that none of them are safe unless all of them are safe. This
level of safety is roughly comparable to that provided by
Java bytecode verification. It also entails other ancillary
safety properties such as checking the number and types of
function call arguments.



A prototype certifying compiler for the Scheme language
to Intel Architecture (x86) machine code and a correspond-
ing verifier have been developed [6].

The system does not rely on general theorem provers
or typing mechanisms. Although less flexible than other
language-based approaches such as PCC or TAL [18, 12],
certificates are compact and easy to produce and to verify.
The certificate can be produced by the code supplier dur-
ing the code generation phase of compilation and verified
by the consumer at load time. Both operations can be made
automatic and invisible to both parties.

Drawbacks to ECC include platform-dependence and
fragility with respect to compiler optimization. Simple lo-
cal optimizations such as tail recursion elimination can be
handled. Preliminary experiments indicate that the sizes of
the certificates produced by the ECC prototype range from
6% to 25% of the size of the object code. This seems to in-
dicate a substantial improvement over PCC, although a fair
comparison would require a more careful analysis to take
all variables into account. The verification process is very
efficient. It is linear time except for a sorting step to sort
jump destinations, but since almost all jumps are forward
and local, a simple insertion sort suffices.

4. The BootSafe System

In this section we describe in some detail our prototype,
called BootSafe. We hope to convince the reader, as we are
ourselves convinced, that this is a sound and commercially
viable approach to protection against an important class of
malicious boot firmware.

Our objective is to detect malicious fcode programs dur-
ing the Open Firmware boot cycle as they are loaded, in
order to prevent them from executing.

Detection is based on ECC verification as described in
Section 3 above. However, verification will go beyond
the basic safety properties of the original ECC prototype.
This will require a meaningful security policy for fcode
programs—essentially a conservative definition of program
safety—and a means of enforcing that policy. Devising an
effective policy is difficult because it is hard to foresee all
the ways that an attacker could harm us.

The BootSafe system consists of a Java-to-fcode certify-
ing compiler J2F and a corresponding fcode verifier (Fig. 2).

The following sections detail our approach to compila-
tion and verification. Following that are sections containing
some background information.

4.1 Compilation

The compilation of a Java program to fcode is a two-
stage process. In the first stage, Java source is compiled
down to Java Virtual Machine (VM) code, also known as

Firmware
Development

Open Firmware
Boot System

trust boundary

Java program
�
Æ

�


Java compiler

bytecode
�
Æ

�


J2F compiler

fcode +
certificate

�
�

�
�

verifier

fcode interpreter

B
ootSafe

?

?

?

?

?

?

6

?

Figure 2. The BootSafe System

bytecode. For this purpose we can use any existing Java
compiler, such as the javac compiler available from Sun Mi-
crosystems. For the second stage, we are implementing a
compiler J2F that maps Java VM code to Forth VM code,
also known as fcode. Thus we can leverage existing com-
pilers for Java. In addition, we will be able to leverage the
Java bytecode verifier, as explained below.

The translation from Java VM to Forth VM is relatively
straightforward in many ways, although there are some de-
sign challenges. One such challenge is to design an ap-
propriate object encoding and method dispatch mechanism.
Since Forth contains no prior support for objects, we must
design the object encoding from scratch. This goal has al-
ready been achieved.

Another issue is the class loading and initialization strat-
egy. The standard Java strategy loads and initializes classes
at their first active use. This is known as lazy initialization.
For applications in boot firmware, lazy initialization is less
desirable because it imposes a runtime overhead that could
play havoc with real-time constraints that boot-time drivers
are often subject to during diagnostic testing of devices. We
thus prefer an eager initialization strategy to avoid this over-
head. We have designed and implemented a load-time static
analysis method that computes initialization dependencies
among Java classes based on the static call graph of the
class initializers [7]. We can use the computed dependen-
cies to order the classes for initialization at load time. This
is a departure from standard Java semantics, but a valuable
one for this application. In addition to avoiding the run-
time overhead of lazy initialization, it gives a clearer pic-
ture of the dependencies involved in class initialization, and



can flag a variety of erroneous circularities that the standard
lazy method lets pass.

Our J2F compiler can currently compile with int,
boolean, and char types, String and StringBuffer classes,
user-defined classes, and arrays of these types. It performs
both static and instance method dispatch correctly. It incor-
porates our eager class initialization strategy as described in
the preceding paragraph. The output of our J2F compiler is
a working Forth program. The Forth code produced, along
with a runtime support module of our design, can be suc-
cessfully read and interpreted by the Forth interpreter that
is part of SmartFirmware (a commercial implementation of
Open Firmware). In the future we will utilize a backend
mapping to fcode, and all verification will be done on the
fcode, allowing us to produce a much more compact object
involving Forth execution tokens instead of text. However,
throughout the prototyping phase, we will continue to work
with Forth source code so as to make it easier to debug the
design of our J2F compiler and BootSafe verifier.

In the near future we will fill out the existing J2F proto-
type to handle a variety of other built-in types and library
classes, eventually moving toward a significant and robust
subset of Java, perhaps full Java minus only support for re-
flection and concurrency. It is also not clear that it will be
necessary to support the double-word types long and double
for applications in firmware. The elimination of these two
types would result in a substantial simplification, since they
requires special handling.

One significant advantage of Java over Forth is that the
Open Firmware architecture is naturally object-oriented.
Objects and inheritance can be used to great advantage in
modeling the device tree and the various devices that com-
prise it. For example, the standard API of a PCI bus can be
represented as an abstract class that manufacturers can sub-
class in order to implement drivers for their specific prod-
ucts. In fact, we will require such subclassing as one of
the architectural constraints, mentioned above, that lead to
enforcement of the security policy.

4.2 Verification

Sun has defined a form of safety verification for JVM
bytecode as part of its definition of the JVM. Our verifi-
cation will build on this, verifying analogous properties of
fcode programs that have been translated from bytecode,
as well as some new checks that are peculiar to the Open
Firmware environment.

Verification consists of a general device-independent
part that applies to all drivers and a device-specific part that
may vary depending on the kind of device. The overall se-
curity policy we will eventually enforce is three-tiered. En-
forcement of each tier depends on the previous ones.

Tier 1: Basic safety policy. This basic level corresponds
to that which is commonly called type-safety in the liter-
ature on language-based security. It has a fixed platform-
and application-independent description involving memory
safety, control flow safety, and stack safety that are all in-
terrelated. This level corresponds roughly to the level of
safety provided by the Java bytecode verifier. It is also the
easiest of the three levels to design and implement, because
we can leverage the design of the Java bytecode verifier in
our fcode verifier. Since we are translating from Java, it is
possible to mimic the behavior of the Java bytecode verifier
fairly directly, supplying the necessary typing information
in the form of an attached certificate, as in the ECC proto-
type. Since we have a formal description of the Java veri-
fication process, we can supply in the certificate whatever
extra information we need that may be present in the Java
bytecode, then build our verifier to perform the same checks
as the Java verifier. Thus the established type safety of Java
and the existence of well-documented bytecode verification
algorithms are a huge advantage that will save us much de-
sign time.

Tier 2: Device encapsulation policy. Each peripheral de-
vice is operated directly or indirectly only by its own device
driver. Each device driver provides the only interface (API)
for the rest of Open Firmware to access the corresponding
device. Drivers that must access their devices through a
chain of other devices, such as buses, must do so in a highly
controlled and prespecified manner that is verifiable. Such
forms of indirect access typically involve some form of ad-
dress translation that is set up by the Open Firmware mapin
procedure whose application can be tightly controlled. Al-
though there is no software mediation at the time of the ac-
tual device access, it is possible for the verifier to check that
the mapin procedure is called according to a highly con-
strained and recognizable pattern and that all bus addresses
subsequently accessed by the driver are within the memory
range allocated to that device by mapin. This is more or less
comparable to an array bounds check in Java.

Tier 3: Prevention of specific forms of harm. In this
tier, we enforce conventions that any reasonable device
driver should adhere to. In so doing, we rule out many of
the routes by which malicious fcode could cause harm. For
instance, device drivers, once they are loaded, should never
be redefined—there is no legitimate reason to do so. Such
redefinition is otherwise legal within fcode, and would be a
very attractive attack mechanism.

Enforcement of tier 2 and 3 policies will be based on ar-
chitectural constraints—restricting the interaction of mod-
ules with one another and constraining the interfaces. This
enables two strategies for enhancing safety: ruling out in-
teractions that should never happen in legitimate firmware,



and require that services are accessed via wrappers that per-
form run-time checks. Some Java language features such as
private, protected, and final methods can be of great bene-
fit here. For instance, by requiring that untrusted code is a
subclass of a trusted class, we can ensure that final methods
of the trusted class cannot be overridden in the subclass.

5. Related Work

In this section we discuss the mechanisms, such as cryp-
tography and mediated access, that have been most com-
monly used to address security threats and their practical
limitations for guarding against malicious firmware. We
then discuss other important examples of language-based
security mechanisms (Java, proof carrying code, and typed
assembly language) and the tradeoffs involved in deciding
which is appropriate for a particular application.

5.1 Non-Language-Based Mechanisms

Traditional approaches to the security problem include:
mediated access or proxy execution, cryptography, code in-
strumentation, and trusted compilation.

Mediated access or proxy execution, probably the oldest
and most widespread system security mechanism, proceeds
by isolating critical operations and data in a system kernel,
the only code privileged to access these operations and data
directly. All other processes gain access only by using the
kernel as a proxy, after communicating their desires by mes-
sage. This not only prevents untrusted code from corrupting
the system, but also allows the kernel to monitor all access,
perform authentication, or enforce other safety policies.

Cryptography discourages access to sensitive data during
transit across an untrusted network and can also be used for
authentication.

Code instrumentation, software fault isolation (SFI), and
sandboxing [24] alter (instrument) machine code so that
critical operations can be monitored during execution in or-
der to enforce a security policy. The monitor is invisible
(except for performance costs) so long as execution follows
the policy, but intervenes to protect the system when a vi-
olation is detected. Schneider [20, 21] extends this idea
to handle any security policy that can be expressed by a
finite-state automaton. For example, one can express the
condition, “No message is ever sent out on the net after a
disk read,” with a two-state automaton. These automata are
called security automata. The code is instrumented so that
every instruction that could potentially affect the state of
the security automaton is preceded by a call to the automa-
ton. Security automata give considerable flexibility in the
specification of safety policies and allow the construction
of specialized policies tailored to a consumer’s particular

needs. The main drawback is that some runtime overhead
is incurred for the runtime calls to simulate the automaton.

Trusted compilation is the practice of compiling locally
using a trusted compiler.

None of these mechanisms are well suited to firmware.
Firmware typically runs before the system kernel is even
loaded. Mediation can be provided only by the BIOS, which
operates in a relatively austere environment unequipped for
proxy execution: firmware drivers associated with installed
components are typically given direct access to critical sys-
tem components. It is desirable to allow this capability
without compromising security.

Code instrumentation is also costly. The runtime check
required before every sensitive operation could contribute
substantially to runtime overhead. Some runtime checks
can be eliminated if program analysis determines that they
are unnecessary, but this is also a costly undertaking and
could contribute substantially to load time overhead. More-
over, even the most sophisticated analysis techniques are
necessarily incomplete, because safety properties are unde-
cidable in general.

Trusted compilation of the firmware would have to be
redone every time a system is booted, incurring not only
a performance penalty but the additional complexity of in-
cluding the compiler in the trusted computing base. Also,
trusted compilation does not by itself supply any justifica-
tion for trust in the source code that is being compiled.

5.1.1 Cryptographic Authentication (AEGIS)

We have already noted that authentication alone cannot en-
sure that untrusted code is safe to run. Clearly, however,
it can provide some protection. The most sophisticated au-
thentication architecture for firmware is provided by AEGIS
[2]. The prototype has been designed as a minimal change
to the boot process of the IBM PC that provides a lay-
ered sequence of authentication checks of untrusted BIOS
code and CMOS, then expansions cards, then the operating
system boot blocks, etc., throughout the boot process. It
also provides a mechanism for attempting to recover from
a failed integrity check by obtaining a replacement module
from a trusted source.

5.2 Language-Based Mechanisms

Compilers for high-level programming languages typi-
cally accumulate much information about a program dur-
ing the compilation process. This information may take the
form of type information or other constraints on the values
of variables, structural information, or naming information.
This information may be obtained through parsing or pro-
gram analysis and may be used to perform optimizations or
to check type correctness. After a successful compilation,



compilers traditionally throw this extra information away,
leaving a monolithic sequence of instructions with no ap-
parent structure or discernible properties.

Some of this extra information may have implications
regarding the safety of the compiled object code. For ex-
ample, programs written in type-safe languages must type-
check successfully before they will compile, and assum-
ing that the compiler is correct, any object code compiled
from a successfully typechecked source program should be
memory-safe. If a code consumer only had access to the
extra information known to the compiler when the program
was compiled, it might be easier to determine whether the
code is safe to run.

Code certification refers to the idea of retaining ex-
tra information from a program written in a high-level
language in the object code compiled from it. This ex-
tra information—called a certificate—is created at compile
time and packaged with the object code. When the code
is downloaded, the certificate is downloaded along with it.
The consumer can then run a verifier, which inspects the
code and the certificate to verify compliance with a security
policy. If it passes the test, then the code is safe to run. The
verifier is part of the consumer’s trusted computing base;
the compiler, the compiled code, and the certificate need
not be.

5.2.1 Java

Perhaps the first large-scale practical instance of the
language-based approach was the Java programming lan-
guage [8]. Javas language-based mechanism is designed
to protect against malicious applets. The Java runtime en-
vironment contains a bytecode verifier that is supposed to
ensure the basic properties of memory, control flow, and
type safety. In addition, a trusted security manager enforces
higher-level safety policies such as restricted disk I/O. The
Java compiler produces platform-independent virtual ma-
chine instructions or bytecode that can be verified by the
consumer before execution. The bytecode is then either in-
terpreted by a Java virtual machine (VM) interpreter or fur-
ther compiled down to native code.

Early versions of Java contained a number of highly pub-
licized security flaws [3]. For example, a subtle defect in the
Java type system allowed an applet to create and control a
partially instantiated class loader. The applet could then use
this class loader to load, say, a malicious security manager
that would permit unlimited disk access.

Some authors [3, 9] blamed these problems on the lack
of an adequate semantic model for Java. Steps to remedy
this situation have since been taken [1, 19]. Despite these
initial failings, the basic approach was a significant step for-
ward in practical programming language security. It not
only pointed the way toward a simple and effective means

of providing a basic level of security, but also helped direct
the attention of the programming language and verification
community to critical security issues resulting from the rise
of the Internet.

The machine-independent bytecode produced by the
Java compiler is still quite high-level, and that is a disad-
vantage. Once downloaded, the bytecode must either be
interpreted by a Java VM interpreter or compiled to native
code by a just-in-time (JIT) compiler. Either technique in-
curs a runtime penalty. If the safety certificate represented
in the bytecode were mapped down to the level of native
code by a back-end Java VM compiler, then the same degree
of safety could be ensured without the runtime penalty, be-
cause the code supplier could do the back-end compilation
before downloading. This would trade the platform inde-
pendence of Java VM for the efficiency of native code.

5.2.2 Proof Carrying Code (PCC)

Proof carrying code (PCC) [13, 14, 15, 16, 17, 18] is a strat-
egy for producing and verifying formal proofs that code
meets general security policies. The software supplier does
the hard work of generating the proof, and the software con-
sumer checks the proof before the code is run. The security
policy is expressed in first-order logic augmented with sym-
bols for various language and machine constructs.

The most general version of PCC is somewhat more
complicated, involving a two-phase interaction between the
supplier and the consumer. In the first phase of this proto-
col, the supplier produces and delivers a program consisting
of annotated object code. The annotations consist of loop
invariants and function pre- and post-conditions, and make
the next phase of the protocol easier. The consumer formu-
lates a safety policy and uses an automated tool to generate,
from the policy and the annotated program, a verification
condition. The verification condition is a logical formula
that implies that the program satisfies its security policy. In
the second phase of the protocol, the supplier proves the
verification condition and sends the proof back to the con-
sumer. The consumer runs a proof checker to check that the
proof is valid.

The verification condition generator is part of the con-
sumer’s trusted computing base—in a sense, it defines
the security policy—but some communication cost can be
saved by having the supplier generate the verification con-
dition using the same verification condition generator that
the consumer uses. The consumer then checks that the ver-
ification condition produced by the supplier is the same as
the one produced locally.

A certifying compiler produces the initial annotation
of the code, using information from the program source
and program analysis during compilation. The Touchstone
compiler [14] is a certifying compiler for a type-safe sub-



set of C. It admits many common optimizations such as
dead code elimination, common subexpression elimination,
copy propagation, instruction scheduling, register alloca-
tion, loop invariant hoisting, redundant code elimination,
and the elimination of array bounds checks.

The advantages of the PCC approach are its expressive-
ness and its ability to handle code optimizations. In prin-
ciple, any security policy that can be constructed by a ver-
ification condition generator and expressed as a first-order
verification condition can be handled. The main disadvan-
tages are that it is a two-phase protocol, that it involves
weighty machinery such as a full-fledged first-order theo-
rem prover and proof checker, and that proof sizes are quite
large, roughly 2.5 times the size of the object code for type
safety and even larger for more complicated safety policies.
Given the limited space available on boot firmware, this size
penalty alone makes PCC inappropriate for our problem.

5.2.3 Typed Assembly Language (TAL)

Typed assembly language (TAL) [4, 9, 10, 12] can be
viewed as a specialized form of proof-carrying code de-
voted to verifying a form of type safety. It is a language-
based system in which type information from a strongly-
typed high-level language is preserved as compilation trans-
forms the source through a platform-independent typed in-
termediate language (TIL) [11, 23] down to the level of the
object code itself. The result is a type annotation of the ob-
ject code that can be checked by an ordinary type checker.
In this special case, proof checking is reduced to type check-
ing.

TAL is not as expressive as PCC, but it can handle any
security policy expressible in terms of the type system. This
includes memory, control flow, and type safety, among oth-
ers. TAL is also robust with respect to compiler optimiza-
tions, since type annotations can be transformed along with
the code. TAL proofs, though much smaller than proofs
in PCC, are still significantly larger than those needed by
ECC.

Proof size can be traded off against the complexity of
the verifier, but that increases and complicates the amount
of trusted code.

6. Current Project Status

The long-term goal of this project is to adapt the ECC
technique to the analysis of Open Firmware fcode pro-
grams to detect malicious boot software. We are imple-
menting a certifying compiler and verifier necessary for this
method. The ECC-based verifier will then be incorporated
into an existing commercial implementation of the Open
Firmware standard in order to provide practical malicious
boot firmware detection to the marketplace.

At present, we have a working prototype of the J2F
compiler for Java Virtual Machine (JVM) bytecode to
Forth fcode for a single-threaded subset of the Java lan-
guage. This subset is appropriate for writing device drivers
and other firmware modules. It provides access to Open
Firmware services through an API currently being de-
signed. The compiler will output a certificate appropriate
to the verification tasks described below. The API takes ad-
vantage of the natural object-oriented structure of the Open
Firmware device tree and allows access to Open Firmware
services from within Java programs.

The BootSafe verifier will initially verify only basic type
safety, roughly at the level provided by ECC and by the Java
bytecode verifier. This initial version operates as a stand-
alone program.

We have successfully compiled sample device drivers for
a block-oriented storage device and a PCI bus. These are
good representatives of typical devices in current use. These
drivers can run under SmartFirmware (a commercial Open
Firmware implementation) in simulation mode.

7. Conclusions and Future Work

As noted, typical boot firmware is an amalgam of many
pieces, including libraries, the main boot program, and
boot-time device drivers from various vendors. To inter-
act successfully, these pieces must respect well-defined ab-
straction boundaries and communicate only via standard-
ized interfaces. Yet at boot time, the pieces all run in the
same address space. There is no isolation and no exter-
nal enforcement of good citizenship. The existing Open
Firmware standard does not address this problem. It only
helps non-malicious designers by defining the standard for
device interaction and process management during bootup.

Our approach has the potential to guarantee that all of
the pieces of boot firmware are good citizens: that they
respect each other’s boundaries and interact only via pub-
lished standardized interfaces. Moreover, this guarantee is
refreshed each time the boot program runs with inexpen-
sive static checks. Rechecking each time counters the threat
of substituting malicious boot firmware components for ap-
proved ones.

We believe Open Firmware is the right context because
it is a clear, well-designed, and widely used standard. We
have designed a Java-to-fcode certifying compiler and built
an early prototype. Our current effort is directed toward
making this novel form of protection a practical reality by
integrating the verifier with a commercial implementation
of Open Firmware.

Although we our developing our techniques in the con-
text of the Open Firmware standard, there is nothing to pre-
vent non-Open Firmware compliant boot firmware from be-
ing made verifiable using similar techniques.



Among the large-scale issues still to be addressed are:

� the design of a Java API for Open Firmware that is both
convenient to use and supports the kind of verification
that we require;

� enhancement of the verifier to verify compliance of
fcode programs with the second-order security policy
(this version of the verifier will run as a stand-alone
program and will be directly integrated with Smart-
Firmware);

� modification of the J2F compiler to accommodate the
refined Open Firmware API and enhanced verification.

Acknowledgments

We are indebted to T. J. Merritt for valuable ideas and
comments and to David Baca and Kori Oliver for their as-
sistence with the implementation. We also thank the anony-
mous reviewers for their suggestions. This work was sup-
ported in part by DARPA contracts DAAH01-02-C-R080
and DAAH01-01-C-R026, NSF grant CCR-0105586, and
ONR Grant N00014-01-1-0968. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of these orga-
nizations or the US Government.

References

[1] M. Abadi and R. Stata. A type system for Java bytecode
subroutines. In Proc. 25th Symp. Principles of Programming
Languages, pages 149–160. ACM SIGPLAN/SIGACT, Jan-
uary 1998.

[2] William A. Arbaugh, David J. Farber, and Jonathan M.
Smith. A secure and reliable bootstrap architecture. In
Proc. 1997 Symposium on Security and Privacy, pages 65–
71. IEEE, May 1997.

[3] Drew Dean, Ed Felten, and Dan Wallach. JAVA security:
From HotJava to Netscape and beyond. In Proc. Symp. Se-
curity and Privacy. IEEE, May 1996.

[4] N. Glew and G. Morrisett. Type-safe linking and mod-
ular assembly language. In Proc. 26th Symp. Principles
of Programming Languages, pages 250–261. ACM SIG-
PLAN/SIGACT, January 1999.

[5] IEEE. IEEE Standard for Boot (Initialization Configuration)
Firmware: Core Requirements and Practices, 1994. Stan-
dard 1275-1994.

[6] Dexter Kozen. Efficient code certification. Technical Report
98-1661, Computer Science Department, Cornell University,
January 1998.

[7] Dexter Kozen and Matt Stillerman. Eager class initialization
for Java. In W. Damm and E.R. Olderog, editors, Proc. 7th
Int. Symp. Formal Techniques in Real-Time and Fault Toler-
ant Systems (FTRTFT’02), volume 2469 of Lecture Notes in
Computer Science, pages 71–80. IFIP, Springer-Verlag, Sept.
2002.

[8] Tim Lindholm and Frank Yellin. The JAVA virtual machine
specification. Addison Wesley, 1996.

[9] G. Morrisett, K. Crary, N. Glew, D. Grossman, R. Samuels,
F. Smith, D. Walker, S. Weirich, and S. Zdancewic. TALx86:
A realistic typed assembly language. In Proc. Workshop on
Compiler Support for System Software, pages 25–35. ACM
SIGPLAN, May 1999.

[10] G. Morrisett, K. Crary, N. Glew, and D. Walker. Stack-
based typed assembly language. In Xavier Leroy and At-
sushi Ohori, editors, Proc. Workshop on Types in Compila-
tion, volume 1473 of Lecture Notes in Computer Science,
pages 28–52. Springer-Verlag, March 1998.

[11] G. Morrisett, D. Tarditi, P. Cheng, C. Stone, R. Harper, and
P. Lee. The TIL/ML compiler: Performance and safety
through types. In 1996 Workshop on Compiler Support for
Systems Software, 1996.

[12] Greg Morrisett, David Walker, Karl Crary, and Neal Glew.
From System F to typed assembly language. In 25th ACM
SIGPLAN/SIGSIGACT Symposium on Principles of Pro-
gramming Languages, pages 85–97, San Diego California,
USA, January 1998.

[13] George C. Necula. Proof-carrying code. In Proc. 24th
Symp. Principles of Programming Languages, pages 106–
119. ACM SIGPLAN/SIGACT, January 1997.

[14] George C. Necula. Compiling with proofs. PhD thesis,
Carnegie Mellon University, September 1998.

[15] George C. Necula and Peter Lee. Safe kernel extensions
without run-time checking. In Proc. 2nd Symp. Operating
System Design and Implementation. ACM, October 1996.

[16] George C. Necula and Peter Lee. The design and imple-
mentation of a certifying compiler. In Proc. Conf. Program-
ming Language Design and Implementation, pages 333–344.
ACM SIGPLAN, 1998.

[17] George C. Necula and Peter Lee. Efficient representation and
validation of proofs. In Proc. 13th Symp. Logic in Computer
Science, pages 93–104. IEEE, June 1998.

[18] George C. Necula and Peter Lee. Safe, untrusted agents
using using proof-carrying code. In Giovanni Vigna, edi-
tor, Special Issue on Mobile Agent Security, volume 1419
of Lect. Notes in Computer Science, pages 61–91. Springer-
Verlag, June 1998.

[19] Robert O’Callahan. A simple, comprehensive type system
for Java bytecode subroutines. In Proc. 26th Symp. Princi-
ples of Programming Languages, pages 70–78. ACM SIG-
PLAN/SIGACT, January 1999.

[20] Fred B. Schneider. Towards fault-tolerant and secure agen-
try. In Proc. 11th Int. Workshop WDAG ’97, volume 1320 of
Lecture Notes in Computer Science, pages 1–14. ACM SIG-
PLAN, Springer-Verlag, September 1997.



[21] Fred B. Schneider. Enforceable security policies. Technical
Report TR98-1664, Computer Science Department, Cornell
University, January 1998.

[22] Fred B. Schneider, editor. Trust in Cyberspace. Committee
on Information Systems Trustworthiness, Computer Science
and Telecommunications Board, National Research Council.
National Academy Press, 1999.

[23] D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and
P. Lee. TIL: A type-directed optimizing compiler for ML. In
Conf. Programming Language Design and Implementation.
ACM SIGPLAN, 1996.

[24] R. Wahbe, S. Lucco, T. E. Anderson, and S. L Graham. Effi-
cient software-based fault isolation. In Proc. 14th Symp. Op-
erating System Principles, pages 203–216. ACM, December
1993.


