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Abstract: Malignant gliomas consist of glioblastomas, anaplastic astrocytomas, anaplastic 

oligodendrogliomas and anaplastic oligoastrocytomas, and some less common tumors such as 

anaplastic ependymomas and anaplastic gangliogliomas. Malignant gliomas have high mor-

bidity and mortality. Even with optimal treatment, median survival is only 12–15 months for 

glioblastomas and 2–5 years for anaplastic gliomas. However, recent advances in imaging and 

quantitative analysis of image data have led to earlier diagnosis of tumors and tumor response 

to therapy, providing oncologists with a greater time window for therapy management. In 

addition, improved understanding of tumor biology, genetics, and resistance mechanisms has 

enhanced surgical techniques, chemotherapy methods, and radiotherapy administration. After 

proper diagnosis and institution of appropriate therapy, there is now a vital need for quantitative 

methods that can sensitively detect malignant glioma response to therapy at early follow-up 

times, when changes in management of nonresponders can have its greatest effect. Currently, 

response is largely evaluated by measuring magnetic resonance contrast and size change, but 

this approach does not take into account the key biologic steps that precede tumor size reduc-

tion. Molecular imaging is ideally suited to measuring early response by quantifying cellular 

metabolism, proliferation, and apoptosis, activities altered early in treatment. We expect that 

successful integration of quantitative imaging biomarker assessment into the early phase of 

clinical trials could provide a novel approach for testing new therapies, and importantly, for 

facilitating patient management, sparing patients from weeks or months of toxicity and ineffec-

tive treatment. This review will present an overview of epidemiology, molecular pathogenesis 

and current advances in diagnoses, and management of malignant gliomas.

Keywords: glioblastoma multiforme, malignant gliomas, MRI, PET, FLT, early therapy response 

assessment, quantitative molecular imaging

Epidemiology and classification of brain tumors
The estimated number of new cases (adjusted for age) using the world standard 

 population of primary malignant brain and central nervous system cancer in 2008, 

was 3.8 per 100,000 in males and 3.1 per 100,000 in females. The incidence rates were 

higher in more developed countries (males: 5.8 per 100,000; females: 4.4 per 100,000) 

than in less developed countries (males: 3.2 per 100,000; females: 2.8 per 100,000).1 In 

the US, the annual incidence of primary malignant gliomas is approximately five cases 

per 100,000 people.2,3 Every year, about 22,500 new cases of malignant primary brain 

tumor are diagnosed in adults in the US, out of which 70% are malignant gliomas.2,3 
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Glioblastomas account for approximately 60% to 70% of 

malignant gliomas, anaplastic astrocytomas for 10% to 

15%, and anaplastic oligodendrogliomas and anaplastic 

oligoastrocytomas for 10%; less common tumors, such as 

anaplastic ependymomas and anaplastic gangliogliomas, 

account for the rest.2,3

The World Health Organization (WHO) classif ies 

 astrocytomas based on histologic type,2,4 with grading based 

on the most malignant region of the tumors. Tumor grade 

depends upon the degree of nuclear atypia, mitotic activity, 

microvascular proliferation, and necrosis, with increased 

anaplasia corresponding to higher tumor grade. Grades 

include low-grade, or WHO grade I (pilocytic astrocytoma) 

and grade II (diffuse astrocytoma); and high-grade, or WHO 

grade III (anaplastic astrocytoma) and grade IV (glioblastoma 

multiforme, GBM). Grade III and IV tumors are considered 

malignant gliomas. The median age at the time of diagnosis 

is 64 years for glioblastomas and 45 years in the case of 

anaplastic gliomas.5

Apart from primary brain tumors, brain metastases 

from common solid tumors that spread to the brain primar-

ily include those of lung, breast, and melanoma. However, 

a recent increase in the incidence of brain metastases from 

other cancer types, such as renal, prostate, and colorectal 

cancers, has been observed.6,7

Molecular pathology
Molecular pathology of primary  
brain tumors
In the past 2 decades, the application of molecular pathology in 

diagnosis and classification has transformed the management 

of malignant gliomas.8 Molecular biomarkers have been able 

to differentiate oligodendroglial tumors from astrocytomas, 

resolve controversies regarding classification of mixed 

oligoastrocytic tumors, and identify clinically significant 

subgroups of anaplastic astrocytoma and glioblastoma.9,10 

Recent clinical pathologic correlations between outcome 

and molecular biomarkers have also validated predictive 

markers for oligodendrogliomas and identified subgroups of 

glioblastoma susceptible to epidermal growth factor receptor 

(EGFR) signal transduction inhibitors.11–13

The European Organization for Research and Treatment 

of Cancer has identified six different types of anaplastic oli-

godendrogliomas using microarray unsupervised gene expres-

sion analysis of the tumor specimens obtained as part of the 

European Organization for Research and Treatment of Cancer 

trial (EORTC 26951).13 These intrinsic molecular subtypes had 

prognostic significance for progression-free survival (PFS) 

independent of the previously recognized prognostic factors, 

including 1p/19q deletion, isocitrate dehydrogenase gene 

(IDH1) mutation, and O6-methylguanine-DNA-methyltrans-

ferase (MGMT) promoter methylation status. One subgroup, 

with a 1p/19q deletion and IDH1 mutation, especially ben-

efitted from the addition of chemotherapy to external beam 

radiation, demonstrating an overall survival (OS) of 12.8 years 

with adjuvant chemotherapy contrasted with 5.5 years for those 

patients treated with radiation alone.

It is now recognized that patients with oligodendroglial 

tumors with 1p/19q deletions have a consistently better prog-

nosis for survival than those with tumors of equivalent grade 

and similar histologic appearance that lack the deletions.14,15 

In two recently reported prospective randomized trials of 

fractionated external beam radiotherapy (EBRT) with or 

without alkylator-based chemotherapy for newly diagnosed 

anaplastic astrocytoma, the presence of 1p deletions was 

a predictive marker for the cohort of patients in which the 

addition of chemotherapy led to prolonged OS.11

The identification of mutations in isocitrate dehydro-

genase (IDH) isoenzymes 1 and 2 in a high percentage of 

low grade gliomas and in subsets of anaplastic astrocytoma, 

oligodendroglioma, and glioblastoma has further refined 

the delineation of prognosis. IDH1 is a good prognostic 

marker for anaplastic astrocytoma and glioblastoma.9,16 For 

anaplastic astrocytoma, lack of an IDH1 mutation appears to 

identify a subgroup of histologically indistinguishable tumors 

with a prognosis similar to glioblastoma.17 The oncogenic 

mechanism appears to be the production of a metabolite, 

2-hydroxyglutarate (2HG), which inhibits ketoglutarate-

dependent dioxygenases, leading to aberrant histone and 

DNA methylation.16

In clinical trials of alkylator-based chemotherapy 

regimens for glioblastoma, anaplastic astrocytoma, and 

oligodendroglioma,9,18 the MGMT promoter methylation 

status has proven to be a prognostic, though not a specific 

predictive biomarker. Hegi et al demonstrated that promoter 

methylation silencing of the MGMT gene correlates strongly 

with long-term survival in patients receiving chemotherapy.19 

At the same time, Brandes et al showed that for patients 

receiving chemoradiation for newly diagnosed GBM, MGMT 

promoter methylation silencing correlates with increased 

frequency of vascular permeability of vessels in the radia-

tion treatment field.20 This may produce a transient increase 

in the volume of contrast taken up by the lesion, known as 

“pseudoprogression”.20

GBMs that arise de novo appear to be different genetically 

from those that arise from prior low-grade astrocytomas.9 
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IDH and p53 mutations are rare in primary GBM. In contrast, 

primary GBMs are characterized by EGFR amplification 

and mutation, loss of heterozygosity on chromosome 10q, 

and inactivation of the phosphatase and tensin homolog 

(PTEN) gene.21 Secondary GBMs are characterized by tumor 

protein p53 (TP
53

) mutations and platelet-derived growth 

factor receptor activation.21 A poor prognosis subgroup of 

secondary GBM in older adults, in which relapse occurs in 

the first year after treatment, appears to be characterized by 

lack of IDH1 mutations, similar to primary GBM’s molecular 

signature.22

Microarray-based unsupervised genome-wide analysis 

of gene expression in glioblastomas has identified at least 

four subgroups differentiable by molecular profile.23 Phillips 

et al examined 107 grade III and IV astrocytomas, and using 

a set of 35 signature genes, segregated into three subtypes: 

proneural, proliferative, and mesenchymal.24 In this study, the 

proneural subset had a better prognosis than the proliferative 

and mesenchymal subsets, which had worse prognoses.

The investigators of The Cancer Genome Atlas (TCGA) 

pilot project25 proposed a four-subgroup classification based 

on analysis of 202 GBMs. The subtypes include proneural, 

neural, classical, and mesenchymal. In the context of the 

cancer genome atlas, Noushmehr et al profiled promoter 

DNA methylation alterations in 272  glioblastomas (43 

low and intermediate grade gliomas and 57 additional 

primary GBMs).26 They reported a distinct subset of tumors 

with increased DNA methylation at large number of loci, 

indicating the existence of a glioma–CpG island methy-

lator  phenotype (G–CIMP).26 Within the GBM cohort, 

the G–CIMP phenotype correlates with IDH1 mutation, 

younger age, proneural genotype, and a better prognosis.

The EGFR gene is the most frequently amplified gene 

in primary GBM and is seen in 94% of the TCGA classical 

type,25 and in the proliferative and mesenchymal subtypes 

in the Phillips classification.24 A specific in-frame deletion 

of exons 2–7 is present in 20%–30% of GBM overall and 

50%–60% of GBM with EGFR gene amplification.27 The 

protein product of this truncated mRNA is the EGFRvIII 

mutant protein. This protein is the target antigen for immu-

notherapy strategies, including vaccines. Although the 

small molecule EGFR tyrosine kinase inhibitors trials for 

patients with GBM and anaplastic astrocytoma demonstrated 

low response rates and no benefit in PFS, a small subset 

of patients had durable responses.28 A specific genotype 

correlated with response in which EGFRvIII mutation was 

present in the context of intact AKT pathway function, with 

wild-type PTEN.29

BRAF (an oncogene located on chromosome 7) encodes 

a serine threonine kinase involved in cell signaling, and also 

involved in mitogen-activated protein kinases/extracellular 

signal regulated kinases pathway activation, and cell growth is 

most commonly associated with low-grade pediatric gliomas, 

but is commonly seen in high-grade diffuse gliomas as well. The 

most common BRAF abnormalities involve gene duplication 

with fusions leading to a mutant protein with a constitutively 

active kinase domain.9 Mutation in p53 and BRAF appear to be 

mutually exclusive.30 The presence of activating BRAF muta-

tions may identify a therapeutic target in the high-grade gliomas 

in which it is expressed. BRAF inhibitor vemurafenib is US 

Food and Drug Administration (FDA)-approved as treatment 

for melanoma with BRAFV600E mutation.31

Molecular markers are also useful to predict a response 

to chemotherapy in three settings: 1p and 19q loss, MGMT 

methylation, and possibly the EGFR–PI3 kinase pathways in 

response of glioblastomas to specific EGFR inhibitors.

1p and 19q deletions

Allelic loss of chromosomes 1p and 19q is a powerful pre-

dictor of chemotherapeutic response and longer PFS and 

OS following chemotherapy with either temozolomide or 

procarbazine, lomustine, and vincristine (PCV) in patients 

with anaplastic oligodendrogliomas. Those tumors with 1p 

and 19q loss in the setting of polysomy of chromosomes 1 and 

19 have intermediate prognoses. Allelic loss of 1p alone 

is also predictive of response to temozolomide in patients 

with grade II oligodendroglial tumors.32 Thus, testing for 1p 

and 19q status is now widespread and is used to influence 

therapeutic decisions.

MGMT promoter methylation

In the course of tumor development, the MGMT gene may be 

silenced by methylation of its promoter, thereby  preventing 

repair of DNA damage and increasing the potential effec-

tiveness of chemotherapy. Several clinical studies have 

indicated that such promoter methylation is associated with 

an improved survival in patients receiving adjuvant alkylating 

agent chemotherapy.33

eGFR-Pi3 kinase pathways

Two studies evaluated patients with glioblastomas treated 

with the EGFR inhibitors, erlotinib or gefitinib34,35 and found 

that, in contrast to other studies that did not report objective 

responses,36 patients with recurrent glioblastoma responded 

to these two agents. Furthermore, the studies showed asso-

ciations between response and activation of EGFR itself 
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(one report implicating the wild-type receptor34 and the other 

implicating the vIII mutant EGFR35), as well as between 

response and whether the PI3 kinase pathway was function-

ally intact (one report measuring phosphorylated AKT and 

the other measuring PTEN expression). If responses continue 

to be documented with these agents, immunohistochemical 

testing for EGFR and the PI3K pathway may prove useful.

Molecular pathology of brain metastases
The pathophysiology of brain metastasis is complex and 

distinct from primary brain tumors. It is dependent upon 

both oncogenic processes and host organ responses. Some 

of the multiple mechanisms that ultimately determine the 

development of a brain metastasis include, but are not limited 

to, the phenotype of the brain-trophic tumor cells, tumor cell 

survival in the vasculature and extravasation of those cells 

from the bloodstream and into a host organ, and the structure 

and function of the blood–brain barrier (BBB).

Since the brain does not contain lymphatics, circulating 

tumor cells reach the brain parenchyma only via a hemato-

genous route. Invading metastatic cancer cells interact with all 

cell types, including endothelium, pericytes, and astrocytes, to 

breach the BBB and gain access to brain parenchyma.37 Once 

tumor cells enter the brain parenchyma, a number of factors 

are released by both the tumor cells and the underlying brain. 

In co-culture experiments, lung-cancer-derived cells release 

tumor-associated factors, including macrophage migration 

inhibitory factor, interleukin-8, and plasminogen activator 

inhibitor-1, which stimulate astrocytes. In turn, the activated 

astrocytes release interleukin-6, tumor necrosis factor-α, and 

interleukin-1β, which induce tumor cell proliferation.38,39

Receptor biomarkers indicating an enhanced potential for 

the development of central nervous system metastases may be 

identified in the primary tumor cell and thereby define future 

therapeutic targets. For example, overexpression of human 

epidermal growth factor receptor 2 (HER2/neu) is predictive of 

a three-fold increase in metastases to the lungs, liver, and brain 

as compared with HER2/neu-negative breast carcinomas.40–42 In 

lung adenocarcinoma, genetic alterations in homeobox protein 

Hox-B9 and lymphoid enhancer-binding factor 1 lead to hyper-

activity of the Wnt/T Cell Factor (Wnt/TCF) pathway, which has 

been implicated in the growth of cancer stem cells and enhanced 

competence to metastasize to the bone and brain.43,44

Diagnosis
Clinical signs and symptoms
Although the symptoms and signs produced by malignant 

gliomas will vary with the location of the tumor, a unifying 

characteristic of the clinical presentation is relentless 

progression. For tumors that are located in or subjacent to corti-

cal regions with specific functions, the symptoms and signs will 

relate to the functions of the brain regions affected. Patients may 

present with progressive motor or sensory disturbances, lan-

guage dysfunction, visual field abnormalities, or focal seizures. 

Tumors arising in the brain stem may cause rapidly progress-

ing cranial neuropathies as well as motor and sensory deficits. 

Neurologic deficits with less localizing features may include 

headache, confusion, memory loss, and personality changes.

As the size of tumor increases, the edema surrounding 

the tumor increases, resulting in increased intracranial pres-

sure and subsequent headaches. The headaches associated 

with increased intracranial pressure are typically worse 

when the patient is recumbent. When intracranial pressure 

rises to a critical threshold, changes in blood pressure due to 

dysfunctional autonomic reflexes may produce a syndrome 

of position-evoked crescendo headache, visual obscurations, 

lightheadedness, and exacerbation of focal symptoms. This 

cluster of symptoms is associated with intracranial pressure 

waves and is usually associated with papilledema.

Neuroimaging
Neuroimaging plays a crucial role in diagnosing and assess-

ing the location, extent, and biologic activity of the tumor 

before, during, and after treatment. Its role in low-grade 

tumors lies in the monitoring of possible recurrent disease 

or anaplastic transformation into high-grade tumors. In high-

grade tumors, neuroimaging is much needed for differentiat-

ing recurrent tumor from treatment-induced changes such as 

radiation necrosis.

Gliomas are often characterized by diffuse infiltration 

of white matter tracts,45 and stereotactic biopsy studies have 

demonstrated that these regions appear normal on conven-

tional contrast-enhanced computed tomography (CT) and 

magnetic resonance imaging (MRI).46 Since complete resec-

tion of infiltrative high-grade neoplasms is not an option,47 

the development of improved posttreatment imaging to detect 

residual tumor is pivotal in clinical outcome.

MRI serves as the current gold standard in tumor treat-

ment response monitoring; however, prognostic informa-

tion cannot be obtained until weeks after the initiation of 

treatment.48 Determination of recurrence versus treatment 

effects on CT or MRI cannot be accurately evaluated.49–51 

Functional imaging can distinguish cerebral necrosis from 

viable brain tumor, and determine viability grade.52–54

The realization that the MacDonald criteria1 for response 

assessment in clinical trials of treatments for high-grade 
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gliomas failed to account for nonenhancing progression has 

led to the development of a new paradigm, the Response 

Assessment for Neuro-Oncology (RANO) criteria.55 

Differentiating tumor response related to cytotoxicity from 

physiologic modifications of BBB function is a major focus 

of translational imaging research. MRI techniques that 

interrogate the vascular density and permeability of tumor 

vasculature as well as positron emission tomography (PET) 

techniques56 are being evaluated as imaging biomarkers 

of tumor response in treatment trials of anti-angiogenic 

therapy.57

CT

Most of the time, CT is the first imaging modality for 

evaluating symptoms of gliomas. Contrast-enhanced CT 

scans can delineate disruptions in the BBB, but CT sen-

sitivity is much lower than that of MRI. The attenuation 

difference can offer limited information on tumor biology. 

For instance, slightly increased tissue density during tumor 

monitoring may indicate increase in tissue cellularity, or 

tumor growth. On the other hand, decreased attenuation 

in the treated region indicates low tumor cellularity or 

edema. However, the exact delineation of tumor borders 

or the extent of treatment-related changes is not feasible 

using this modality.

MRi

The clinical gold standard for brain tumor imaging, MRI, 

utilizes T1- and T2-weighted sequences, fluid-attenuated 

inversion recovery sequences, and contrast-enhanced 

T1-weighted imaging for tumor monitoring. Glioblastoma is 

classically hypointense to isointense, with a ring-pattern of 

enhancement on gadolinium-enhanced T1-weighted images, 

and is hyperintense on both T2-weighted and FLAIR (fluid-

attenuated inversion recovery) images ( Figure 1).58,59 It can 

be focal, multifocal, or diffuse (gliomatosis cerebri).

MRI provides excellent anatomic detail; however, it 

cannot reliably differentiate between radiation necrosis and 

recurrence posttreatment (Figure 2).60,61 This is of critical 

importance in monitoring tumor response to chemoradiation 

and stereotactic radiosurgery, both of which are associated 

with high prevalence of post-therapy necrosis.

Although BBB destruction with subsequent leakage 

of contrast medium is commonly seen in most high-grade 

tumors, such as glioblastomas, it is not a reliable distinguish-

ing feature of tumor grade.62 In fact, approximately one-

third of nonenhancing gliomas are malignant.63 Moreover, 

glioblastoma may initially present as a nonenhancing lesion, 

especially in older patients. In addition, contrast enhancement 

cannot always be used to assess response since therapy may 

result in BBB disruption without a corresponding change in 

tumor status.64,65

After therapy, physiologic MRI can provide insights 

into changes in tumor environment related to metabo-

lism  (magnetic resonance spectroscopy [MRS]), perfu-

sion (perfusion-weighted imaging), and microstructure 

( diffusion-weighted imaging [DWI]). Indeed, apparent 

 diffusion coefficient (ADC) measurements,66–68 DWI values,69 

and fluid-attenuation inversion recovery images70 correlate 

with the probability of response to therapy.

1H MRS

The magnetic resonance spectrum from 1H MRS contains 

peaks representative of different (hydrogen-containing) 

metabolites. The relative concentration of each metabolite 

is determined from the area under the corresponding peak. 

Whereas single-voxel spectroscopy yields a single spectrum 

Figure 1 Magnetic resonance findings in GBM.
Notes: (A) T1 pre-contrast images exhibit a hypointense lesion in the left frontal 

lobe region (arrow). (B) Axial T1 post-contrast images, after injection of 20 cc of 

intravenous MultiHance®, demonstrate a focus of enhancement in left frontal lobe. 

(C) Axial T2 FLAiR images show increase in FLAiR signal in the left frontal lobe, 

which demonstrates enhancement. (D) T2 FSe images also demonstrate increase in 

signal in the region of the left frontal lobe.

Abbreviations: FLAiR, fluid-attenuated inversion recovery; FSE, fast spin-echo; 
GBM, glioblastoma multiforme.
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from a defined tissue area, two- and three-dimensional 

chemical shift imaging depict one or more tissue slices 

with several voxels in each slice to better account for tissue 

inhomogeneities.

In the case of tumor monitoring, tumor metabolite data 

are compared to those of the contralateral healthy side. The 

most commonly examined metabolites include lactate as a 

product of anaerobic glycolysis,71 N-acetylaspartate as a sign 

of neuronal viability and density,72,73 choline as an indicator 

of high membrane turnover and thus cell proliferation,74,75 

and creatine as a signature of cell energy expenditure used 

for an internal reference value.76 Increasing choline/creatine 

ratios and lactate concentrations,75 and decreasing N-acety-

laspartate77 correlate with tumor progression, and can also 

be seen in tumor recurrence (Figure 3). Whereas elevated 

creatine values (normalized to normal brain) correlate 

with a shorter time-to-progression in WHO grade II and III 

astrocytomas,78,79 no correlation was identified between tumor 

grading and choline/creatine ratio.80

A study by Imani et al compared the accuracy of high-

field proton MRS (1H MRS) and 18F 2-fluorodeoxyglucose 

PET (18F-FDG PET) for identification of viable tumor recur-

rence in 12 grade II and III glioma patients and showed that 
1H MRS imaging was more accurate in low-grade glioma 

and 18F-FDG PET provided better accuracy in high-grade 

gliomas.80 The study also suggested that the combination 

of 1H MRS data and 18F-FDG PET imaging can enhance 

detection of glioma progression. While the sensitivity of 
18F-FDG PET in detecting glioma progression was very 

high (100%), its specificity in differentiating post-therapy 

Figure 2 Radiation necrosis versus viable tumor on MRi.

Notes: Sixty-nine-year-old male with glioblastoma multiforme, status post-chemotherapy presented with dizziness. Contrast MRi and 18F-FDG PeT were performed to 

evaluate for progression. Post-contrast T1 MR (A) is suggestive of rim enhancement of tumor (arrow). 18F-FDG PeT (B) and PeT-MR fusion (C) images show an area of 

relatively decreased activity corresponding to the area of rim enhancement. PET findings were diagnostic for nonviable tissue. In this case, MR was unable to differentiate 
between radiation changes and viable tumor. 

Abbreviations: FDG, 2-fluorodeoxyglucose; MR, magnetic resonance; MRI, magnetic resonance imaging; PET, positron emission tomography.
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inflammation from true tumor progression was low (71%), 

leading to a high false positive rate (29%) in post-radiation 

therapy patients.

Studies have looked into the significance of IDH muta-

tional status in the diagnosis and classification of gliomas 

and the identification of an oncometabolite, 2HG, which 

accumulates in IDH mutant tumors.9,16 Recent investigations 

using ultrahigh field strength MRI suggest that the presence 

of IDH mutations in a tumor can be noninvasively detected 

by spectroscopic measurement of 2HG.81 Recently, investi-

gators in the US and Europe have demonstrated that MRS 

can differentiate 2HG from neighboring metabolites, such 

as gamma amino butyric acid, glutamine, and glutamate. 

Kalinina et al82 analyzed brain tumor specimens to show 

the feasibility of using MRS to quantitate 2HG for the 

classification of IDH mutant tumors. Subsequently, Pope 

et al83 demonstrated detection of 2HG by MRS in glioma 

patients prior to resection, with analysis of IDH1 status by 

DNA sequencing, and measurement of concentrations of 

2HG and other metabolites by liquid chromatography–mass 

spectroscopy. In tumors with IDH1 mutations, 2HG levels, 

as measured in vivo using water suppressed proton (1H) 

MRS, correlate with measured amounts in the resected tumor 

specimens. Tumors with IDH1 mutations have elevated 

choline and decreased glutathione levels. Elkhaled et al81 

also demonstrated that levels of 2HG correlate with levels 

of choline, lactate, and glutathione, as well as with histo-

pathologic grade. While it appears that MRS can provide 

a noninvasive measure of 2HG in human gliomas, further 

studies are needed to validate the utility of 2HG quantita-

tion and the relevance of other alterations in metabolites as 

prognostic biomarkers.

Dwi-MRi

DWI relies on the microscopic motion of water molecules 

within tissue. The process is influenced by temperature and 

tissue architecture84 and is commonly quantified by the 

ADC. Tumor infiltration alters tissue architecture and thus 

water  diffusion. ADC decreases with an increase in viscos-

ity, cellular density, and reduction of extracellular space. 

Low values in ADC maps in solid gliomas are associated 

with higher-grade tumors.85 Complicating the interpretation 

is coexistent posttreatment edema which may alter ADC 

values. The recently introduced higher-order diffusion 

technique, diffusion kurtosis imaging,86 is being studied 

to characterize microstructural changes, and initial find-

ings appear  promising in the differential diagnosis of brain 

tumors.87

Perfusion-weighted MRi

Perfusion-weighted imaging involves the quantification of 

cerebral blood volume (CBV) after contrast administra-

tion with a dynamic MRI sequence sensitive to T2* effects. 

A graph of contrast enhancement is generated to calculate the 

area under the signal curve as an estimate of relative CBV 

(rCBV). High-grade gliomas, in particular, are associated 

with disruption of the BBB, which causes more contrast 

extravasation and consequent adjustments to rCBV calcula-

tions with sophisticated mathematical models.88 Preloading 

of contrast medium has been applied to minimize the effects 

of leakage.89,90 Increased angiogenesis in high-grade gliomas 

is also correlated with higher CBV relative to contralateral 

normal white matter rCBV and tumor aggressiveness.91–93 

Quantitative analysis found a threshold of rCBV =1.75 for 

determining a high-grade glioma91 and a higher rCBV ratio 

of about 2.14 for  oligodendrogliomas.94 It has also been 

shown that an increase in rCBV occurs up to 12 months prior 

to malignant transformation as assessed by new contrast 

enhancement.95

Figure 3 Magnetic resonance spectroscopy.

Notes: Anaplastic astrocytoma, wHO grade iii. Multiple-voxel spectra coregistered 

with post-contrast T1-weighted MRi (A). Map of Cho/Cr demonstrates a focus of signal 

intensity in the right frontal lobe (B). MRSi signal intensity is presented on a rainbow 

color scale where blue-green is normal background and bright red corresponds to 

greatly elevated signal intensity. Spectral analysis of the voxel demonstrating maximal 

Cho/Cr ratio (C). T1-weighted MRi (post-contrast) demonstrating enhancing lesion in 

the right frontal lobe (D). 18F-FDG PeT scan shows a focus of increased tracer activity 

greater than white matter in the right frontal lobe (E). 18F-FDG PeT image coregistered 

with post-contrast T1-weighted MRi (F). Reproduced with permission from John wiley 

and Sons. imani F, Boada Fe, Lieberman FS, Davis DK, Deeb eL, Mountz JM. Comparison 

of proton magnetic resonance spectroscopy with fluorine-18 2-fluoro-deoxyglucose 
positron emission tomography for assessment of brain tumor progression. J Neuroimaging. 

2012;22(2):184–190.80 Copyright © 2010 by the American Society of Neuroimaging.

Abbreviations: Cho/Cr, choline/creatine; MRi, magnetic resonance imaging; MRS, 

magnetic resonance spectroscopy; NAA, N-acetylaspartate; wHO, world Health 

Organization; FDG, 2-fluorodeoxyglucose; PET, positron emission tomography.
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PeT

imaging glucose metabolism – 18F-FDG
18F-FDG PET has allowed monitoring of therapeutic response 

in brain tumors with a greater specificity than CT or MRI.  
18F-FDG, a glucose analog, is taken up by high-glucose-

using cells, including normal brain and cancer cells. FDG 

is actively transported across the BBB into the cell and the 
18F-FDG-6-phosphate formed when 18F-FDG enters the cell 

and prevents its further metabolism. As a result, the distri-

bution of 18F-FDG is a good reflection of the distribution of 

glucose uptake and utilization by cells in the body.

Since most cancer cells, including gliomas, demonstrate 

a high rate of glycolysis,96 18F-FDG helps in differentiation 

between tumor and normal brain tissue. It should be noted, 

however, that the correlation between 18F-FDG uptake and 

glucose metabolism in tumors may differ from that in normal 

tissue.97 In untreated tumor, the degree of 18F-FDG uptake has 

been correlated with tumor grade: high-grade tumors demon-

strate increased tracer uptake, and high uptake in a previously 

categorized low-grade tumor confirms anaplastic transfor-

mation of the tumor.98,99  Quantitatively, ratios of 18F-FDG 

uptake in tumors to that of white matter (.1.5) or gray matter 

(.0.6) were able to distinguish low-grade (grades I and II) 

from high-grade tumors (grades III and IV).100 Based on a 

preliminary finding, delayed imaging at 3–8 hours after injec-

tion can further distinguish tumor and normal gray matter due 

to the faster tracer excretion in normal brain than in tumor.101 

However, after therapy the degree of tracer uptake does not 

necessarily correlate with tumor grade in that high-grade 

tumors may have uptake similar to or slightly above that of 

white matter.102

18F-FDG PET also plays a role in differentiating 

between recurrent or residual tumor and radiation necrosis 

(Figures 4 and 5). However, due to the 18F-FDG uptake  

in normal brain, the sensitivity of detecting recurrent or 

residual tumor is low.103,104 The specificity is also low in the 

initial few weeks post-therapy due to radiation necrosis. 

A study showed a sensitivity of 81%–86% and a specificity 

of 40%–94% for distinguishing between radiation necrosis 

and tumor.105 It is thus recommended that 18F-FDG PET 

should not be performed before 6 weeks after the completion 

of radiation treatment.

Recently, new issues have emerged regarding the 

 evaluation of disease response, and also with the identifi-

cation of patterns such as pseudoprogression, frequently 

indistinguishable from real disease progression,106 and 

pseudoresponse. The Macdonald criteria,107 widely used 

clinically as a guideline for evaluating therapeutic response 

in high-grade gliomas, uses contrast-enhanced CT and MRI, 

and defines progression as greater than a 25% increase in size 

of enhancing tumor. Enhancement of brain tumors, however, 

primarily reflects a disturbed BBB.

By def inition, pseudoprogression of gliomas is a 

treatment-related reaction of the tumor with an increase 

in enhancement and/or edema on MRI, suggestive of 

tumor progression, but without increased tumor activity 

(Figure 6). Typically, the absence of true tumor progres-

sion is shown by a stabilization or decrease in size of the 

lesion during further follow-up and without new treatment. 

 Pseudoprogression occurs frequently after combined 

 chemo-irradiation with temozolomide, the current standard 

of care for glioblastomas.20,65

Figure 4 Tumor recurrence versus radiation induced changes: images of a 77-year-

old male who was originally diagnosed with glioblastoma multiforme, treated with 

external beam radiation and adjuvant chemotherapy with temozolomide.

Notes: Ten-month follow-up MR T1 post-contrast images (A) demonstrate a 

distinct area of enhancement (arrow) in the left temporoparietal lobe region of 

prior tumor. T2-weighted MR images (B) demonstrate hyperintense signal in the 

left parietal lobe extending to the left temporal lobe. This pathologic contrast 

enhancement is suggestive of an infiltrative mass. FDG PET only (C) and PeT-CT 

fusion images (D) demonstrate a focus of increased FDG activity corresponding to an 

enhanced area of uptake on post-contrast T1 images. These findings are consistent 
with tumor recurrence. There is also decreased tracer uptake surrounding these 

areas consistent with vasogenic edema.

Abbreviations: CT, computed tomography; FDG, 2-fluorodeoxyglucose; 
MR, magnetic resonance; PeT, positron emission tomography.
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In an effort to identify patients likely to exhibit pseudo-

progression, some studies have attempted to correlate MGMT 

promoter methylation status with pseudoprogression.20 

 Studies have demonstrated that MGMT methylation status is 

an important biomarker for assessing primary brain tumors, 

as MGMT status has been shown to correlate with both 

therapy response and OS in GBM when therapy includes 

alkylating agents.19,108 However, similar studies of MGMT 

promoter methylation in anaplastic oligodendrogliomas were 

unable to find a correlation between MGMT methylation 

status and either response rate, time-to-progression, or OS, 

suggesting that MGMT promoter methylation patterns may 

be dependent on cell type.109

Another phenomenon, pseudoresponse, is the decrease 

in contrast-enhancement and/or edema of brain tumors on 

MRI without a true antitumor effect. It occurs after treatment 

with agents that induce a rapid normalization of abnormally 

permeable blood vessels or regional cerebral blood flow.110 

Recent trials on high-grade gliomas with agents that modify 

the signaling pathways of vascular endothelial growth factor 

(VEGF), formerly also known as the vascular permeability 

factor111,112 (eg, bevacizumab, cediranib), have shown a rapid 

decrease in contrast enhancement with high response rate 

and 6-month PFS (PFS-6), but with rather modest effects 

on OS.111–113

These two opposing phenomena emphasize that 

enhancement by itself is not a measure of tumor activity, 

but only reflects a disturbed BBB. A recent case report by 

our group emphasizes the value of 18F-FDG PET when 

Figure 5 18F-FDG PeT for tumor recurrence: 71-year-old male patient with 

history of glioblastoma multiforme, status post-resection presents for evaluation 

of recurrence.

Notes: Contrast-enhanced MR T1 images (A) demonstrate a large cavity in the 

left posterotemporal-parietal junction with an irregular rim of enhancement. 

T2-weighted MR images (B) demonstrate hyperintensity in the posterotemporal 

and parietal lobes. These findings are suspicious for tumor recurrence around the 
periphery of previous location of mass in the left posterior temporoparietal region. 

(C) 18F-FDG PeT only and (D) PeT-CT fusion images demonstrate a relatively large 

area of absent 18F-FDG uptake corresponding to the cavity noted on MRi, with 

no area of abnormally increased 18F-FDG to suggest the presence of residual or 

recurrent high-grade viable tumor.

Abbreviations: CT, computed tomography; FDG, 2-fluorodeoxyglucose; MR, magnetic 
resonance; MRi, magnetic resonance imaging; PeT, positron emission tomography.

Figure 6 18F-FDG PeT diagnosis of pseudoprogression.

Notes: Patient with a history of glioblastoma, status post-resection, now after treatment with total dose of 60 Gy in 2-Gy fractions presents for a follow-up, 1 month after 

radiation therapy. MRi (A) demonstrates enhancement posterior to the prior resection cavity in the left frontal lobe (arrowhead). However, the patient showed clinical 

improvement, and therefore an 18F-FDG PeT scan was done to assess for tumor progression. On PeT (B), no abnormal areas of increased 18F-FDG uptake in the region of 

MRI contrast enhancement were identified (C), thus additional therapy was deemed not indicated; the patient was monitored on follow-up contrast-enhanced MRi scans, 

which were negative. Thus, PeT scan was helpful in differentiating pseudoprogression from true progression. Adapted with permission from Lippincott williams and wilkins/

wolters Kluwer Health: Oborski MJ, Laymon CM, Lieberman FS, Mountz JM. Distinguishing pseudoprogression from progression in high-grade gliomas: a brief review of 

current clinical practice and demonstration of the potential value of 18F-FDG PeT. Clin Nucl Med. 2013;38(5):381–384.56 Copyright © 2013. Promotional and commercial 

use of the material in print, digital or mobile device format is prohibited without the permission from the publisher Lippincott williams and wilkins. Please contact 

journalpermissions@lww.com for further information.

Abbreviations: FDG, 2-fluorodeoxyglucose; MRI, magnetic resonance imaging; PET, positron emission tomography.
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pseudoprogression is strongly suspected by the referring phy-

sician.56 Currently, 18F-FDG PET is not a clinically standard 

method for evaluating therapeutic response in high-grade 

gliomas, as it is only used for initial staging and to confirm 

suspected recurrence observed on gadolinium MRI (Gd-

MRI). However, a central advantage of 18F-FDG PET is that it 

can be used to determine the metabolic state of tumor cells, in 

contrast to Gd-MRI, which is limited to evaluating changes in 

size of contrast enhancement. This is an important distinction 

in comparing 18F-FDG PET and Gd-MRI results, as changes in 

contrast enhancement are generally a conglomeration of many 

effects, such as local vascularity, changes in both normal and 

tumor cell density, necrosis, apoptosis, and BBB breakdown. 

All of these morphological changes are presumably preceded 

by changes in tumor metabolism, suggesting that, in many 

cases, 18F-FDG PET may allow for comparatively faster dis-

crimination of pseudoprogression from true progression and 

pseudoresponse from true response.

Recent efforts have focused on the coregistration of PET 

and MRI images, which has increased sensitivity over using 

either modality alone.114,115 The simultaneous PET–MRI scan, 

which offers better MRI-based motion correction of PET 

data, is also being studied in more centers.116,117

Amino acid PeT tracers

Amino acid and amino acid analog PET tracers are better suited 

than 18F-FDG for quantitative monitoring of tumor response due 

to higher tumor-to-normal-tissue contrast.118–122 The use of amino 

acids for tumor imaging is based on the observation that amino 

acid transport is upregulated in malignant transformation.123,124 

Response after chemotherapy can be detected by amino acid 

PET early in the course of treatment,125–127 suggesting that deac-

tivation of amino acid transport is an early sign of response to 

chemotherapy. Amino acids are transported across the cell via 

a carrier-mediated mechanism.128 For example, transport of the 
18F amino acid analog 3-O-methyl-6-18F-fluoro-L-DOPA via 

sodium- independent, high-capacity amino acid transport sys-

tems has been demonstrated in tumor cell lines.129 In gliomas, 

increased amino acid uptake is mediated by type L amino acid 

carriers, which are upregulated in tumor vasculature.124,130 This 

is in part attributed to the increased metabolic demand of tumor 

cells. Several amino acid tracers are available, though they 

are not FDA-approved in the US; eg, O-(2-18F-fluoroethyl)-L-

tyrosine (FET), 3,4-dihydroxy-6-18F-fluoro-L-phenylalanine, 

and of 11C methionine (MET).131,132

MET: The best-studied PET amino acid isotope has been 

l-[methyl-11C] methionine (11C-MET),133 which is able to 

differentiate tumor recurrence from radiation necrosis.134 

However, due to the relatively short 11C half-life of 20 

minutes, it requires a nearby cyclotron. The extent of tracer 

uptake is greater than the degree of contrast enhancement 

indicative of better delineation of tumor margins.135 In low-

grade gliomas, the uptake is increased in the absence of 

BBB breakdown, which is a significant advantage over CT, 

conventional MRI, and 18F-FDG PET.136,137 The tracer uptake 

has been shown to correlate with prognosis and survival in 

low-grade gliomas.138,139 In high-grade gliomas, 11C-MET 

uptake is greater than in low-grade tumors,140–142 establishing 

its potential for use in monitoring anaplastic transformation. 

In fact, recent findings show that increased 11C-MET uptake 

during tumor growth parallels an upregulation of angiogenic 

markers such as VEGF.143 Moreover, the addition of 11C-MET 

PET changed patient management in half the cases.144

18F-FET (fluoro-3′-deoxy-3′-l-fluorothymidine) is another 

PET tracer studied for its potential role in the differen-

tiation of radiation necrosis and residual tumor. Indeed, the 

absence of 18F-FET uptake in a case of radiation necrosis 

was shown,131 but further systematic studies are necessary to 

confirm this finding. In contrast to 18F-FDG, 18F-FET uptake 

was absent from macrophages, a common inflammatory 

mediator.145 In another study, the ratio of 18F-FET uptake in 

radiation necrosis to that in normal cortex was much lower 

than the corresponding ratios for 18F-FDG and 18F choline, 

supportive of its potential for differentiating radiation necro-

sis from tumor recurrence.146

In the last decade, studies on combined 18F-FET and 

MRI have shown improved identification of tumor tissue 

as compared with either modality alone.147,148 The specific-

ity of distinguishing gliomas from normal tissue could be 

increased from 68% with the use of MRI alone to 97% with 

the use of MRI in conjunction with 18F-FET PET and MRI 

spectroscopy.149

Nucleic acid analogs – 18F-FLT

The pyrimidine analog, 18F-FLT, is a PET radiotracer spe-

cifically used for noninvasive in vivo evaluation of the cell 

proliferation rate. 18F-FLT reflects the activity of thymidine 

kinase-1 during phase S of DNA synthesis.150 18F-FLT, intro-

duced by Shields et al for PET imaging of tumor proliferation 

in animals and humans,151 has been used in both preclinical 

and clinical studies.152,153 Transport of 18F-FLT is medi-

ated by both passive diffusion and Na+-dependent carriers. 

The tracer is subsequently phosphorylated by thymidine 

kinase 1 (TK
1
) into 18F-FLT-monophosphate, where TK

1
 is a 
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principal enzyme in the salvage pathway of DNA synthesis. 

Whereas the TK
1
 activity is virtually absent in quiescent cells, 

its activity reaches the maximum in the late G
1
 and S phases 

of the cell cycle in proliferating cells.154 The phosphorylation 

of the tracer by TK
1,
 therefore, makes 18F-FLT a good marker 

for tumor proliferation.

Recent findings suggest that 18F-FLT is a promising 

biomarker for differentiating between radiation necrosis and 

tumor recurrence (Figure 7).155,156 A study by Hatakeyama 

et al155 showed its superiority over 11C-MET in tumor grading. 

Chen et al demonstrated 18F-FLT PET as a promising imaging 

biomarker that seems to be predictive of OS in bevacizumab 

and irinotecan treatment of recurrent gliomas in which both 

early and later 18F-FLT PET responses were more signifi-

cant predictors of OS compared with the MRI responses.157 

In addition, a recent prospective study by Schwarzenberg 

et al158 showed that 18F-FLT uptake was highly predictive of 

PFS and OS in patients with recurrent gliomas on bevaci-

zumab therapy (Avastin®; Genentec, South San Francisco, 

CA, USA; a recombinant humanized monoclonal antibody 

targeting VEGF, a protein released by tumor cells to recruit 

novel blood vessels to support tumor growth),159,160 and that 
18F-FLT PET seems to be more predictive than MRI for early 

treatment response.

Hypoxia imaging – 18F-fluoromisonidazole
18F-Fluoromisonidazole is a nitroimidazole derivative PET 

agent used to image hypoxia,161 a physiologic marker for tumor 

progression and resistance to radiotherapy (RT).162 Its prefer-

ential uptake in high-grade rather than low-grade gliomas,163 

a significant relationship with upregulation of angiogenic 

markers such as VEGF receptor 1,164 and correlation to pro-

gression and survival after RT,165 suggest its potential role in 

monitoring response to therapy targeting hypoxic tissue.

Biopsy
A tissue diagnosis can be obtained at the time of surgical 

resection or through stereotactic biopsy. Biopsy alone is used 

in situations where the lesion is not amenable to resection, 

or when a meaningful amount of tumor tissue cannot be 

resected, or the patient’s overall clinical condition will not 

permit invasive surgery.

Stereotactic image-guided brain biopsy is an accurate and 

safe diagnostic procedure in patients with focal lesions.166,167 

The combined use of computerized imaging and stereotactic 

framing devices allows neurosurgeons to perform deep brain 

biopsies with continuous and accurate intraoperative tumor 

localization. Frameless stereotaxy establishes a computerized 

link between the preoperative three-dimensional tumor vol-

ume and the surface landmarks of the patient. This link per-

mits the neurosurgeon to be aware of the three-dimensional 

position of surgical instruments within the intracranial space 

during the biopsy based upon the preoperative imaging, with 

an accuracy of 1 mm within the intracranial space.

Treatment
After decades of minimal incremental advances in out-

comes for multimodality treatment of malignant gliomas, 

the last decade has seen a series of transformative clinical 

trials establish new standards of care. At the same time, the 

A
Baseline Baseline PET Early therapy PET

SUV

2.5

0

B C

Figure 7 18F-FLT PeT.

Notes: Sixty-five-year-old female who initially presented with glioblastoma multiforme, now presents after completion of 6 weeks of temozolomide chemotherapy and a total 

of 60 Gy radiotherapy to the tumor. T1 post-contrast enhanced images (A) demonstrate slight progression as compared to prior study. However, FLT uptake post-therapy 

(C) was significantly decreased as compared to baseline scan (B). This finding was suggestive of a response to therapy.
Abbreviations: FLT, fluoro-3′-deoxy-3′-l-fluorothymidine; PET, positron emission tomography; SUV, standardized uptake value.
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limitations of these transformative strategies have raised new 

questions for therapeutic clinical trials. Addressing these 

questions requires innovative neuroimaging strategies to bet-

ter assess treatment response. The application of molecular 

neuropathology, quantitative imaging of tumor response, 

and systematic evaluation of molecularly targeted therapies, 

as well as cytotoxic chemotherapy are expected to improve 

outcomes even further.

Surgery
Surgical resection has been a critical component of the multi-

modality management of malignant gliomas since the advent 

of modern neurosurgery and the original case series by Cush-

ing and Dandy.168 The role of neurosurgery has expanded in 

recent years to include techniques for intratumoral delivery 

of drugs, monoclonal antibodies, viral gene vectors, and 

immunotherapeutics. Resection or image-guided techniques 

for accessing the tumor microenvironment are increasingly 

critical components of therapeutic clinical trials as they help 

to show drug delivery to the tumor site and to verify that the 

anticipated physiologic effects relevant to the mode of action 

of the drug have occurred.169,170 In the era of molecularly-

targeted therapies and personalized therapeutics, determina-

tion of the pattern of genetic and epigenetic changes in tumor 

tissue is critical to understanding the mechanisms of tumor 

response and resistance.171

For GBM patients, there is compelling, though not level-

one evidence, that maximal resection of newly diagnosed 

tumor improves survival.172–174 For anaplastic astrocytoma 

and anaplastic oligodendrogliomas, the survival benefit of 

aggressive surgical resection is less clearly documented, 

but expert consensus supports similar resection goals as for 

GBM patients.175 Maximal surgical resection provides the 

advantages of rapid cytoreduction, relief of symptoms related 

to mass effect, allows for institution of fractionated radiation 

therapy and chemotherapy with reduced target volumes, and 

provides tissue for diagnosis.168

Image-guided resection and the incorporation of functional 

MRI information as well as intraoperative mapping has allowed 

for resection of tumors in close proximity to eloquent cortical 

structures and expanded the indications for resection.176–181 

Innovations in MRI design have allowed for intraoperative 

MRI, in which the neurosurgeon can assess completeness of 

resection prior to closure of the craniotomy.

Minimally invasive neurosurgical techniques, exemplified 

by endoscopic resection techniques182 are being applied to 

resection of malignant gliomas, facilitating more complete 

resection of deeply located tumors, and intraventricular 

or periventricular tumors.183 Neurosurgical techniques for 

intratumoral drug delivery are also being investigated. 

 Stereotactic MRI or CT-guided techniques allow for biopsy 

and intratumoral delivery of therapeutic agents, though 

limited capacity for diffusion limits this technique in most 

settings. Microdialysis catheters placed at the time of tumor 

resection allow direct measurement of drug pharmacodynam-

ics in clinical trials of systemically administered agents.

RT
Shortly after the initial attempts to control malignant 

gliomas with aggressive surgical resection, neurosurgeons 

and oncologists turned to EBRT as the second component 

of multimodality therapy. Seminal clinical trials by the early 

brain tumor clinical trial collaborative groups demonstrated 

that EBRT prolongs survival as compared with surgery 

alone, for GBM, anaplastic astrocytoma, and anaplastic 

oligodendrogliomas.184–186 Collaborative group trials estab-

lished optimal dose and fractionation schema for the different 

histologies and grades of malignant tumors.

Involved field radiation therapy, which involved delivery 

of RT only to involved regions of the brain, has become the 

standard approach for adjuvant RT. The rationale for limiting 

the RT field is based upon the observation that, following 

whole brain radiation therapy, recurrent malignant gliomas 

develop within 2 cm of the original tumor site in 80%–90% 

of cases, while fewer than 10% are multifocal.187–189 To 

encompass infiltrating tumor cells, the RT dose of typically 60 

Gray is usually delivered to the tumor plus a margin of radio-

graphically apparently normal tissue. If the tumor is defined 

based upon contrast enhancement, a margin of 2.0 to 3.0 cm 

is often used, while if the RT field is defined by T2-weighted 

MRI abnormality, a 1.0 to 2.0 cm margin is used.

Over the past 3 decades, innovations in computer-based 

three-dimensional treatment planning have led to an increase 

in conformal radiation therapy. In academic centers of excel-

lence, as well as in the community, these techniques have 

provided a new approach to treat malignant gliomas using an 

increased dose with less morbidity.  Current three-dimensional 

conformal radiation therapy utilizes CT-based treatment plan-

ning with dosimetric software to create composite treatment 

plans. The fusion of planning CT with MRI is extremely help-

ful in assisting with target definition.190,191 The incorporation 

of PET or MRS data is still largely investigational and most 

commonly used to define boost volumes rather than primary 

target volumes. Photons of 6 to 8 MV are most commonly 

used with three to four angled radiation fields. Radiation 

oncologists work with medical physicists and dosimetrists 

www.dovepress.com
www.dovepress.com
www.dovepress.com


Cancer Management and Research 2014:6 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

161

Current perspectives in malignant glioma diagnosis and management

to design optimal treatment plans. Optimization requires 

the consideration of beam energy, field size and shape, 

beam modifiers, irradiated tissue density and heterogeneity, 

and radiation tolerance of surrounding normal tissues. No 

benefit in PFS or OS has been demonstrated, although these 

techniques help avoid excess RT to normal brain.192,193

In the past several years, intensity-modulated radiation 

therapy (IMRT), at least for academic radiation oncology 

centers, has been the technique of choice due to the elegance 

and precision of the dosimetry, especially if the tumor is in 

close proximity to radiosensitive structures such as the optic 

nerve. The IMRT technique uses advanced technology to 

manipulate beams of radiation to conform to the shape of a 

tumor. It uses nonuniform small radiation beams of varying 

intensities to deliver a treatment plan that maximizes the 

homogenous delivery of radiation to the intended treatment 

volume, while minimizing irradiation to normal tissue outside 

the target. The radiation intensity of each beam is controlled, 

and the beam shape changes throughout each treatment. 

The goal of IMRT is to bend the radiation dose to avoid or 

reduce exposure of healthy tissue and limit the side effects 

of treatment. The application of IMRT in the treatment of 

malignant gliomas has become increasingly prevalent as it 

may decrease radiation-related adverse effects.194 IMRT can 

also be used to escalate doses to the tumor, but there are 

no proven benefits to delivering doses beyond 60 Gray.195 

The most appropriate application of IMRT in the brain will 

likely be when the radiation target abuts radiation-sensitive 

structures such as the eyes, optic nerves, optic chiasm, or 

brainstem. The disadvantages of IMRT include increased 

radiation scattering to surrounding non-target tissues and the 

complexity of radiation planning, which requires adaptation 

of the hardware of linear accelerators, skilled physicist sup-

port, and increased delivery time for treatment.

Despite decades of trials investigating permutations of 

total dose and fractionation schemes, the typical one per day 

treatment with external beam, 5 days per week, has remained 

the standard of care. With present technologies and strate-

gies for radioprotection of normal structures, improvements 

in survival are unlikely to result from modifications in total 

dose or fraction size.

Proton beam RT is being investigated in the treatment 

of low-grade gliomas, medulloblastomas and ependymo-

mas, and in malignant gliomas. At present, there is no 

level-one evidence that proton beam therapy improves 

survival in either the newly diagnosed or recurrent setting 

for GBM or anaplastic astrocytoma and oligodendroglioma. 

As with IMRT, proton techniques may have a specialized 

role in treatment of targets close to critical radiosensitive 

structures.

Stereotactic radiosurgery has been used to boost fraction-

ated RT for the treatment of newly diagnosed GBM following 

either biopsy or resection.196–198 Stereotactic radiosurgery 

uses three-dimensional planning techniques to precisely 

deliver narrowly collimated beams of ionizing radiation in 

a single high-dose fraction to small (,4 cm) intracranial 

targets. When this approach is divided into several factions 

it is called stereotactic RT.

In some centers, Gamma Knife radiosurgery is used, 

in which a hemispherical compartment with an array of 

cobalt-60 sources is the source of collimated beams. The 

Gamma Knife uses a fixed frame to stabilize the head relative 

to the radiation sources.

Frameless linear-accelerator-based stereotactic radiosur-

gery employs a linear accelerator that moves in multiple arcs 

around the target volume. The linear accelerator techniques 

do not employ a fixed frame, and the relationship of the target 

volume to the radiation source is determined by registration 

of fiducials.

Radiosurgery has transformed the treatment of brain 

metastasis and benign tumors such as acoustic schwannoma, 

but has yet to claim a clear role in the treatment of malignant 

gliomas.199–202 In the newly diagnosed setting, radiosurgery 

in conjunction with fractionated EBRT has not improved 

survival outcomes. However, in the recurrent setting, 

radiosurgery is an FDA-approved treatment modality, but 

progression at the margin of the target is a ubiquitous pattern 

of failure. More recently, radiosurgery has been combined 

with bevacizumab therapy. Initial institutional Phase II 

trials of this combination have not demonstrated superior 

time-to-progression or OS than either treatment alone, but 

some patients have durable tumor control.203 The nuances in 

designing treatment fields may be critical in this setting.204

Chemotherapy/drug therapy
The current standard of care for newly diagnosed GBM 

combines surgical resection, RT and adjuvant temozolomide 

treatment, leading to an increased median survival time205 of 

approximately 14.6 months. The EORTC trial206 established 

that concomitant low-dose temozolomide and external beam 

fractionated radiation followed by adjuvant temozolomide 

results in a survival benefit to the chemotherapy arm versus 

radiation alone. The trial demonstrated a benefit in OS to the 

group receiving chemotherapy, and a tripling of the percentage 

of patients alive 2 years after therapy. Subsequent prospective 

trials showed that a dose-intensive adjuvant temozolomide 
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regimen in which patients received 75 mg/m2 daily for 21 

days followed by a 7-day rest was not superior to the shorter 

monthly courses of temozolomide.

Management of newly diagnosed anaplastic oligodendro-

glioma is now based on level-one evidence. Two prospective 

randomized trials comparing external beam radiation alone 

to radiation therapy plus alkylator-based adjuvant or neoad-

juvant chemotherapy were initially reported as showing no 

survival benefit with the addition of chemotherapy.11,13 How-

ever, long-term follow-up demonstrated that for patients with 

tumors expressing 1p/19q deletions, chemotherapy confers a 

significant survival advantage.11,13 The predictive value of the 

1p deletion status makes this one of the first robust predictive 

biomarkers for malignant gliomas. In addition to the impact 

of 1p deletion status on outcome, these anaplastic oligoden-

droglioma studies also led to the delineation of subgroups 

of tumors with prognostic significance using microarray 

genome-wide expression analysis.207 It is clear that future 

studies of anaplastic oligodendrogliomas and astrocytomas 

will need to include stratification by prognostic subgroups.

For newly diagnosed anaplastic astrocytoma, the optimal 

application of radiation and chemotherapy is an active clini-

cal trial question.208 The EORTC and the Radiation Therapy 

Oncology Group (RTOG) are conducting a randomized 

prospective trial comparing fractionated radiation therapy 

alone, to 1) radiation followed by adjuvant temozolomide, 

to 2) concurrent chemoradiation without subsequent adjuvant 

therapy, and to 3) the regimen of concurrent chemoradiation 

followed by adjuvant chemotherapy that is the standard treat-

ment for GBM.209,210 In addition, these prospective random-

ized trials are stratifying tumors based on MGMT promoter 

methylation status and molecular biomarkers.208

For patients with recurrent GBM, treatment outcomes 

are poor; the median time to tumor progression is 9 weeks, 

and the median survival is 25 weeks.211 PFS is correlated 

with OS and has become the benchmark for assessing treat-

ment efficacy in patients with recurrent GBM in whom the 

PFS-6 rate ranges between 9% and 15%.211–213 For recurrent 

GBM and anaplastic astrocytoma, the transformative trials 

involve the use of anti-angiogenic drugs.214 The RTOG has 

completed two prospective randomized trials; one comparing 

two different adjuvant temozolomide regimens and another 

evaluating the efficacy of bevacizumab.215,216

Glioblastomas due to expression of a variety of pro-

 angiogenic factors are among the most vascular tumors. 

Angiogenesis is a critical process in the progression of 

gliomas.217 One of the main determinants of angiogenesis 

is VEGF, which is secreted by glioma cells to induce the 

tumor vascularization that in turn facilitates growth of the 

tumor.218 High expression of VEGF is correlated with poor 

clinical outcome, and it has been demonstrated that inhibition 

of VEGF decreases the growth of glioma cell lines.219 High-

grade gliomas with a high degree of VEGF expression and 

vessel density respond best to anti-angiogenic therapy.220

Bevacizumab is an anti-angiogenic agent for GBM and 

received accelerated FDA approval for use in patients with 

recurrent GBM in 2009.221 Bevacizumab (Avastin) is a 

humanized monoclonal antibody that binds VEGF, thereby 

preventing the interaction of VEGF with its receptors 

VEGF receptor 1 and VEGF receptor 2. Blocking VEGF 

activity halts angiogenesis. The half-life of bevacizumab is 

approximately 20 days, so it is administered every 2 weeks 

and sometimes every 3 weeks. In Phase II studies in previ-

ously treated patients with malignant glioma, bevacizumab 

reduced requirements for steroids and was associated with 

imaging evidence of tumor response. These results have led 

to approval of bevacizumab for recurrent malignant glioma 

as well as investigation of bevacizumab as a component of 

initial combined modality therapy.222

Bevacizumab has demonstrated significant activity in 

Phase II trials.221 Bevacizumab alone or in combination 

with irinotecan resulted in response rates and time-to-

progression that were substantially superior to historical 

controls with a range of cytotoxic regimens, and superior 

to results with any other molecularly-targeted drug therapy 

evaluated previously.223 However, the value of bevacizumab 

in the treatment of recurrent GBM remains uncertain since 

responses in GBM trials have not been durable. Norden 

et al224 compared PFS and OS of patients treated with 

bevacizumab with two contemporaneous trials of cytotoxic 

chemotherapy testing gimatecan and edotecarin. Median 

PFS in the bevacizumab cohort was 22 weeks, compared 

to only 8 weeks for the chemotherapy cohorts, and PFS-6 

was 40% versus 11%. However, median OS was only 37 

weeks in the bevacizumab cohort versus 39 weeks for the 

chemotherapy cohorts.224 Bevacizumab appears to have 

an effect on PFS, but only modest effects on OS.225 When 

patients progress through bevacizumab, the prognosis is 

dismal, with PFS of subsequent therapies being 4 weeks 

and PFS-6 being only 14%.226,227  Current and future trials 

evaluating combination therapies with molecularly-targeted 

drugs and bevacizumab have evolved a template structure 

in which bevacizumab is administered every 2 weeks in 

28-day cycles, and the investigational agent is added to the 

monthly cycles with the scheduling dependent upon the 

biologic effect of the agent.
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Although bevacizumab clearly produces a clinical 

improvement by decreasing the size of the contrast-enhancing 

mass lesion as well as ameliorating perilesion edema, the 

extent to which the drug is modifying the physiology of 

the BBB rather than killing tumor cells remains complex. 

When tumors progress after exposure to bevacizumab, sub-

sequent therapies with cytotoxic chemotherapy are uniformly 

 ineffective. In current practice, there is an emerging consensus 

that bevacizumab should be reserved for patients in whom 

the tumor is causing neurologic symptoms due to its size and 

surrounding edema.228 The ability of bevacizumab to sup-

press the early toxicities of radiation therapy has facilitated 

re-exploration of reirradiation with fractionated external beam 

techniques as well as radiosurgery for recurrent malignant 

gliomas. Several institutional trials229,230 have reported results 

of combining radiosurgery with Avastin in recurrent GBM 

and anaplastic astrocytoma. Although bevacizumab clearly 

reduces the early perilesion edema associated with radiosur-

gical treatment of recurrent malignant gliomas and produces 

radiologic responses by RANO criteria, it remains unproven 

whether the combination of radiosurgery and Avastin produces 

a more durable response, as measured by OS, than radiosur-

gery or bevacizumab alone.

Preliminary randomized Phase III trial results do not 

recommend the routine use of bevacizumab in combination 

with standard RT and temozolomide in patients with newly 

diagnosed glioblastoma.231,232 This recommendation is based 

on the lack of proven survival benefit for bevacizumab when 

used as part of initial therapy and the increased risk of toxic-

ity associated with combination therapy. Certain subsets of 

patients may ultimately be shown to benefit from early use of 

bevacizumab, such as those patients with bulky, nonresectable 

tumors, but further study is needed. Preliminary results from 

two Phase III clinical trials231,232 assessing the role of bevaci-

zumab in conjunction with RT plus temozolomide include the 

AVAglio study, in which 921 patients were randomly assigned 

to receive bevacizumab or placebo in conjunction with RT 

and temozolomide.231 After completion of RT, patients were 

treated with six cycles of monthly temozolomide plus beva-

cizumab or placebo every 2 weeks, followed by maintenance 

bevacizumab or placebo every 3 weeks until progression. At 

the time of the preliminary analysis, 76% of the expected 

events had occurred. They concluded that median PFS was 

improved in patients treated with bevacizumab compared 

with placebo (10.6 versus 6.2 months; hazard ratio 0.64, 

95% confidence interval 0.55 to 0.74). However, median OS 

was not significantly different (hazard ratio 0.89, 95% confi-

dence interval 0.75 to 1.07). As well, there was an increase 

in the rate of serious adverse events in patients treated with 

bevacizumab.

In the RTOG 0825 study, 637 patients were randomly 

assigned to receive bevacizumab or placebo starting at week 

4 of standard chemoradiation with temozolomide, followed 

by six to 12 cycles of maintenance temozolomide plus 

bevacizumab or placebo.232 The conclusion was that PFS was 

extended in patients treated with bevacizumab (10.7 versus 7.3 

months; P=0.004), but the result did not meet the predefined 

significance threshold of P,0.002. Median OS did not differ 

in patients treated with bevacizumab compared with placebo 

(15.7 versus 16.1 months, P=0.11). Notably, MGMT promoter 

methylation was strongly associated with improved PFS (14 

versus 8 months for methylated versus unmethylated promoter, 

respectively) and OS (23 versus 14 months, respectively). In 

the subset of patients whose tumors exhibited both MGMT 

promoter methylation and a favorable nine-gene signature, 

there was a trend towards worse survival in patients treated 

with bevacizumab compared with placebo (15.7 versus 25 

months, P=0.08). In addition, there was an increased rate of 

serious adverse events in patients treated with bevacizumab; 

primarily neutropenia, hypertension, and thromboembolism.

For recurrent anaplastic astrocytomas, the optimal che-

motherapy regimens remain an active clinical trial question. 

A randomized prospective trial233 for anaplastic astrocytomas 

at first relapse after fractionated RT alone compared the 

older regimen PCV to standard (150–200 mg/m2/day for 

days 1–5 of 28-day cycles) temozolomide and dose-intensive 

temozolomide (75 mg/m2/day for days 1–21 of 28-day 

cycles). The day 1–5 regimen was not inferior to PCV, but 

the more dose-intense regimen was counterintuitively less 

effective. The optimal regimens for patients relapsing after 

prior chemoradiation or adjuvant chemotherapy remain to 

be determined.

For recurrent anaplastic oligodendrogliomas, alkylator-

based chemotherapy is the mainstay of treatment, but as for 

astrocytomas, the optimal regimen and schedules are cur-

rently being pursued.12,234–236 A study by Lassman12 of ana-

plastic oligodendrogliomas suggest that for 1p/19q deleted 

tumors, the older PCV regimen may be associated with better 

outcomes. Despite this retrospective data, temozolomide 

continues to be more widely used in the US.

Despite a quarter century of disappointing results and 

evidence that the malignant gliomas microenvironment was 

inhospitable to cytotoxic T cells and natural killer cells, a 

relentless cadre of investigators has produced Phase II data 

suggesting that vaccine immunotherapy strategies can pro-

duce antitumor immune responses.237 In a study of newly 
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diagnosed GBM tumors expressing the EGFRvIII oncoprotein 

antigen, an anti-EGFRviii dendritic cell vaccine demonstrated 

improved time-to-progression and OS as compared with a 

contemporaneous historical control data set.238 With all the 

caveats pertaining to historical control analysis and potential 

differences in distribution of molecular prognostic subgroups, 

vaccine therapies are demonstrating sufficient evidence of 

efficacy to warrant Phase III trials. As with clinical trials 

evaluating anti-angiogenic agents, criteria for determining 

tumor response and progression must be adapted to account 

for transient immune-mediated inflammatory responses that 

might be mistaken for development of tumor progression.239

Summary
In recent times, there has been important progress in our 

understanding of the molecular pathogenesis of malignant 

gliomas, leading to the development of targeted chemothera-

peutic agents. Additionally, advances in diagnostic imaging 

have allowed for early diagnosis and treatment of malignant 

gliomas. As our understanding of the molecular pathogenesis 

and molecular imaging improves, it may be possible to select 

the most appropriate therapies on the basis of the patient’s 

tumor genotype. Furthermore, quantitative imaging biomarker 

assessment in the early phase of clinical trials could provide a 

novel approach for testing new therapies, and importantly, for 

facilitating patient management, sparing patients from weeks 

or months of toxicity due to ineffective treatment.
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