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N6-methyladenosine (m6A) RNA methylation, the most common form of mRNA

modification and regulated by the m6A RNA methylation regulators (“writers,” “erasers,”

and “readers”), has been reported to be associated with the progression of the malignant

tumor. However, its role in glioblastoma (GBM) has been poorly known. This study

aimed to identify the expression, potential functions, and prognostic values of m6A

RNA methylation regulators in GBM. Here, we revealed that the 13 central m6A RNA

methylation regulators were firmly related to the clinical and molecular phenotype of

GBM. Taking advantage of consensus cluster analysis, we obtained two categories of

GBM samples and found malignancy-related processes of m6A methylation regulators

and compounds that specifically targeted the malignant processes. Besides, we also

obtained a list of genes with poor prognosis in GBM. Finally, we derived a risk-gene

signature with three selected m6A RNA methylation regulators, which allowed us

to extend the in-depth study and dichotomized the OS of patients with GBM into

high- and low-risk subgroups. Notably, this risk-gene signature could be used as

independent prognostic markers and accurate clinicopathological parameter predictors.

In conclusion, m6A RNA methylation regulators are a type of vital participant in the

malignant progression of GBM, with a critical potential in the prognostic stratification

and treatment strategies of GBM.

Keywords: glioblastoma, m6A RNA methylation, TCGA, methylation regulator, CGGA, prognostic signature

INTRODUCTION

Given the critical role of epigenetic regulation of DNA and histone (proteins) methylation in the
underlying biological processes of mammals, the methyladenosine (mA) chemical modification of
RNA may also be used as an novel epigenetic marker of far-reaching biological significance (1, 2).
N6-methyladenosine (m6A) is the most prevalent internal chemical modification of mRNAs in
higher eukaryotes, at a frequency of approximately three sites per mRNA (3–5). The m6A marks
on mRNAs, similar to DNA and protein modification, are reversibly and dynamically regulated
by methyltransferases (“writers”), binding proteins (“readers”), and demethylases (“erasers”). Six
proteins have been identified in the m6A “writers” complex, including methyltransferase like 3
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(METTL3) (6), methyltransferase like 14 (METTL14) (7), WT1-
associated protein (WTAP) (8), RNA-binding motif protein
15/15B (RBM15/15B) (9), Vir like m6A methyltransferase
associated VIRMA (also named as KIAA1429) (10), and zinc
finger CCCH domain-containing protein 13 (ZC3H13) (11),
which can catalyze the formation ofm6A. As a function to decode
m6A methylation and produce functional signals, the “readers”
include YT521-B homology (YTH) domain-containing proteins
(YTHDC1, YTHDC2) (12), YTH N6-methyladenosine RNA-
binding proteins (YTHDF1, YTHDF2) (13), and heterogeneous
nuclear ribonucleoprotein (HNRNP) protein families (14).
“Erasers” are capable of removing the methyl code from target
mRNAs, including fat mass and obesity-associated protein (FTO)
(15, 16) and alkB homolog 5 (ALKBH5) (17).

The vital functions of RNA modification in processes of
life have caught people’s eyes in recent years. Substantial
progress in regulating RNA transcription (18, 19), the event
of processing (20, 21), splicing (5, 22), RNA stabilities (23,
24), and translation (25, 26) was witnessed in m6A post-
transcriptional modifications. However, to date, the functions of
the majority of RNAmodifications found inmRNAs need further
exploration. Notably, the functional roles of m6A methylation in
tumorigenesis, tumor differentiation (27), proliferation (28), and
invasion (27) remain elusive.

GBM is the most common and devastating primary tumor
in the brain. Even the combined surgical resection, radiation
therapy, chemotherapy, and other therapies were broadly used,
the recurrence of the patients with GBM is inevitable. Besides, the
median survival of GBM patients is <15 months after a definite
diagnosis (29–31). The m6A RNA methylation regulators were
also reported to be associated with self-renewal, radio resistance,
and tumorigenesis of GBM stem cells (32). However, there is
no comprehensive investigation of the expression of m6A RNA
methylation regulators in GBM.

In the current study, the 13 m6A RNA regulators, which
have been widely reported, were systematically analyzed using
the GBM RNA sequencing data from The Cancer Genome Atlas
(TCGA) (n = 174) and Chinese Glioma Genome Atlas (CGGA)
(n= 249) databases. Taking advantage of m6A RNAmethylation
regulator-based consensus clustering analysis, we demonstrated
the malignant process and obtained a list of genes with poor
prognosis in patients with GBM. Importantly, we further
validated these genes in the CGGA database and identified
potential drugs targeting the malignant process of GBM using the
Connectivity Map (CMap) (33). Besides, the risk-gene signature-
derived from m6A RNAmethylation regulators might be used as
a novel biomarker that could identify GBM patients’ prognosis
and predict the clinicopathological parameters of GBM.

MATERIALS AND METHODS

Data Acquisition
The RNA-seq transcriptome data and corresponding
clinicopathological parameters of GBM patients were obtained
from the TCGA database (http://cancergenome.nih.gov/) and
the CGGA database (http://www.cgga.org.cn). The RNA-seq
transcriptome data of healthy human tissue was obtained
from the Genotype-Tissue Expression (GTEx) database

(http://commonfund.nih.gov/GTEx/). We combined GTEx
and CGGA data, and then harmonized them using quantile
normalization and svaseq-based batch effect removal (34).
The clinicopathological parameters for the CGGA and TCGA
datasets are summarized in Table S1.

Selection of m6A RNA Methylation
Regulators
Thirteen widely recognized m6A RNA methylation regulators
were retrieved from published literature. We then systematically
compared the correlation between the expression of these m6A
RNA methylation regulators and clinicopathological parameters
in GBM patients.

Bioinformatic Analysis
To further explore the role of m6A RNA methylation regulators
in GBM patients, we clustered the GBM patients into two clusters
by using the R package ConsensusClusterPlus (35). Heatmaps
were drawn based on the average linkagemethod and the Pearson
distance measurement method. Principal Component Analysis
(PCA) was carried out by an R package called PCA to observe
the distribution of gene expression in two clusters. Differential
analyses for each gene in the pre-classified samples performed
using the limma package in R (36). Fold change (FC) > 2 and
adjusted p-value (q-value) < 0.01 were set as the cutoff values to
screen for differentially expressed genes (DEGs). Gene Ontology
(GO) functional analyses and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analyses were performed
to analyze the upregulated DEGs. The relationship between
DEGs gene expression levels and overall patient survival time
was illustrated by generating Kaplan-Meier plots. The correlation
was tested using a log-rank test. Gene Set Enrichment Analysis
(GSEA) was used to investigate the functions correlated with
different clusters of GBM. |NES| > 1, adjusted p< 0.05, and FDR
q < 0.25 were considered as statistically significant as described
in a previous study (37).

Construction of Protein-Protein
Interactions (PPI) Network
PPI among selected genes was analyzed using the STRING
database (38) and reprocessing via Cytoscape software (39). For
better visualization, the color of the node in the PPI network
was applied to reflect the logFC value, and the size of the node
was applied to indicate the number of source proteins with
the target protein. Molecular COmplex Detection (MCODE)
(version 1.4.3), which is clustered based on given network
topology, was used to discover densely connected regions. Then,
the most significant module was filtered out byMCODE from the
PPI networks. The criteria for selection were as follows: MCODE
scores > 5, degree cut-off = 2, node score cut-off = 0.2, Max
depth= 100, and k-score= 2.

Construction of Gene-Signature
Univariate Cox regression analysis of the expression of 13 m6A
RNA methylation regulators was conducted to determine the
candidate genes associated with overall survival (OS). After that,
an L1-penalized (LASSO) was performed to further identify
the selected genes with independent prognostic value (40, 41).
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Finally, their regression coefficients were determined by the
minimum criteria. The risk score for the signature was calculated
accurately by the formula:

Risk score =
∑n

i=1
Coefi ∗ xi,

where Coefi is the regression coefficient and xi is the expression
of each selected gene. GBM patients were divided into low-
and high-risk subgroups according to the median risk score.
Kaplan–Meier plot was performed to compare the OS between
two risk subgroups.

Identification of Potential Compounds
Targeting the Malignancy-Related
Pathways
CMap (updated in September 2017) (https://clue.io/), as the
world’s largest perturbation-driven gene expression dataset,
was employed to search for candidate chemical compounds
that might target GBM stemness related pathways (33). The
compounds were discovered by interrogating the CMap database
of signatures with a query (a list of DEGs relevant to
biological features of interest). The final results involved a CMap
connectivity score (from −1 to 1) that indicated the degree of
specificity associated with our particular query. 300 DEGs (150
downregulated and 150 upregulated) were selected for query
methodology. Noteworthily, the closer the connectivity score
of a compound was to −1, the more likely it was to reverse
the genetic pattern we are querying. Finally, the compounds
with the absolute value of CMap connectivity score of 90 or
higher were considered to be potential therapeutic agents for
functional validation.

Statistical Analysis
Chi-square tests were used to compare the expression levels
in GBM for age, gender, healthy samples, primary GBM and
recurrence GBM, isocitrate dehydrogenase (IDH) status, and
cytosine-phosphate-guanine island methylator phenotype (G-
CIMP) status. One-way ANOVA was used to compare the
distribution of the subtype of GBM (Classical, Mesenchymal,
Neural, Proneural) (42). To evaluate the prediction accuracy
of the risk score model, we performed a receiver operating
characteristic (ROC) curve and calculated the area under the
curve (AUC). Potential prognostic factors such as age (≤ 65 vs.>
65), gender (female vs. male), GBM subtype, and risk score (low-
risk vs. high-risk) were analyzed by Univariate and multivariate
Cox hazard regression.

RESULTS

Expression Patterns of m6A RNA
Methylation Regulators in GBM
According to the essential biological functions of methylation
regulators in the development of GBM, we first analyzed the
relationship between each m6A RNA methylation regulator
and the clinical molecular phenotype of GBM. The expression
level of individual m6A RNA methylation regulator and
different types of samples was presented as a heatmap. The

result strongly indicates that the expression of the majority
of m6A RNA methylation regulators was associated with the
occurrence of GBM (Figure 1A). Importantly, the significant
correlation between the occurrence of GBM and the expression
levels of ALKBH5, METTL3, KIAA1429, HNRNPC, WATP,
YTHDC2, YTHDF1, YTHDF2, and FTO were confirmed by
the quantitative analysis of CGGA (Figure 1B). Compared with
the healthy samples, the expression of METTL3, HNRNPC,
WTAP, KIAA1429, YTHDF2, and YTHDF1 was upregulated,
while the expression of ALKBH5, YTHDC2, and FTO was
downregulated in the GBM samples (Figures 1C,D). Correlation
analysis was also employed to investigate the relationship
between the expression level of m6A RNAmethylation regulators
and the different stages (primary tumor stage and recurrent
tumor stage) of GBM. Among the 13 m6A RNA methylation
regulators, only HNRNPC was significantly related to the
cancer recurrence (Figure 1E). Considering the dramatically
imbalanced numbers of primary GBM (n = 156) and recurrent
GBM (n = 13) in the TCGA database, the results of TCGA
database analysis were not necessarily as accurate as those of
CGGA, while the numbers of primary GBM (n = 140) and
recurrent GBM (n = 109) were relatively balanced. Therefore,
we analyzed the expression profile of the primary and recurrent
GBM samples from the CGGA database and found that
HNRNPC exhibited no correlation. Interestingly, as shown in
Figure 1F, the expression of WTAP, ALKBH5, and METTL14
was significantly associated with the recurrence of GBM. These
results suggested that WTAP, ALKBH5, and METTL14 were
firmly related to the recurrence process of GBM (Figures 1G,H).
We further explored the relationship between the expression
of m6A RNA methylation regulators and GBM molecular
subtypes. Notably, every expression of the majority of m6A
RNA methylation regulators was associated with the subtype
of GBM, except YTDHF2 and HNRNPC (Figure S1A). We
also investigated the relationship between IDH status, G-CIMP
status, and expression levels of each m6A RNA methylation
regulator in GBM. The results revealed that the expression
levels of METTL14, KIAA1429, YTHDC1, ZC3H13, and FTO
were significantly dysregulated between different IDH status in
the TCGA dataset (Figure S1B). As for the G-CIMP status,
the expression of RBM15, YTHDF2, KIAA1429, and YTHDC1
exhibited a significant difference between G-CIMP+ and G-
CIMP– (Figure S1C). We speculate that the change in the
correlation of m6A RNA methylation regulators may be an
internal characteristic that can reflect the external differences.
From Figures 1I,J, different degrees of the relationship were
observed between different m6A RNA methylation regulators.
Most of the relationships between the regulators were positive
correlations, especially YTHDC1, which contained the most
active correlation with other regulators (Figures 1I,J).

Identification of Two Clusters of GBM
Samples With Different Clinical
Characteristics
Next, GBM samples with complete clinical parameters were
selected for the subsequent consensus clustering analysis. From
the view of the number of samples per group, an unbalanced
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FIGURE 1 | Expression of m6A RNA methylation regulators in normal, primary, and recurrence GBM. (A,B) Heatmaps of expression levels of the m6A RNA

methylation regulators (normal sample vs. tumor sample) from TCGA database (A) and CGGA database (B). (C,D) Violin diagrams corresponding to (A,B). (E,F)

(Continued)
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FIGURE 1 | Heatmaps of the expression levels of the m6A RNAVmethylation regulators (primary tumor sample vs. recurrent tumor sample) from TCGA database (E)

and CGGA database (F). (G,H) Violin diagrams corresponding to (E,F). (I,J) Spearman correlation analysis of the 13 m6A regulators from the TCGA database (I) and

CGGA database (J). *P < 0.05; **P < 0.01; and ***P < 0.001; N, normal sample; T, tumor sample; P, primary tumor; R, recurrence tumor.

distribution was observed in the three groups when k = 3
(Figure S2A). Hence, based on the expression similarity of the
13 regulators, k = 2 was the most optimum with clustering
stability datasets increasing from k = 2–10 (Figures 2A–C and
Figure S2). Then, GBM samples from the TCGA dataset were
pre-classified into two groups (52 samples in one group labeled as
RM1 and 106 samples in another group labeled as RM2) through
consensus cluster analysis. The clinical features of the two groups
are summarized in Table S2. The heatmap of cluster analysis
showed that the 13 regulators could distinguish different samples,
and the samples in the same cluster possessed a high correlation
(Figure 2C). Principal component analysis was performed to
elucidate the difference in transcriptional profiles between the
RM1 and RM2 subgroups. The results investigated that there
was a clear distinction between these two subgroups (Figure 2D).
The survival curve according to Kaplan–Meier survival analysis
for the clustered samples revealed a noticeable decrease in the
OS in the RM2 subgroup compared with the RM1 subgroup,
suggesting that the 13 methylation regulators could classify the
GBM samples in prognostic level (Figure 2E). We further found
that the median survival of the RM1 group was 1.4 years, while
the RM2 was only 1 year. In addition, the clinicopathological
features of these two subgroups were compared. The RM1
subgroup was markedly correlated with younger age at diagnosis
(P < 0.05), Neural or proneural subtypes (P < 0.001), and G-
CIMP– status (Figure 2F). The RM2 subgroup mainly contained
GBM with older age at diagnosis, classical or mesenchymal
subtypes, and G-CIMP+ status. Consistent with the report that
classical and mesenchymal were more malignant compared to
neural and proneural (42).

Functional Annotation of Classification
Determined by Consensus Clustering
Analysis
The above results indicate that the consensus clustering results
were closely related to the degree of malignancy of GBM.
To better understand the mechanisms between the malignancy
of GBM and the 13 m6A RNA methylation regulators, a
total of 2,299 genes (599 genes were upregulated, and 1,700
genes were downregulated) were identified as DEGs by using
differential analysis (Figure 3A). To summarize the potential
function of DEGs, we performed an annotation of the 599
significantly upregulated genes (onco role, Table S3) in the RM2
subgroup through GO function analysis and KEGG pathway
analysis. The top 10 GO terms indicated that upregulated
genes were enriched in malignancy-related processes, including
neutrophil-mediated immunity, cell proliferation, cell junction,
phagocytosis, and cell-substrate adhesion (Figure 3B). KEGG
pathway analysis top 10 terms testified that upregulated genes
were related to the regulation of actin cytoskeleton pathway,
focal adhesion pathway, proteoglycans in cancer pathway,

and Fc gamma R-mediated phagocytosis pathway (Figure 3C).
Furthermore, GSEA suggested that the malignant hallmarks of
tumors, including KRAS signaling (NES = 1.59, normalized P
= 0.013), inflammatory response (NES = 1.68, normalized P
= 0.052), myogenesis (NES = 2.02, normalized P < 0.001),
and IL-6/JAK/ STAT3 signaling (NES = 2.0, normalized P <

0.001), were significantly associated with the RM2 subgroup
(Figures 3D–G). All these results proved that the two categories
derived from consensus clustering analysis were closely related to
the malignancy of GBM.

Novel Candidate Compounds Targeting the
Malignancy-Related Pathways and
Biological Functions in GBM
Next, we sought to determine the potential compounds that
target malignancy-related pathways and biological functions;
DEGs based on consensus clustering were submitted to retrieve
the CMap databases (33). The top 89 compounds capable of
repressing the above gene expression of GBM were summarized
in Table S4 and Figure 4. One hundred seventy mechanisms
were revealed through the CMap mode of action (MoA) analysis.
Six compounds (Tandutinib, ENMD-2076, dasatinib, dovitinib,
orantinib, tyrphostin-AG-1295) shared the MoA of PDGFR
tyrosine kinase receptor inhibitor, and five compounds (ENMD-
2076,mibefradil, NPI-2358, dovitinib, orantinib) shared theMoA
of angiogenesis inhibitor.We also found that tandutinib, ENMD-
2076, tivozanib, dasatinib, and dovitinib shared the MoA of
KIT inhibitor.

Identification and Analysis of m6A-Related
Genes With Poor Prognosis in GBM
To explore the significance of each upregulated gene for the
survival time of GBM patients from the TCGA database,
Kaplan-Meier survival curves were generated. Among the 599
upregulated DEGs in the RM2 subgroup, a total of 79 DEGs
(Table S3) were able to predict the poor OS in the log-rank test
(P < 0.05, representative figures were shown in Figure 5).

To better understand the interactions between the 79 genes
with prognostic value and the 13 m6A RNA methylation
regulators, we also analyzed the PPI among them using the
STRING database. The network consists of four modules with
a total of 88 nodes and 527 edges, which indicates that close
interaction exists in this PPI network (Figure 6A). Among
the 88 nodes, 54 central node genes (bold in Table S5) were
selected with the filtering of degree > 10. The most significant
10 node degree genes were ITGAM, STAT3, SPI1, TNFRSF1B,
MYO1F, SLC11A1, TCIRG1, RAP2B, FERMT3, and LCP1. The
top two significant modules were selected by using the MCODE
application for further analysis. To make the description more
convenient, we named these modules “ITGAM module” and
“RAP2B module,” respectively. Twenty-eight nodes and 165
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FIGURE 2 | Differential clinicopathological features and overall survival (OS) of GBM in the RM1/2 subgroups. (A) Consensus clustering cumulative distribution

function (CDF) for k = 2–10. (B) Relative change in area under CDF curve for k = 2–10. (C) Consensus clustering matrix for k = 2. (D) Principal component analysis of

the total mRNA expression profile in the TCGA dataset. GBM patients in the RM1 subgroup are marked with red, GBM patients in RM2 are marked with green. (E)

Kaplan–Meier OS curves for different subgroups. (F) Heatmap and clinicopathologic features of the two clusters (RM1/2) defined by the m6A RNA methylation

regulators consensus expression.

Frontiers in Oncology | www.frontiersin.org 6 March 2020 | Volume 10 | Article 208

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Du et al. m6A Methylation Regulators in Glioblastoma

FIGURE 3 | Interaction among m6A RNA methylation regulators and functional annotation of GBM in RM1/2 subgroups. (A) Volcano plot of identified DEGs. The red

dots represent upregulated DEGs, and the green dots represent downregulated DEGs. (B,C) Functional annotation of the upregulated DEGs in the RM2 subgroup of

GO analysis (B) and KEGG pathway analysis (C). (D–G) GSEA revealed that genes with higher expression in the RM2 subgroup were enriched for hallmarks of

malignant tumors.

edges were involved in ITGAM modules, with STAT3, SPI1,
TNFRSF1B, SLC11A1, and FERMT3 being the remarkable
nodes, as they had the most connections with other nodes
in this module (Figure 6B). In the RAP2B module, 8 edges
involving 6 nodes were formed in this network (Figure 6C).
In addition, we predicted the function of the ITGAM module
through GO analysis. It was related to the biological process
of mRNA splicing via spliceosome, mRNA methylation, and
oxidative single-stranded RNA demethylation. For instance,
ITGAM was reported to play a critical role in invasive growth

and angiogenesis in malignant gliomas (43). STAT3 methylation
via STAT3 signaling could also promote tumorigenicity of GBM
stem-like cells (44). The above results clearly demonstrate that
m6A regulators participate in the critical malignant related
biological regulatory network.

To find out whether the 79 OS-related DEGs found in the
TCGA database were meaningful in the additional database,
we further analyzed the expression profiles of 249 GBM cases
from the CGGA database. Importantly, a total of 64 genes were
validated to be significantly related to the poor prognosis, of
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FIGURE 4 | Histogram showing the number of compounds in the top 10 MoA,

sorted by descending number of compounds with a shared MoA.

which 37 genes (bold in Table S3) were of particular interest, as
they have not been previously reported for their prognostic value
in GBM patients (Figure S3).

Prognostic Value of m6A RNA Methylation
Regulators
For the purpose of investigating the prognostic value of m6A
RNA methylation regulators, univariate Cox regression analysis
was performed on the expression profile data. Based on the
information contained in these results, 4 of 13 genes exhibited
a significant correlation with the prognosis. Among these four
selected genes, HNRNPC, ALKBH5, and ZC3H13 were risky
genes, with HR > 1, while FTO was a protective gene, with HR
< 1 (Figure 7A).

Robust likelihood-based survival modeling and LASSO
regression are widely used to screen prognostic genes in the
context of high dimensional data and were therefore applied
in our study. Compared with a single biomarker, integrating
multiple biomarkers into one risk model could present a better
prediction performance of the model. To remove the prediction
errors and maintain the stability of the predictive prognosis,
we specifically selected three genes (P < 0.05 and HR > 1) to
develop the gene signature. Afterward, the above-selected genes
with independent prognostic value, includingNRNPC, ALKBH5,
and ZC3H13, were screened as the candidate genes using LASSO
regression. The regression coefficients based on the minimum
criteria were used to assess the risk score for the GBM patients,
and the coefficients of selected gene signatures were −0.014623,
0.017905, and−0.08661, respectively (Figures 7B,C).

Gene-Signature Showed Strong
Associations With Clinical Features in GBM
To investigate the prognostic value of the risk gene signature in
the TCGA database, GBM patients were dichotomized into low-
and high-risk subgroups, based on themedian risk score.We next
sought to detect the correlation between the two risk subgroups

and clinical features—a heatmap was designed and showed
the expression of the three selected m6A RNA methylation
regulators (Figure 7D). Significant differences were observed in
this heatmap between the high- and low-risk subgroups with
respect to IDH1 status (P < 0.001), age (P < 0.001), molecular
subtypes (P < 0.001), and RM1/2 subgroups (P < 0.001). To
evaluate the predictive accuracy of the risk score model, we
performed the ROC curve and calculated the AUC. The AUC
was 0.701 in the 2-year ROC curve for the prognostic model
(Figure 7E). For molecular phenotypes, such as IDH1 and G-
CIMP status, the risk model also performed relatively well, with
AUC was 0.821 and 0.733, respectively (Figures 7F,G). A similar
trend was observed in subgroup analyses for mesenchymal
and proneural, with AUCs of 0.703 and 0.764, respectively
(Figures 7H,I). Moreover, the predicting power of the risk score
model was significantly increased in RM1/2 subgroup analysis,
with an AUC of 0.887 (Figure 7J). Notably, patients in the high-
risk group exhibited significantly shorter survival time than those
in the low-risk group (P < 0.05) (Figure 7H). Consistent with
these findings, the patients with a high-risk score were also more
sensitive to temozolomide chemotherapy, radiation therapy, and
chemoradiation than low-risk score patients (Figure S4).

We further performed univariate and multivariate Cox
proportional hazard regression analyses for the TCGA dataset
to determine whether the risk signature was an independent
prognostic factor. By univariate Cox analysis, age (HR = 1.033,
P < 0.001) and risk score (HR = 11.899, P < 0.001) were all
correlated with the OS, while GBM subtype and gender were
not (Figure 7L). A similar trend of risk score was also observed
when including these factors in themultivariate Cox proportional
hazard regression (Figure 7M). The results demonstrated that
age and risk score were independent prognostic factors in the
TCGA GBM dataset. According to our results, the independent
prognostic value and excellent prediction accuracy of the gene
signature derived from the 13 m6A RNA methylation regulators
were identified.

Low Expression in Normal Brain Tissues of
METTL3 and METTL14
Based on our results and the evidence in literature, METTL3
was overexpressed specifically in GBM and was significantly
related to the occurrence of GBM (45–47). To comprehensively
understand the function of METTL3, we retrieved the expression
levels of healthy tissue and tumor tissue in different parts from
the GTEx and GEPIA databases (48), respectively. We found
that the expression values of METTL3 in the brain were lower
than other tissues in the organism (Figure 8A). Notably, the
expression level of METTL3 in most tumors was smaller than the
corresponding healthy tissue, except for GBM (Figure 8B). These
results indicated that high expression of METTL3 might act as
a driver of GBM and play a crucial role in GBM. Considering
that METTL3 and METTL14 are both the most common and
abundant mRNA modifications in eukaryotes, we also searched
the expression profiles of METTL14 and found the same trend
(Figure S5). The above results provided evidence for METTL3
and METTL14 as proto-oncogenes of GBM.
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FIGURE 5 | Correlation of expression of individual DEGs of OS in TCGA. Kaplan-Meier survival curves were generated for represented DEGs extracted from the

comparison of groups of high (red line) and low (blue line) gene expression. (A–L) Representative Kaplan–Meier survival curves for selected DEGs. p < 0.05 in

Log-rank test. OS, overall survival in years.

FIGURE 6 | The integral and top-two networks of ITGAM and RAP2B modules. The color of a node in the PPI network reflects the type of interaction genes. (m6A

RNA methylation regulators labeled as blue diamond, OS-related genes labeled as red circle). The size of the node indicates the number of interacting proteins with

the designated protein. (A–C) The integral (A) and top-two PPI networks of ITGAM (B), RAP2B (C) modules.

DISCUSSION

In the current study, we systematically analyzed the expression

of m6A RNA regulators with different clinicopathological

parameters and revealed the potential values. In particular, by

comparing the expression of 13 regulators in a large number
of healthy tissues and primary and recurrent tumor tissues, we
found that they were related to the occurrence and recurrence

of GBM. Furthermore, the expression of m6A RNA methylation
regulators was also associated with the GBM subtype, G-CIMP
status, and IDH status. Besides, GBM samples were classified
into two subgroups, RM1/2, through consensus cluster analysis
based on the expression of the 13 regulators. The RM1/2
subgroup not only affected OS and clinical characteristics, but
also closely related to malignancy-related processes, key signaling
pathways, and GBM hallmarks. Taking advantage of CMap, we
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FIGURE 7 | Gene signature with m6A RNA methylation regulators. (A–C) The process of building the signature containing three m6A RNA methylation regulators. The

hazard ratios (HR) (A), 95% confidence intervals (CI) calculated by univariate Cox regression, and the regression coefficients (C) calculated by multivariate Cox

(Continued)
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FIGURE 7 | regression using LASSO (B) are exhibited. (D) The heatmap shows the expression levels of the three m6A RNA methylation regulators in low- and

high-risk subgroups. The distribution of clinicopathological features was compared between the low- and high-risk groups. ***P < 0.001. (E–J) ROC curves show the

predictive efficiency of the risk signature on the 2-year survival rate (E), IDH status (F), G-CIMP status (G), mesenchymal subtype (H), proneural subtype (I), and RM1/2

subgroups (J). (K) Kaplan–Meier survival curves for patients in the TCGA dataset assigned to high- and low-risk groups based on the risk score. (L,M) Univariate (L)

and multivariate Cox regression analyses (M) of the association between clinicopathological factors (including the risk score) and OS of patients in the TCGA.

FIGURE 8 | Expression of METTL3 in normal and GBM tissues. (A) The expression values of METTL3 of the different tissues in the organism. (B) The expression

values of METTL3 in different tumors and corresponding normal tissues.
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also identified potential compounds targeting RNA methylation
regulators in GBM. In addition, we obtained 79 genes with
poor prognosis based on the RM1/2 subgroup by Kaplan–
Meier analysis. Importantly, 64 genes with poor prognosis were
validated in CGGA, a separate GBM database. Finally, we derived
a prognostic gene signature, which dichotomized the OS of GBM
patients into low- and high-risk subgroups and allowed us to
extend the analysis. This risk gene-signature could be used as an
independent prognostic marker and accurate clinicopathological
parameters predictor.

Glioma was divided into GBM and low-grade glioma (LGG).
GBM, as the most destructive glioma (WHO: IV), possesses
significantly different genomics, treatment methods, clinical
manifestations, characteristics, and prognosis from LGG (WHO:
I–III) (49–52). Prior to this, the value of m6A methylation
regulators in gliomas has been explored (53). Considering
the comprehensive differences between LGG and GBM, we
believed that this analysis was not sufficiently detailed and
specific. Therefore, we specifically analyzed the specific value
of these regulators in GBM. Similarly, we have all identified
different hallmarks and pathways associated with malignancy.
In particular, we further analyzed and obtained regulator-related
specific targeted drugs and genes with poor prognosis, of which
37 genes have not been previously reported at the prognostic
level. Especially, the PPI network between regulators and related
genes was explored. Furthermore, we derived a prediction model
that can predict the specific clinical characteristics and molecular
phenotypes of GBM. Finally, we also provided evidence for the
large transcriptome levels of METTL3 and METTL14 as cancer
driver genes.

Among the m6A RNA methylation regulators, METTL3
or METTL14 is one of the most common and abundant
mRNA modifications in eukaryotes. It has been reported
that METTL3 or METTL14 inhibits the growth and self-
renewal of the GBM stem cells (32). ALKBH5 was reported
to maintain tumorigenicity of GBM stem cells by sustaining
FOXM1 expression and cell proliferation program (54),
suggesting a crucial tumorigenic role. Most recently, it has
been reported that FTO plays a carcinogenic role through the
FTO/m6A/MYC/CEBPA signaling pathway in IDH mutant
cancers, such as glioma and leukemia (19, 55). The differences of
involved genes among different tumor types give us a clue that
altered the expression of key genes, which are sensitive to the
function of m6A methylation regulators, can cause significant
phenotype changes.

In this section, we rounded analyzed the expression of all
m6A RNA methylation regulators in GBM at the occurrence
and recurrence stages. Unlike our study, a previous trial showed
that ALKBH5 was an oncogene to maintain tumorigenicity,
while our study showed a significantly decreased trend in
the GBM group compared with normal. However, unlike the
previous trial, our study included a large number of clinical
samples and was validated in two databases. This difference in
the number of samples may account for the different results.
Interestingly, the upward trend in ALKBH5 was significantly
associated with tumor recurrence when we compared primary
and recurrent tumors. It’s worth mentioning that ALKBH5

belongs to the AlkB family of non-heme Fe(II)/a-ketoglutarate-
dependent dioxygenases, and the activity is iron-dependent (17).
Given our results, we further speculate that iron metabolism is
involved in GBM recurrence (56, 57). However, this hypothesis
needs to be more tested. Nevertheless, a tendency toward a
lower expression of FTO was observed in GBM compared with
normal tissues. Unlike ALKBH5, FTO was found to mediate
the demethylation of m6Am instead of m6A preferentially.
It seems that FTO and ALKBH5 mediate the demethylation
of different methylation targets in GBM, which is worthy of
future research. Based on this difference in demethylation targets
and tendencies, we speculate that ALKBH5 and FTO have
different functions and mechanisms in GBM and are worthy of
further study.

Nearly all IDH-mutant GBMs harbored G-CIMP and patients
carrying G-CIMP (G-CIMP+) have been confirmed to confer
a better clinical outcome than those not carrying (G-CIMP–)
(58). Collectively, we conclude that the expression of m6A RNA
methylation regulators is closely associated with the occurrence,
recurrence, IDH status, G-CIMP status, and molecular subtype
of GBM. Moreover, these findings of the expression of each
individual m6A methylation regulator can contribute to the
development of new cancer therapies, as chemotherapy targeting
m6A methylation is now at the forefront of cancer therapy.

We demonstrated that m6A RNA methylation regulators
were also related to the biological processes, cellular component,
and signaling pathways of GBM malignant progression.
RNA m6A methylation is a nascent field as of yet, the
significance of the above epigenetics marker in human
cancer is just beginning to be appreciated. Although the
m6A modification showed tissue-specific regulation and
increased significantly throughout the brain development
process (3), studies (59, 60) on the role of m6A modification
in either brain lesions or brain cancers have only been reported
sporadically (61, 62). Several biological processes and signaling
pathways have already been identified: tumor stem-like cell
regulation, including maintenance, radio-resistance, and
tumorigenesis; post-transcriptional modification, including
in RNA transcript, RNA processing, RNA processing, RNA
degradation, and RNA translation; FTO/m6A/MYC/CEBPA
signaling pathways (19); JAK1/STAT5/C/EBP β pathways
(63); and the IL-7/STAT5/SOCS pathways (64). This report
provided the potential biological process and pathway
between RNA m6A methylation and GBM-malignant
progression, which represent a significant step toward
developing therapeutic strategies to treat GBM by targeting
m6A modification.

CMap can identify biomarkers for predicting specific drug
reactions, mechanisms of treatment, and ways to overcome them
(65–67). CMap analysis, which is based on a limited number of
treated cell lines, accurately identified a number of compounds
that have been shown to have an effect on m6A of other
tumor types with specificity (33, 68–70). METTL3 has been
reported to promote gastric cancer angiogenesis by secreting
HDGF (71). This result verified the accuracy of our CMap-based
drug prediction from the side. Based on these results, hence, we
speculated that PDGFR tyrosine kinase receptor inhibitor, KIT
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inhibitor, and tubulin inhibitor could all be used as potential
agents that specifically target m6A-related biological functions
and pathways for subsequent research.

METTL3, served as a methyltransferase, has been reported
to be essential for glioma stem-like cell maintenance and radio-
resistance (45). Our findings further confirm that METTL3 was
a potential therapeutic target, and future research is expected to
focus on studies that specifically target METTL3. Since the small-
molecule inhibitors of METTL3 have not yet been invented,
future research should focus on this area (72).

This study identified and validated that 64 genes were
associated with poor outcomes in GBM patients. Moreover, we
were able to construct four PPI modules, all of which were
related to critical GBM biological processes. Highly relevant
nodes in the modules, including STAT3, SLC11A1, and ITGAM,
have been reported to promote tumor proliferation, angiogenesis,
migration, and invasiveness (73–77). Among the 64 genes
validated, 27 (such as ALOX5, CAST, HS6ST1, ITGAM, PTPN6,
SLC11A1, and SLC12A7) have been reported to be involved
in the pathogenesis of GBM or critical in predicting OS. This
suggests that our big data-based analyses using TCGA andCGGA
cohorts harbor predictive value. Although the remaining 37 genes
have not been previously reported to be associated with GBM
prognosis, they can be used as a potential clinical prognostic
indicator for GBM patients, which can facilitate clinicians to
make more accurate diagnosis easily.

In this study, we attempted to introduce some concepts
associated with the theory of the prognosis value of m6A RNA
methylation regulators based on uncovered sets. METTL3 has
been reported as a potential biomarker panel for prognostic
prediction in colorectal carcinoma (78). The prognostic model
of multiple m6A RNA methylation regulators for patients
with GBM has not been developed. The GBM prognostic
gene signature based on three selected m6A RNA methylation
regulators was designed for the first time. As we observed, the
risk score calculated by the correlation coefficient conferred
the ability in prognosis and clinicopathological parameter
prediction. Excitingly, Cox analysis results further confirmed
the independent prognostic value of the risk score. Meanwhile,
GBM patients with a high-risk score showed more sensitivity
to temozolomide chemotherapy, radiation therapy, and
chemoradiation than low-risk-score patients. These findings
may deepen our understanding of m6A methylation regulators
in prognosis level and tolerance to chemoradiotherapy.

To sum up, we attempted to identify the expressions,
potential functions, and prognostic values of m6A RNA
methylation regulators in GBM. Our study provides strategies for
comprehensive analysis of cancer genomics based on consensus
clustering analysis for systematic identification of specific m6A-
related targets and specific targeted drugs based on m6A RNA
methylation regulators. The prognostic gene signature and
genes with poor prognosis might contribute to the personalized
prediction of GBM prognosis and serve as a potential biomarker
reflecting GBM patients’ response to therapies that specifically
target m6A. Finally, further investigation of these genes
could lead to novel insights into the potential association
of m6A methylation regulators with GBM prognosis in a
comprehensive manner.
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