
Cluster Comput

DOI 10.1007/s10586-007-0032-9

Malleable applications for scalable high performance computing

Travis Desell · Kaoutar El Maghraoui · Carlos A. Varela

© Springer Science+Business Media, LLC 2007

Abstract Iterative applications are known to run as slow

as their slowest computational component. This paper in-

troduces malleability, a new dynamic reconfiguration strat-

egy to overcome this limitation. Malleability is the ability

to dynamically change the data size and number of compu-

tational entities in an application. Malleability can be used

by middleware to autonomously reconfigure an application

in response to dynamic changes in resource availability in

an architecture-aware manner, allowing applications to op-

timize the use of multiple processors and diverse memory

hierarchies in heterogeneous environments.

The modular Internet Operating System (IOS) was ex-

tended to reconfigure applications autonomously using mal-

leability. Two different iterative applications were made

malleable. The first is used in astronomical modeling,

and representative of maximum-likelihood applications was

made malleable in the SALSA programming language. The

second models the diffusion of heat over a two dimensional

object, and is representative of applications such as partial

differential equations and some types of distributed simula-

tions. Versions of the heat application were made malleable

both in SALSA and MPI. Algorithms for concurrent data

redistribution are given for each type of application. Results

show that using malleability for reconfiguration is 10 to 100

times faster on the tested environments. The algorithms are
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also shown to be highly scalable with respect to the quantity

of data involved. While previous work has shown the util-

ity of dynamically reconfigurable applications using only

computational component migration, malleability is shown

to provide up to a 15% speedup over component migration

alone on a dynamic cluster environment.

This work is part of an ongoing research effort to enable

applications to be highly reconfigurable and autonomously

modifiable by middleware in order to efficiently utilize dis-

tributed environments. Grid computing environments are be-

coming increasingly heterogeneous and dynamic, placing

new demands on applications’ adaptive behavior. This work

shows that malleability is a key aspect in enabling effective

dynamic reconfiguration of iterative applications in these en-

vironments.

Keywords High performance computing · Malleability ·

Dynamic reconfiguration · MPI · SALSA · Actors

1 Introduction

As high performance computing (HPC) environments scale

to hundred or thousands of parallel-processors, the demands

on an application developer are becoming increasingly chal-

lenging and unmanageable. In such large-scale heteroge-

neous execution environments, traditional application or

middleware models that assume dedicated resources or fixed

resource allocation strategies fail to provide the desired high

performance that applications expect from large pools of

resources. In order for applications to be able to appropri-

ately utilize the available resources in a dynamic shared

HPC environment, new models for high performance com-

puting that account for dynamic and shared resources are re-

quired, along with middleware and application level support.
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This work is in part motivated by the Rensselaer Grid, an

institute-wide HPC environment, with dynamic and shared

resources.

Previous approaches for dynamic reconfiguration have

involved fine-grained migration, which moves an applica-

tion’s computational components (such as actors, agents

or processes) to utilize unused cycles [12, 14] or coarse-

grained migration which uses checkpointing to restart ap-

plications with a different set of resources to utilize newly

available resources or to stop using badly performing re-

sources [4, 24]. Coarse-grained migration can prove highly

expensive when resources change availability frequently, as

in the case of web computing [3, 18] or shared clusters with

multiple users. Additionally, coarse-grained migration can

prove inefficient for grid and cluster environments, because

data typically has to be saved at a single point, then redis-

tributed from this single point, which can cause a perfor-

mance bottleneck. Fine-grained migration enables different

entities within applications to be reconfigured concurrently

in response to less drastic changes in their environment. Ad-

ditionally, concurrent fine-grained reconfiguration is less in-

trusive, as the rest of the application can continue to execute

while individual entities are reconfigured. However various

checkpointing and consistency methods are required to al-

low such reconfiguration.

Approaches using fine-grained migration allow reconfig-

uration by moving around entities of fixed size and data.

However, such reconfiguration is limited by the granular-

ity of the applications’ entities, and cannot adapt to the

heterogeneity of memory hierarchies and data distribution.

Existing load balancing approaches (e.g. [6, 11]) allow

for dynamic redistribution of data, however they cannot

change task granularity or do not allow inter-task commu-

nication.

Because fine-grained migration strategies only allow for

migration of entities of fixed size, data imbalances can oc-

cur if the granularity is too coarse. An iterative application

is used to illustrate this limitation: a distributed maximum

likelihood computation used for astronomical model valida-

tion (for more details see Sect. 4.1). This application is run

on a dynamic cluster consisting of five processors. Figure 1

shows the performance of different approaches to dynamic

distribution. Three options are shown, where N is the num-

ber of entities and P is the number of processors. Each entity

has an equal amount of data. N = 5 maximizes granularity,

reducing the overhead of context switching. However this

approach cannot evenly distribute data over each processor,

for example, with 4 processors, one processor must have two

entities. N = 60 uses a smaller granularity which can evenly

distribute data in any configuration of processors, however

it suffers from additional overhead due to context switch-

ing. It is also not scalable as the number of components re-

quired for this scheme increases exponentially as processors

Fig. 1 Different possibilities for data distribution on a dynamic envi-

ronment with N entities and P processors. With N = 5, data imbal-

ances occur, degrading performance. N = 60 allows even data distrib-

ution, but suffers from increased context switching. N = 5 and N = 60

can be accomplished using fine-grained migration, while N = P re-

quires malleability

Fig. 2 A heat diffusion application (see Sect. 4.2), run with different

data sizes and granularities on 20 processors. Decreasing granularity

allows the entities to execute entirely within a 64 KB L1 cache, greatly

increasing performance. This figure also illustrates how overly decreas-

ing granularity can degrade performance by incurring additional over-

head

are added. Additionally, in many cases, the availability of re-

sources is unknown at the applications’ startup, so an effec-

tive number of components cannot be statically determined.

For optimal performance in this example, N should be equal

to the number of processors P , however this cannot be ac-

complished by migration alone.

Using the correct granularity can provide significant ben-

efits to applications by enabling entity computation and data

usage to execute in lower levels of memory hierarchy. For

example, in Fig. 2, the runtime for a scientific applica-

tion modeling heat diffusion over a solid (for a more de-

tailed description see Sect. 4.2) is plotted as entity granu-

larity changes. The application was run with 10 million and
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20 million data points over a wide range of granularities. All

sampled runs performed 50 iterations and the same amount

of work per data point. Experiments were run on five quad

2.27 GHz Opteron processors with 64 KB L1 cache. As the

data per entity decreases, computation can be done within

L1 cache, instead of within L2 cache, with over a 10× per-

formance increase for 20 million data points and 320 enti-

ties, and an over 5× performance increase for 10 million

data points and 160 entities, compared to a typical distribu-

tion of one or two entities per processor.

In order to effectively utilize dynamic and heterogeneous

environments, applications need to be able to dynamically

change their granularity and data distribution. Dynamic data

redistribution and granularity modification, or malleabil-

ity, presents significant design challenges over fine-grained

migration. Distributed applications have a wide range of

behaviors, data structures and communication topologies.

In order to change the granularity of entities in a distrib-

uted application, entities must be added or removed, which

requires redistribution of data to new entities, or away

from entities being removed. Data redistribution must also

be aware of the available resources where data is being

moved to or from, and must also be done to keep the load

balanced with respect to processing power. Communica-

tion topologies must be modified when entities are added

or removed, and entity behavior may change. Addressing

these issues becomes even more important when applica-

tions are iterative, or require all entities to synchronize af-

ter finishing some work before the application can continue.

With an iterative application, each iteration runs as slow

as the slowest entity, so proper data distribution and effi-

cient communication topologies are required for good per-

formance. Additionally, language constructs and libraries

need to be provided to allow malleability to be accessi-

ble to developers, because data redistribution and com-

munication topology modification cannot be entirely auto-

mated.

This work introduces a new type of application recon-

figuration, malleability, that can be used in conjunction

with existing methods of reconfiguration, such as migration.

Malleability has been implemented in both MPI [17] and

the SALSA programming language [25]. The IOS middle-

ware [15] has been extended to autonomously reconfigure

applications using malleability. In Sect. 2, the language and

library extensions for SALSA and MPI to allow for mal-

leability are described. Section 3 briefly describes the au-

tonomous middleware that is used to automate malleability.

Application case studies are presented in Sect. 4 that illus-

trate how malleability has been achieved for two represen-

tative iterative applications. The middleware and algorithms

for malleability are evaluated in Sect. 5. Related work is dis-

cussed in Sect. 6. The paper concludes with a discussion and

avenues of future work in Sect. 7.

2 Language extensions

In order to make malleability accessible to a distributed

application’s designer, the problem of dynamic granularity

is approached from two directions: (i) Providing language-

level constructs and libraries to enable the developer to make

preexisting entities malleable with minimal effort and to

facilitate the development of new malleable entities, and

(ii) Providing extensible middleware that can use profiled

application-level and environmental information to make re-

configuration decisions, enabling malleable applications to

improve performance on unknown and dynamic environ-

ments. Both the SALSA programming language and MPI

have been extended with library support for enabling mal-

leability.

2.1 Language constructs and libraries

Fine-grained migration can be accomplished by checkpoint-

ing and locking mechanisms because the state of the entities

being migrated does not need to change. In some cases this

process can be entirely automated, as in the SALSA [25]

programming language. In non-trivial cases, malleability not

only requires redistribution of data, which can be dependent

on entity behavior, but also redirection of references when

new entities are created or removed. In order to make mal-

leability accessible to the developer, language constructs and

libraries are needed to help automate this process.

For the purposes of this work, groups of entities are de-

fined as malleable if their granularity can change by data

redistribution, increase by merging, or decrease by splitting,

i.e. a group of M entities can split or merge into a group of N

entities, with a redistribution of the same data. Group mal-

leability allows for a wider range of reconfiguration possibil-

ities, from very coarse-grained reconfiguration using most or

all entities in an application to very fine-grained reconfigu-

ration using small subsets of an application’s entities.

2.2 Malleability in SALSA

SALSA uses the Actor model of computation [2]. Actors en-

capsulate state and process into a single entity and commu-

nicate asynchronously. Actor semantics enable transparent

checkpointing. An actor can always checkpoint in between

processing messages. Additionally, encapsulated state and

distributed memory provide clean separation of how data

is distributed among entities, which allows malleability to

be clearly defined. This is in contrast to shared memory

systems, which violate state encapsulation properties. Fi-

nally, the execution environment provided by SALSA can

run on heterogeneous architectures, allowing malleability to

be tested on a wide range of architectures and environments.

Malleability is performed using extensible directors that

coordinate the malleability process for a group of malleable



Cluster Comput

Table 1 MalleableActor API

Return Method name Parameters

type

long getDataSize ()

Object getData (long size, Options options)

void receiveData (Object data, Options options)

void redirectReference (String referenceName,

Reference newTarget)

void handleMalleabilityMessage (Message message)

actors. Actors are made malleable by implementing the Mal-

leableActor behavior (see Table 1), which consists of meth-

ods that allow directors to redirect references to accommo-

date newly created and removed actors, and redistribute data

between malleable actors participating in reconfiguration.

This allows directors to implement various algorithms to

perform malleability. Provided directors use a generic proto-

col to perform malleability operations. Reconfiguration us-

ing malleability consists of three basic parts: (i) locking all

participants in the reconfiguration, (ii) redistributing data

to newly created participants or from removed participants,

and (iii), redirecting the references between them.

Locking malleable actors is required to prevent data in-

consistencies that could arise during the redistribution of

data and references. If the malleable actors can continue to

process other messages while performing a reconfiguration,

responses to messages and data could be sent to the wrong

actors, resulting in incorrect computation. Actors specify

when they are at a stable state and can be locked by the

library through invoking the setMalleable and setUnmal-

leable methods. Malleable actors are locked by the direc-

tors using the following protocol: (1) The director broad-

casts an initiate malleability message to all malleable ac-

tors involved in the reconfiguration. (2) If any malleable ac-

tors broadcast to are involved in another reconfiguration, or

have set to be unmalleable through setUnmalleable, they re-

spond to the director with a isUnmalleable message. Other-

wise, the actor responds to the director with a isMalleable

message. After this, the actors responding with a isMall-

eable message will enqueue all messages received that are

not related to the initiated reconfiguration, and only process

them after the reconfiguration has completed. (3) If any

malleable actor responds with a isUnmalleable message or

a timeout elapses without all malleable actors responding

with a isMalleable message, the director broadcasts a can-

celMalleability message to all participating actors, who will

process all messages they enqueued and continue to process

messages as normal. (4) If all malleable actors respond with

a isMalleable message, the director will then redirect mes-

sages and redistribute data between the participating actors.

Section 4 describes implementations of data redistribution

and reference redirection for sample applications. (5) After

all redirection and redistribution are finished, the director

will broadcast a malleabilityFinished message to all partici-

pating actors. (6) When an actor receives a malleabilityFin-

ished message, it will process all messages that it queued

while doing the reconfiguration via handleMalleabilityMes-

sage(Message m), then continue to process messages as nor-

mal.

2.3 Malleability in MPI

Unlike SALSA, MPI does not provide inherent support for

migration. In previous work [16], the Process Checkpoint-

ing and Migration (PCM) library was developed to enable

process migration in MPI. PCM has been extended with ad-

ditional library support for malleability. As in the SALSA

implementation, a director is responsible for initiating data

redistribution and updating all the necessary references. Due

to the nature of iterative applications in MPI, reconfigura-

tion can only occur at barrier or synchronization points. This

preserves the correctness of the algorithm by ensuring that

no messages are in transit while reconfiguration takes place.

The director is the master process, which is usually process

with rank 0.

PCM provides fours classes of services, environmental

inquiry services, checkpointing services, global initializa-

tion and finalization services, and collective reconfigura-

tion services. Table 2 shows the classification of the PCM

API calls. Malleability has been implemented in MPI for

data parallel programs with a two-dimensional data struc-

ture and a linear communication. Common data distributions

are allowed such as block, cyclic, and block-cyclic distribu-

tions.

MPI_PCM_INIT is a wrapper for MPI_INIT. The user

calls this function at the beginning of the program.

MPI_PCM_INIT is a collective operation that takes care

of initializing several internal data structures. It also reads

a configuration file that has information about the port num-

ber and location of the PCM daemon (PCMD), a runtime

system that provides checkpointing and global synchroniza-

tion between all running processes.

Migration and malleability operations require the ability

to save and restore the current state of the process(es) to be

reconfigured. PCM_ Store and PCM_Load provide storage

and restoration services of the local data. Checkpointing is

handled by the PCMD runtime system that ensures that data

is stored in locations with reasonable proximity to their des-

tination.

At startup, an MPI process can have three different

states: (1) PCM_STARTED, a process that has been ini-

tially started in the system (for example using mpiexec),

(2) PCM_MIGRATED, a process that has been spawned be-

cause of a migration, and (3) PCM_SPLITTED, a process
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Table 2 The PCM API

Service type Function name

Initialization MPI_PCM_Init

Finalization PCM_Exit, PCM_Finalize

Environmental Inquiry PCM_Process_Status, PCM_Comm_rank,

PCM_Status, PCM_Merge_datacnts

Reconfiguration PCM_Reconfigure

PCM_Split, PCM_Split_Collective

PCM_Merge, PCM_Merge_Collective

Checkpointing PCM_Load, PCM_Store

that has been spawned because of a split operation. A process

that has been created as a result of a reconfiguration (mi-

gration or split) proceeds to restoring its state by calling

PCM_Load. This function takes as parameters information

about the keys, pointers, and data types of the data structures

to be restored. An example includes the size of the data, the

data buffer and the current iteration number. Process ranks

may also be subject to changes in case of malleability op-

erations. PCM_ Comm_rank reports to the calling process

its current rank. Conditional statements are used in the MPI

program to check for its startup status. An illustration is

given in Fig. 6.

The application probes the PCMD system to check

if a process or a group or processes need to be recon-

figured. Middleware notifications set global flags in the

PCMD system. To prevent every process from probing

the runtime system, the director process probes the run-

time system and broadcasts any reconfiguration notifi-

cations to the other processes. This provides a callback

mechanism that makes probing non-intrusive for the ap-

plication. PCM_status returns the state of the reconfig-

uration to the calling process. It returns different val-

ues to different processes. In the case of a migration,

PCM_MIGRATE value is returned to the process that needs

to be migrated, while PCM_RECONFIGURE is returned

to the other processes. PCM_Reconfigure is a collective

function that needs to be called by both the migrating

and non-migrating processes. Similarly PCM_SPLIT or

PCM_MERGE are returned by the PCM_status function

call in case of a split or merge operation. All processes col-

lectively call the PCM_Split or PCM_Merge functions to

perform a malleable reconfiguration.

Split and merge functions change the ranking of the

processes, the total number of processes, and the MPI com-

municators. All occurrences of MPI_COMM_WORLD, the

global communicator with all the running processes, should

be replaced with PCM_COMM_WORLD. This latter is a

malleable communicator since it expands and shrinks as

processes get added or removed. All reconfiguration oper-

ations happen at synchronization barrier points. The cur-

rent implementation requires no communication messages

to be outstanding while a reconfiguration function is called.

Hence, all calls to the reconfiguration PCM calls need to

happen either at the beginning or end of the loop.

When a process or group of processes engage in a split

operation, they determine the new data redistribution and

checkpoint the data to be sent to the new processes. When

the new processes are created, they inquire about their new

ranks and load their data chunks from the PCMD. The

checkpointing system maintains an up-to-date database per

process rank. Then all application’s processes synchronize

to update their ranks and their communicators. The mal-

leable calls return handles to the new ranks and the updated

communicator. Unlike a split operation, a merge operation

entails removing processors from the MPI communicator.

Merging operations for data redistribution are implemented

using MPI scatter and gather operations.

3 Autonomous middleware

This work extends the Internet Operating System (IOS) [15],

a modular middleware for reconfiguration of distributed ap-

plications, to autonomously use malleability. IOS is respon-

sible for the profiling and reconfiguration of applications, al-

lowing entities to be transparently reconfigured at runtime.

IOS interacts with applications through a generic profiling

and reconfiguration interface, and can therefore be used with

different applications and programming paradigms, such as

SALSA [8] and MPI [13]. Applications implement an inter-

face through which IOS can dynamically reconfigure the ap-

plication and gather profiling information. IOS uses a peer-

to-peer network of agents with pluggable communication,

profiling and decision making modules, allowing it to scale

to large environments and providing a mechanism to evalu-

ate different methods for reconfiguration.

An IOS agent is present on every node in the distrib-

uted environment. Each agent is modular, consisting of three

plug-in modules: (i) a profiling module that gathers infor-

mation about applications’ communication topologies and

resource utilization, as well as the resources locally avail-

able, (ii) a protocol module to allow for inter-agent commu-

nication, allowing the IOS agents to arrange themselves with

different virtual network topologies, such as hierarchical or

purely peer-to-peer topologies [15], and (iii) a decision mod-

ule which determines when to perform reconfiguration, and

how reconfiguration can be done.

The modules interact with each other and applications

through well-defined interfaces, making it possible to eas-

ily develop new modules, and to combine them in different

ways to test different types of application reconfiguration.

Having profiling and reconfiguration tools conform to a spe-

cific API allows the middleware to receive profiling infor-

mation and reconfigure applications in a programming lan-

guage independent manner, by determining what parts of the
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application are reconfigured and when they should be recon-

figured. Likewise, middleware can profile the environment

by interacting with third-party clients, such as the Network

Weather Service (NWS) [27] or the Globus Meta Discovery

Service (MDS) [7].

In a dynamic environment, when resources become avail-

able or unavailable, modifying the application granularity

will enable a more accurate mapping of the application com-

ponents to the available resources. This new mapping can

be achieved through migration of components. For differ-

ent types of applications, different granularities can result in

faster execution due to more efficient use of memory hierar-

chy and reduced context switching. For this work, a decision

module is used that changes application granularity when re-

source availability changes (e.g., a new processor becomes

available, or an old processor gets removed), attempting to

keep a granularity that optimizes usage of processing avail-

ability on each processor.

4 Application case studies

Two representative applications have been modified to uti-

lize malleability features. Both applications are iterative.

During each iteration they perform some computation and

then exchange data. The solution is returned when the

problem converges or a certain number of iterations have

elapsed. The first application is an astronomical applica-

tion [19] based on data derived from the SLOAN digital sky

survey [22]. It uses linear regression techniques to fit mod-

els to the observed shape of the galaxy. This application can

be categorized as a loosely coupled farmer/worker applica-

tion. The second application is a fluid-dynamics application

that models heat transfer in a solid. It is iterative and tightly

coupled, having a relatively high communication to compu-

tation ratio.

Two types of data are defined for the purpose of this

work: spatially-dependent data that is dependent on the

behavior of its containing entity and spatially-independent

data that can be distributed irrespective of entity behavior.

For example, the astronomy code has spatially independent

Data. It performs the summation of an integral over all the

stars in its data set, so the data can be distributed over any

number of workers in any way. This significantly simpli-

fies data redistribution. On the other hand, each worker in

the heat application has spatially dependent data because

each data point corresponds to the heat of a point inside the

solid that is being modeled. This means that worker actors

are arranged as a doubly linked list, and each worker has

a representative data slice with its neighbor having the adja-

cent data slices. This makes data redistribution more difficult

than in spatially-independent data, because the data needs to

be redistributed such that it preserves the adjacency of data

points.

4.1 Astronomical data modeling

The astronomy code follows the typical farmer-worker style

of computation. For each iteration, the farmer generates a

model and the workers determine the accuracy of this model,

calculated by using the model on each workers’ individual

set of star positions. The farmer then combines these re-

sults to determine the overall accuracy, determines modi-

fications for the model and the process repeats. Each iter-

ation involves testing multiple models to determine which

model parameters to change, using large data sets (hundreds

of thousands or millions of stars), resulting in a low commu-

nication to computation ratio, allowing for massive distribu-

tion.

In the malleability algorithm for data redistribution, get-

DataSize returns the total number of data points at a worker,

getData removes and returns the number of data points

specified, and receiveData appends the data points passed

as an argument to the worker. Figure 3 contains the algo-

rithm used to redistribute data in the astronomy applica-

tion or any application with spatially-independent data. The

middleware determines the workers that will participate in

the malleability, workers, and the desiredWorkerData for

each of these workers. The algorithm divides workers into

workersToShrink, specifying workers that will be sending

data, and workersToExpand, specifying workers that will

receive data. It then sends data from workersToShrink to

workersToMerge.

In the case of a split, new actors will be created by the

director and appended to workers, and the middleware will

specify the desired data for each and append this to desired-

WorkerData. In the case of a merge, the actors that will be

removed have their desired data set to 0, and after refer-

ence redirection, data distribution and processing all mes-

sages with handleMalleabilityMessage, they are garbage

collected. The middleware ensures that the data sizes are

correct and enough data is available for the algorithm.

If n is the number of workersToShrink, and m is the

number of workersToExpand, this algorithm will produce

O(n + m) getData and receiveData messages, because after

each transfer of data, either the next workerToShrink will be

sending data, or the next workerToExpand will be receiving

data, and the algorithm ends when the last workerToShrink

sends the last amount of data to the last workerToMerge.

This algorithm requires at most ⌈m
n
⌉ sequential getData

messages and ⌈ n
m

⌉ sequential receiveData messages to be

processed by each worker. Each worker can perform it’s se-

quential getData and receiveData messages in parallel with

the other workers and all data can be transferred asynchro-

nously and in parallel, as the order of message reception and

processing will not change the result.

Reference redirection in the astronomy application is

trivial. The farmer only needs to be informed of the new
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Fig. 3 The data redistribution algorithms for applications with spatially independent data. The middleware creates new workers or specifies

workers to be removed (by setting their desired data to 0) and determines the data that each worker should have. It then creates a director which

uses this method to redistribute data. Message passing, denoted by the ← operator, can be done asynchronously and messages can be processed in

parallel

workers on a split, and of the removed workers on a

merge.

Malleability provides a significant improvement over ap-

plication stop-restart for reconfiguration of the astronomy

application. To stop and restart the application, the star data

needs to be read from a file and redistributed to each node

from the farmer. Apart from the relative slow speed of file

I/O, the single point of data distribution acts as a bottle-

neck to the performance of this approach, as opposed to split

and merge which concurrently redistribute that is already in

memory.

4.2 Simulation of heat diffusion

The heat application’s entities communicate as a doubly

linked list of workers. Workers wait for incoming messages

from both their neighbors and use this data to perform the

computation and modify their own data, then send the results

back to the neighbors. The communication to computation

ratio is significantly higher than the astronomy code, and the

data is spatially dependent making data redistribution more

complicated.

To redistribute data in the heat application, the data must

be redistributed without violating the semantics of the ap-

plication. Each worker has a set of columns containing tem-

peratures for a slice of the object the calculation is being

done on. Redistributing data must involve shifting columns

of data between neighboring workers, to preserve the adja-

cency of data points. For this application, because data can

only be shifted to the left or right neighbors of a worker, mal-

leability operations are done with groups of adjacent work-

ers.

4.2.1 SALSA implementation

The getData, receiveData and getDataSize methods are im-

plemented differently for the heat application. The getData-

Size method returns the number of data columns that a

worker has, getData removes and returns data columns from

the workers data, while receiveData adds the columns to the

workers data. Options to these messages can be set to left

or right, which determines if the columns are placed or re-

moved from: the front of the columns, left, or at the end of

the columns, right. These methods allow the director to shift

data left and right over the group of actors.

Figure 4 contains the algorithms used by the director to

redistribute data in the heat application. The arguments to

the algorithm are the same as in the astronomy split algo-

rithm. The algorithm iterates through the workers, shifting

data left and right as required to achieve the desiredWorker-

Data. To preserve data consistency, unlike in the astronomy

algorithms, the getData and receiveData messages sent to

each actor must be processed in the order they were sent to

that actor, however, these messages and the data transfer can

still be done concurrently.

At most O(n) getData and receiveData messages will

be sent by this algorithm, where n is the number of work-

ers. This is because shifting data rightward or leftward as

in the algorithm involves at most 2m getData and recieve-

Data messages, where m is the subset the data is being

shifted over and data is only shifted over a subset once.

At most ⌈
max∀i, s.t. di−dsi>0(di−dsi )

min∀i, s.t. dsi−di>0(dsi−di )
⌉ receiveData messages and

at most ⌈
max∀i, s.t. dsi−di>0(dsi−di )

min∀i, s.t. di−dsi>0(di−dsi)
⌉ getData messages must be
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Fig. 4 The data redistribution algorithm for applications with two-dimensional spatially dependent data. The middleware creates new workers or

specifies workers to be removed (by setting their desired data to 0) and determines the data that each worker should have. It then creates a director

which uses this method to redistribute data. Message passing, denoted by the ← operator, can be done asynchronously and messages can be

processed in parallel, however messages must be processed by workers in the order that they are sent to that worker

processed by each actor, where di is the amount of data at

worker i and dsi is the desired data for worker i.

Reference redirection in the heat application works the

same as adding and removing nodes using a doubly linked

list. After data redistribution, workers that have no remain-

ing data are removed from the list of workers. After this, the

director updates the left and right references of each worker

with the redirectReference method and the removed work-

ers can be garbage collected. All these messages can be sent

concurrently and processed in parallel.

Using malleability with the heat application provides

another benefit over application stop-restart than with the

astronomy application. In astronomy application the data

points (which are star coordinates) do not change over the

execution of the application, however each iteration modi-

fies the data points in the heat application during the simula-

tion of heat diffusion. Because this is the case, each worker

needs to report its data back to the farmer which has to com-

bine the data of all the workers and store the data to a file,

and then redistribute it to the newly restarted application.

The provided algorithm allows the data to be redistributed

concurrently using data already in memory for a large im-

provement in reconfiguration time.

4.2.2 MPI implementation

A sample skeleton of a simple MPI-based application is

given in Fig. 5. The structure of the example given is very

common in iterative applications. The code starts by per-

forming various initializations of some data structures. Data

is distributed by the root process to all other processes in a

block distribution. The xDim and yDim variables denote the

dimensions of the data buffer. The program then enters the

iterative phase where processes perform computations lo-

cally and then exchange border information with their neigh-

bors. Figure 6 shows the same application instrumented with

PCM calls to allow for migration and malleability. In case of

split and merge operations, the dimensions of the data buffer

for each process might change. The PCM split and merge

take as parameters references to the data buffer and dimen-
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Fig. 5 Skeleton of the original

MPI code of an MPI application

sions and update them appropriately. In case of a merge op-

eration, the size of the buffer needs to be known so enough

memory can be allocated. The PCM_Merge_ datacnts func-

tion is used to retrieve the new buffer size. This call is sig-

nificant only at processes that are involved in a merge op-

eration. Therefore a conditional statement is used to check

whether the calling process is merging or not.

The example shows that it is not complicated to instru-

ment MPI iterative applications with PCM calls. The pro-

grammer is required only to know the right data structures

that are needed for malleability. With these simple instru-

mentations, the MPI application becomes malleable and

ready to be reconfigured by IOS middleware.

5 Results

Malleability was tested on a variety of architectures and en-

vironments to determine its performance. Section 5.1 de-

scribes the different environments that were used in the eval-

uations. Section 5.2 measures the overhead of using the au-

tonomous middleware and implementing MalleableActor.

Reconfiguration time and scalability of malleability is com-

pared to application stop-restart in Sect. 5.3 for the astron-

omy and heat applications. Lastly, Sect. 5.4 shows the bene-

fit of using malleability and migration on a cluster with dy-

namically changing resources.

5.1 Test environments

Three different clusters were used to evaluate the perfor-

mance and overhead of malleability. The first, the AIX

cluster, consists of four quad-processor single-core Power-

PC processors running at 1.7 GHz, with 64 KB L1 cache,

6 MB L2 cache and 128 MB L3 cache. Each machine has

8 GB RAM, for a total of 32 GB ram in the entire cluster.

The second cluster, the single-core Opteron cluster, consists

of twelve quad-processor, single-core Opterons running at

2.2 GHz, with 64 KB L1 cache and 1 MB L2 cache. Each

machine has 16 GB RAM, for a total of 192 GB RAM. The

third cluster, the dual-core Opteron cluster, consists of four

quad-processor, dual-core opterons running at 2.2 GHz, with

64 KB L1 cache and 1 MB L2 cache. Each machine has

32 GB RAM, for a total of 128 GB RAM.

The single- and dual-core Opteron clusters are con-

nected by 10 GB/sec bandwidth, 7 usec latency Infiniband,

and 1 GB/sec bandwidth, 100 µsec latency Ethernet. Intra-

cluster communication on the AIX cluster is with 1 GB/sec

bandwidth, 100 µsec latency Ethernet, and it is connected to

the opteron clusters over the RPI campus wide area network.

5.2 Middleware and library overhead

To evaluate the overhead of using the IOS middleware, the

heat and astronomy applications were run with and without

middleware and profiling services. The applications were

run on the same environment (the AIX cluster) with the

same configurations, however autonomous reconfiguration

by the middleware was disabled. Figure 7 shows the over-

head of the middleware services and extending the Mal-

leableActor interface with the heat and astronomy ap-

plications. The average overhead over all tests for the ap-

plications was between 1–2% (i.e., the application was only

1–2% slower using the middleware).

To evaluate the overhead of the PCM profiling and sta-

tus probing, we have run the heat diffusion problem with

and without PCM instrumentation on a cluster of 4 dual-

processor nodes. We varied the granularity of the application

and recorded the execution time of the application. Figure 8

shows that the overhead of the PCM library does not ex-

ceed 20% of the application’s running time. This is mainly

profiling overhead. The library supports tunable profiling,
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Fig. 6 Skeleton of the malleable MPI code with PCM calls

whereby the degree of profiling can be decreased by the user

to reduce its intrusiveness.

5.3 Malleability evaluation

Reconfiguration time was measured by making clusters

available and unavailable to the heat and astronomy appli-

cations (see Fig. 9). The heat and astronomy applications

were executed on the initial cluster with different amounts of

data, then another cluster was added. The time to reconfig-

ure using stop-restart and split was measured. Then a cluster

was removed, and the time to reconfigure using stop-restart

and merge was measured. The AIX cluster was added and

removed from the 4 × 1 Opteron cluster to measure recon-

figuration time over a WAN, and the 4 × 2 Opteron cluster

was added and removed for the other set to measure recon-

figuration time over a LAN.

For the astronomy application, reconfiguration time was

comparable over both the LAN and WAN, due to the fact

that very little synchronization needed to be done by the re-
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Fig. 7 Overhead of using autonomous middleware and the MalleableActor interface for the heat and astronomy applications. The application was

tested with the same configurations with different amounts of parallelism, with and without the middleware and MalleableActor interface

Fig. 8 Overhead of the PCM library with malleability

configuration algorithms and the middleware sent less data

to the AIX cluster than the 4 × 2 Opteron cluster. Due to the

differences in speed of the clusters, the middleware trans-

ferred 20% of the total data to the AIX cluster, and 40% of

the total data to the 4 × 2 Opteron cluster. Malleability is

shown to be more scalable than application stop-restart as

data size increased. Over the LAN, splitting went from be-

ing 46× to 73× faster as data size increased from 100 MB to

300 MB, while merging improved 38× to 57×. Malleabil-

ity is shown to be even more scalable over a WAN, as split

improved reconfiguration time 34× to 103× and merge im-

proved 23× to 67× as data size increased from 100 MB to

300 MB.

The heat application also gained significant reconfigura-

tion time improvements using split and merge. Over a LAN,

split improved from 30× to 45× faster, and merge improved

from 34× to 61× faster than stop-restart as data size in-

creased from 100 MB to 300 MB. Due to the additional

synchronization required by the spatially-dependent data re-

configuration algorithms, split and merge did not improve

as significantly over the WAN. Reconfiguration time using

split increased 9× to 13× and increased 7× to 9× using

merge, as data increased from 100 MB to 300 MB.

The astronomy application was able to gain more from

split and merge because of the difficulty of accessing and re-

configuring its more complex data representation. The con-

currency provided by split and merge allowed this to be di-

vided over multiple processors, resulting in the much greater

improvement in reconfiguration time. However, for both the

heat and astronomy applications, these results show that us-

ing malleability is a highly scalable and efficient reconfigu-

ration method.

5.4 Malleability on dynamic environments

The benefit of malleability compared to migration alone is

demonstrated by executing the astronomy application on a

dynamic environment. This test was run on the AIX cluster.

In one trial only migration is used, while the other used mal-

leability. Figure 10 shows the iteration times for the appli-

cation as the environment changes dynamically. After 5 iter-

ations, the environment changes. Typically, the application

reconfigures itself in one or two iterations, and then the envi-

ronment stays stable for another 5 iterations. For both tests,

the dynamic environment changed from 8 to 12 to 16 to 15

to 10 and then back to 8 processors. The 8 processors re-

moved were the initial 8 processors. Iteration times include

the time spent on reconfiguration, resulting in slower perfor-

mance for iterations when the application was reconfigured

due to a change in the environment. Autonomous reconfig-

uration using malleability was able to find the most efficient

granularity and data distribution, resulting in improved per-

formance when the application was running on 12, 15 and 10

processors. Performance was the same for 8 and 16 proces-

sors for both migration and malleability, as migration was

able to evenly distribute the workers in both environments.
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Fig. 9 Performance of grid-level reconfiguration using the heat and astronomy applications with different data sizes over local and wide area

networks. For reconfiguration over a WAN, the AIX cluster was added and removed from 4 × 1 opteron cluster, while the 4 × 2 opteron was

added and removed for reconfiguration over a LAN. Stop-restart+ shows reconfiguration using stop restart when a cluster was made available,

and stop-restart− measures the reconfiguration time for removing the cluster. Split shows the time to reconfigure the application using split when

a cluster was added, and merge shows the time taken to when a cluster was removed

Fig. 10 Autonomous reconfiguration using malleability and migration

compared to autonomous reconfiguration only using migration. Every

6 iterations, the environment changed, from 8 to 12 to 16 to 15 to

10 to 8 processors. The last 8 processors removed were the initial 8

processors. A non-reconfigurable application would not scale beyond

8 processors, nor be able to move to the new processors when the initial

ones were removed

However, for the 12 processor configuration the malleable

components were 6% faster, and for the 15 and 10 processor

configurations, malleable components were 15% and 13%

faster respectively. Overall, the astronomy application using

autonomous malleability and migration was 5% faster than

only using autonomous migration. Given the fact that for

half of the experiment the environment allowed autonomous

migration to evenly distribute workers, this increase in per-

formance is considerable. For more dynamic environments

with a less easily distributed initial granularity, malleability

can provide even greater performance improvements.

Malleability was also run using the MPI heat applica-

tion on a dynamic environment (see Fig. 11). When the ex-

Fig. 11 Gradual adaptation using malleability and migration as re-

sources leave and join

ecution environment experiences small load fluctuations, a

gradual adaptation strategy is needed. The MPI heat appli-

cation was launched on a dual-processor machine with 2

processes. Two binary split operations occurred at events

1 and 2. The throughput of the application decreased be-

cause of the decrease of the granularity of the processes

on the hosting machine. At event 3, another dual-processor

node was made available to the application. Two processes

migrated to the new node. The application experienced an

increase in throughput as a result of this reconfiguration.

A similar situation happened at events 5 and 6, which trig-

gered two split operations and two migrations to another

dual-processor node. A node left at event 8 which caused

two processes to be migrated to one of the participating ma-

chines. A merge operation happened at event 9 in the node

with excess processors improving the application’s through-

put.
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6 Related work

Several recent efforts have focused on middleware-level

technologies for the emerging computational grids. Dy-

namic reconfiguration in grid environments includes the

GrADS project [4] which includes SRS [24], a library which

allows stop and restart of applications in grid environments

using the Globus Toolkit [9] based on dynamic performance

evaluation. Adaptive MPI (AMPI) [5, 10] is an implemen-

tation of MPI on top of light-weight threads that balances

the load transparently based on a parallel object-oriented

language with object migration support. Load balancing in

AMPI is done through migrating user-level threads that MPI

processes are executed on. This approach limits the portabil-

ity of process migration across different architectures since

it relies on thread migration. Process swapping [20] is an

enhancement to MPI that uses over-allocation of resources

and improves performance of MPI applications by allowing

them to execute on the best performing nodes. Phoenix [23]

is a programming model which allows for a dynamic envi-

ronment by creating extra initial processes and using a vir-

tual name space and process migration to load balance and

scale applications. Our approach is different in that we do

not need to over-allocate resources initially. Such a strategy,

though potentially very useful, may be impractical in grid

environments where resources join and leave and where an

initial over-allocation may not be possible. We allow new

nodes that become available to join the computational grid

to improve the performance of running applications during

their execution.

Other efforts have focused on application checkpointing

and restart as a mechanism to allow applications to adapt to

fault-prone environments. Examples include CoCheck [21]

and starFish [1]. Both CoCheck and starFish support check-

pointing for fault-tolerance, while we provide this feature

to allow process migration and hence load balancing. Our

work differs in the sense that we support migration at a finer

granularity. Process checkpointing is a non-functional op-

erational concern that is needed to allow dynamic recon-

figuration. To be able to migrate MPI processes to better

performing nodes, processes need to save their state, mi-

grate, and restart from where they left off. Application-

transparent process checkpointing is not a trivial task and

can be very expensive, as it requires saving the entire process

state. Semi-transparent checkpointing provides a simple so-

lution that has been proved useful for iterative applica-

tions [20, 24]. API calls are inserted in the MPI program

that informs the middleware of the important data structures

to save. This is an attractive solution that can benefit a wide

range of applications and does not incur significant overhead

since only relevant state is saved.

As far as we know, this work is novel in that it is the first

presentation of a generic framework for autonomous recon-

figuration using dynamic entity granularity refinement. The

selected related work is far from comprehensive. For a more

in depth discussion of middleware for autonomous recon-

figuration over dynamic grid environments, the reader is re-

ferred to [26].

7 Discussion

This paper describes a framework for dynamic application

granularity, or malleability, which enables applications to

dynamically redistribute data and add and remove process-

ing entities. Malleability is not limited to farmer-worker ap-

plications where there is no inter-worker communication,

nor to applications with spatially independent data. MPI

and the SALSA programming language were extended with

language-level abstractions and libraries to facilitate the use

of malleability. A protocol to prevent malleability from cre-

ating data inconsistencies is given. Two iterative scientific

applications are made malleable using these abstractions and

libraries: an astronomy application with a farmer-worker

communication topology and spatially independent data,

and a heat application with a doubly-linked list communica-

tion topology and spatially dependent data. Efficient linear

time algorithms are given for concurrent data redistribution

of both spatially independent and dependent data, and are

evaluated using representative applications.

Reconfiguration using malleability is shown to be ap-

proximately 10 to 100 times faster than application stop-

restart for the applications and environments tested. These

results show that dynamic malleability is significantly more

efficient and scalable than application stop-restart and can

be done efficiently with respect to application runtime. Ad-

ditionally, dynamic malleability is compared to migration

on a dynamic cluster, running up to 15% faster in the dif-

ferent configurations tested. This work argues that dynamic

and autonomous malleability is a valuable asset for iterative

applications running on dynamic environments.

IOS’s generic interface allows for various languages and

programming architectures to utilize the autonomous mal-

leability strategies presented in this work. Additionally, the

director/malleable entity strategy presented allows for dif-

ferent data distribution algorithms to be implemented for di-

verse data representations. Modular director and malleable

actor implementations allow research into more efficient

data redistribution algorithms. Ideally, applications will only

need to extend library-provided malleable actors, and be

made autonomously malleable with a minimum amount of

code modification.

This work is part of ongoing research into making ap-

plications adaptive and highly responsive to changes in

their distributed execution environments using middleware.

As distributed environments grow in size and become in-

creasingly heterogeneous and dynamic, new reconfiguration
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methods and policies, such as those described in this paper,

will become a necessity for distributed applications, allow-

ing applications to become more efficient and fully utilize

existing grid computing environments.
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