
MALLBA: A library of skeletons for
combinatorial optimisation?

E. Alba3 F. Almeida2 M. Blesa1 J. Cabeza2 C. Cotta3 M. Dı́az3

I. Dorta2 J. Gabarró1 C. Len2 J. Luna2 L. Moreno2 C. Pablos2

J. Petit1 A. Rojas2 F. Xhafa1

1 LSI – UPC. Campus Nord C6. 08034 Barcelona (Spain).
2 EIOC – ULL. Edificio Fsica/Matemticas. 38271 La Laguna (Spain).

3 LCC – UMA. E.T.S.I. Informtica. Campus de Teatinos. 29071 Mlaga (Spain).

Abstract. The mallba project tackles the resolution of combinato-
rial optimization problems using algorithmic skeletons implemented in
C++. mallba offers three families of generic resolution methods: exact,
heuristic and hybrid. Moreover, for each resolution method, mallba pro-
vides three different implementations: sequential, parallel for local area
networks, and parallel for wide area networks (currently under devel-
opment). This paper explains the architecture of the mallba library,
presents some of its skeletons, and offers several computational results
to show the viability of the approach.

1 Introduction

Combinatorial optimization problems arise in various fields such as control the-
ory, operations research, biology, and computer science. Several tools offering
parallel implementations for generic optimization techniques such as Simulated
Annealing, Branch and Bound or Genetic Algorithms have been proposed in the
past (see, e.g. [4, 7–9]). Some existing frameworks, such as Local++, its successor
EasyLocal++ [3], Bob++ [2], and the IBM COIN open source project [6] provide
sequential and parallel generic implementations for several exact, heuristic and
hybrid methods, but lack features to integrate them.

The mallba project is an effort to develop an integrated library of skele-
tons for combinatorial optimization (including exact, heuristic and hybrid meth-
ods) dealing with parallelism in a user-friendly and, at the same time, efficient
manner. Its three target environments are sequential computers, LANs of work-
stations and WANs. The main features of mallba are: integration of all the
skeletons under the same design principles, facility to switch from sequential to
parallel optimization engines, and cooperation among engines to provide more
powerful hybrid skeletons, ready to use on commodity machines. Clusters of PCs
? http://www.lsi.upc.es/∼mallba. Work partially supported by: Spanish CICYT TIC-

1999-0754 (MALLBA), EU IST program IST-2001-33116 (FLAGS), Future and
Emerging Technologies of EU contract IST-1999-14186 (ALCOM-FT) and Canary
Goverment Project PI/2000-60. C. Len partially supported by TRACS program at
EPCC. M. Blesa partially supported by Catalan 2001FI-00659 pre-doctoral grant.



under Linux are currently supported and the software architecture is flexible and
extensible (new skeletons can easily be added, alternative communication layers
can be used, etc.).

In mallba, each resolution method is encapsulated into a skeleton. At present,
the following skeletons are available: Divide and Conquer (DC), Branch and
Bound (BnB), Dynamic Programming (DP), Hill Climbing, Metropolis, Simu-
lated Annealing (SA), Tabu Search (TS), Genetic Algorithms (GA) and Memetic
Algorithms. Moreover hybrid techniques have been implemented combining the
previous skeletons, e.g., GA+TS, GA+SA, BnB+SA.

2 The MALLBA Architecture

mallba skeletons are based on the separation of two concepts: the concrete
problem to be solved and the general resolution method to be used. While the
particular features related to the problem must be given by the user, the main
method and the knowledge to parallelize the execution of the resolution method
is implemented in the skeleton. The users do not need to deal neither with the
algorithmic part of the method nor with any parallelism issues.

Skeletons are implemented by a set of required and provided C++ classes
which represent object abstractions of the entities participating in the resolution
method. The provided classes implement internal aspects of the skeleton in a
problem-independent way. The required classes specify information and behavior
related to the problem. This conceptual separation allows us to define required
classes with a fixed interface but without any implementation, so that provided
classes can use required classes in a generic way. Fig. 1 depicts this architecture.

Fig. 1. Architecture of a mallba skeleton

More specifically, each skeleton includes the Problem and Solution required
classes, that encapsulate the problem-dependent entities needed by the reso-
lution method. The Problem class abstracts the features of the problem that



are relevant to the selected optimization method. The Solution class abstracts
the features of the feasible solutions that are relevant to the selected resolution
method. Depending on the skeleton, other auxiliary classes may be required. On
the other hand, each skeleton offers two provided classes: Solver and Setup. The
former abstracts the selected resolution method. The later contains the setup pa-
rameters needed to perform and tune the execution. The Solver class provides
methods to run the skeleton and also to consult or change its state dynamically.
The only information the solver needs is an instance of the problem to solve and
the setup parameters. In order to enable an skeleton to have different solver en-
gines, the Solver class defines a unique interface and provides several subclasses
that provide different sequential and parallel implementations (see Fig. 1).

Table 1. Results for the Resource Allocation Problem using the DP skeleton, over a network of 13
PCs (4 AMD K6 700 MHz and 9 AMD K6 500 MHz) connected through a Fast Ethernet network.

Sequential time (s) Speed-up
Stages-States on fastest machine 2 procs. 700 MHz 4 procs. 700 MHz 4 procs. 700 MHz 4 procs. 700 MHz

4 procs. 500 MHz 9 procs. 500 MHz
1000-2000 457.79 1.97 3.92 4.12 6.01
1000-2500 714.87 1.98 3.94 4.30 6.02
1000-4000 1828.22 1.99 3.96 4.31 6.41
1000-5000 2854.04 1.99 3.97 4.24 6.42
1000-7000 5594.74 1.99 3.97 4.22 6.41
1000-10000 11422.60 1.98 3.97 4.18 6.38

Table 2. Results from IRSS and MSNP over a network of 9 AMD K6-2 450 MHz conected through
a Fast Ethernet network. Maximum execution time fixed to 900s. An instance name like OR5x250-00
is an instance of 5 constraints and 250 variables. Averages calculated over 100 executions.

best avg. deviation % from the best known
instance cost known IR with Strategies MS with Neighb. Part.

2 proc. 4 proc. 8 proc. 2 proc. 4 proc. 8 proc.
OR5x250-00 59312 0.028 0.015 0.020 0.051 0.024 0.020
OR5x250-29 154662 0.005 0.006 0.003 0.012 0.007 0.006
OR10x250-00 59187 0.045 0.047 0.045 0.079 0.064 0.064
OR10x250-29 149704 0.012 0.010 0.004 0.012 0.012 0.009
OR30x250-00 56693 0.023 0.022 0.017 0.041 0.028 0.030
OR30x250-29 149572 0.009 0.010 0.003 0.016 0.009 0.007

Table 3. Results for Maximum Cut. The experiments are done using 6 PCs (Pentium III, 700 MHz,
128 Mb) connected through a Fast Ethernet network. The “iterations” and “time” columns refer to
the mean values of successful runs (those in which an optimal solution is found).

Cut20-0.9 Cut100
Algorithm iterations time(s) successful runs iterations time (s) successful runs
SA1 1742 0.11 92% 4048 3.96 78%
SA2 856 0.08 100% 2660 2.66 20%
GA 36 0.36 86% 399 78.66 6%
GASA1 5 0.50 100% 54 104.54 36%
GASA2 56 0.59 100% 178 43.84 4%
GASA3 71 0.73 94% 171 33.65 8%

3 Parallel Implementations

The skeletons of the mallba library are currently implemented for two target
environments: sequential and LAN. The user is able to use different paralleliza-
tion engines just by easily extending the sequential instantiations. These different



implementations can be obtained by creating separate subclasses of the Solver

abstract class (see Fig. 1). At present, we are using our own middleware layer
NetStream implemented on top of MPI to ease communications.

3.1 Exact Methods. The mallba library follows Ibaraki’s discrete Dynamic
Programming (DP) approach for Multistage Problems to represent DP problems
and the general parallelization scheme described in [5]. The parallelization per-
forms a cyclic mapping of a pipeline on a ring topology. Divide and Conquer (DC)
and Branch and Bound (BnB) have been parallelized using a master-slave strat-
egy. While a queue of tasks suffices for the BnB, the DC requires of a hierarchy of
queues. This structure gives support to the required synchronizations, since the
corresponding combination phase has to occur after all the children have been
solved. Factors to take into account are the relationship between the number of
available processors and the number of generated subproblems, the depth of the
generated subproblems and the communication, and computation capabilities of
the hosting computer. The user can choose among several strategies provided
by the skeletons. Table 1 shows the speedup obtained from an instantiation of
the Dynamic Programming skeleton for the Resource Allocation Problem. The
parallel engine shows a good scalability until four processors. Between four and
eight processors performance decreases due to the slower machines introduced,
but it remains increasing when introducing more processors.

3.2 Heuristic Methods: Tabu Search (TS). Fundamental ideas to de-
sign parallel strategies for meta-heuristics are already well-known [1]. The par-
allel implementations for TS in the mallba library include: Independent Runs
(IR), Independent Runs with Search Strategies (IRSS), Master-Slave (MS) and
Master-Slave with Neighborhood Partition (MSNP).

We give in Table 2 some computational results obtained from the IRSS and
the MSNP for the 0-1 Multidimensional Knapsack problem, for instances from
the standard OR-Library. In the IRSS the communication time is almost ir-
relevant while in the MSNP there is a considerable communication time. This
explains the fact that, for some instances, the solution found by IRSS is better
than the one found by the MSNP.

3.3 Hybrid Methods: Genetic Annealing. The software architecture of
mallba has allowed us a fast prototyping of several parallel hybrid skeletons:
(GA) a parallel Genetic Algorithm with collaboration among sub-algorithms,
(SA1) a parallel Simulated Annealing without collaboration among elemen-
tary SA’s, (SA2) a parallel SA with collaboration among elementary SA’s, and
(GASA1) a hybrid skeleton where parallel GA’s are applying SA as a local search
operator inside their sequential main loop. Finally, we implemented two other
hybrid skeletons where parallel GA’s are run under different populations of solu-
tions and then parallel SA’s are applied, each one selecting some strings drawn
from the final GA’s population to improve them (by tournament -GASA2- or
randomly -GASA3-). The construction of these hybrid algorithms has been ex-
tremely easy by using the mallba architecture.



We have solved the Maximum Cut problem: a high edge-density 20-vertex
instance (cut20-0.9) and a 100-vertex instance (cut100) (see Table 3). In the
hybrid parallel skeletons, SA is used at each reproduction event with probability
0.1 for 100 iterations. In the parallel-cooperation modes (all but SA1), the al-
gorithms are arranged in ring topology (i.e., not master-slave), asynchronously
migrating individuals each 200 iterations. Regarding the 100-vertex graph, the
best result is provided by SA1 -4 sec.-, a parallel SA without cooperation (78%
success in finding the optimum). The cooperative parallel version (SA2) is faster
yet less effective (just 20% success); the reason for this result strives in that
there exists a large number of local optima that SA2 repeatedly visits, while
SA1 (without collaboration) focuses the search faster to an optimum in every
parallel sub-algorithm, thus avoiding this “oscillation” effect and visiting a larger
number of different search regions. The model GASA1 achieves an intermediate
36%-success value for cut100, but it is much more computationally expensive.

4 Concluding Remarks and Future Work

We have sketched the architecture of the mallba library. Also, we have given
some computational results obtained over a cluster of heterogeneous PCs using
Linux. Our results indicate that: skeletons can be instantiated for a large num-
ber of problems, sequential instantiations provided by users are ready to use in
parallel, parallel implementations are scalable, general heuristic skeletons can
provide solutions whose quality is comparable to ad hoc implementations for
concrete problems, and the architecture supports easy construction of powerful
hybrid algorithms. Our future work will focus on new skeletons for WAN.

References

1. T. Crainic, M. Toulouse, and M. Gendreau. Towards a taxonomy of parallel tabu
search heuristics. INFORMS Journal on Computing, 9(1):61–72, 1997.

2. B. L. Cun. Bob++ library illustrated by VRP. In European Operational Research
Conference (EURO’2001), page 157, Rotterdam, 2001.

3. L. Di Gaspero and A. Schaerf. EasyLocal++: an object-oriented framework for the
flexible design of local search algorithms and metaheuristics. In 4th Metaheuristics
International Conference (MIC’2001), pages 287–292, 2001.

4. J. Eckstein, C. A. Phillips, and W. E. Hart. Pico: An object-oriented framework for
parallel branch and bound. Technical report, RUTCOR, 2000.

5. D. González, F. Almeida, J. Roda, and C. Rodŕıguez. From the theory to the tools:
Parallel dynamic progr. Concurrency: Practice and Experience, (12):21–34, 2000.

6. IBM. COIN: Common Optimization INterface for operations research, 2000.
http://oss.software.ibm.com/developerworks/opensource/coin/index.html.

7. K. Klohs. Parallel simulated annealing library.
http://www.uni-paderborn.de/fachbereich/AG/monien/SOFTWARE/PARSA/, 1998.

8. D. Levine. PGAPack, parallel genetic algorithm library.
http://www.mcs.anl.gov/pgapack.html, 1996.

9. S. Tschke and T. Polzer. Portable parallel branch-and-bound library, 1997.
http://www.uni-paderborn.de/cs/ag-monien/SOFTWARE/PPBB/introduction.html.


