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Summary. We present an asymptotic expansion of the distribution of a
random variable which admits a stochastic expansion around a continuous
martingale. The emphasis is put on the use of the Malliavin calculus; the
uniform nondegeneracy of the Malliavin covariance under certain truncation
plays an essential role as the Cramér condition did in the case of independent
observations. Applications to statistics are presented.
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1. Introduction

We consider a sequence of random variables X,,n € N, which have a sto-
chastic expansion X, = M,, + r,N,, where for each n € N, M,, is the terminal
random variable M, 7, of a continuous martingale (M, F, ).,y with
M, = 0,N, is a random variable, and (r,) is a sequence of positive numbers
tending to zero. The martingale central limit theorem says that if the
quadratic variation (M,), converges in probability to 1 and if N, = O,(1),
then the distribution of X, converges weakly to the standard normal dis-
tribution N(0, 1). See, e.g., Jacod-Shiryaev [14].

As for refinements of the central limit theorem for martingales, we know
several results. Among others, Bolthausen [4] and Haeusler [11] obtained
Berry-Esseen type bounds. Liptser-Shiryaev [17] presented the rate of con-
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vergence in the central limit theorem for semi-martingales. Recently, Myk-
land [20] obtained an asymptotic expansion of the expectation E[g(M,, r,)] for
a class of C?-functions g. There exists an example of X, for which
X, =Z+ 0,(r)) with Z a N(0, 1) random variable and m any positive integer,
however the distribution of X, does not admit approximation by any con-
tinuous function up to o(r,). This example suggests the necessity of an as-
sumption of the regularity of X,. Generally speaking, in the case of
independent observations, in order to prove the validity of the asymptotic
expansions one usually needs a certain regularity condition for the under-
lying distribution, such as the Cramér condition; this type of condition then
ensures the regularity of the distribution and hence the smoothness as-
sumption on g can be removed (e.g., Bhattacharya-Rao [2]). On the other
hand, it is well-known that the Malliavin calculus leads to the regularity of
the distribution of a functional with nondegenerate Malliavin covariance.
Therefore it seems natural to apply this theory to the asymptotic distribution
theory, and the emphasis of this article is put on the use of the Malliavin
calculus.

Watanabe [31] introduced the notion of asymptotic expansion for gen-
eralized Wiener functionals, and it was applied to heat kernels (Watanabe
[31], Uemura [30], Takanobu [27], Takanobu-Watanabe [28]). Kusuoka-
Stroock [16] took another approach toward asymptotic expansions for cer-
tain Wiener functionals by using the Malliavin calculus. As for statistical
estimators, Watanabe’s theory was applied in [32, 37, 33, 34, 23] to obtain
asymptotic expansions of their distributions. We may regard these results as
a refinement of the martingale central limit theorems. However, the situation
considered here is different from the one considered in our previous papers in
the sense that the limit random variable of a sequence of weakly converging
random variables may not exist on the same probability space as the se-
quence exists on; as a matter of fact this situation is rather usual in central
limit theorems. In this sense, our results are principally concerned with dis-
tributions, and this fact is reflected by the proof where Berry-Esseen’s
smothing inequality (or Fourier analysis) plays an important role together
with estimations of characteristic functions by means of the Malliavin cal-
culus.

In this paper, we assume that the Malliavin covariance of either X, or M,
is nondegenerate under truncation by a functional ,; more precisely, we
assume a certain regularity condition (Condition [r] stated in Section 3) of
characteristic functions, as this is a consequence of the nondegeneracy of the
Malliavin covariance in the case of Wiener functionals. Under this condition,
we will present an asymptotic expansion of the distribution of X, in Section 3
(Lemma 1’), and prove the validity of it in Section 4.

Let X be a differentiable, R-valued Wiener functional defined on a Wi-
ener space. Assume that there exists a functional ¥ such that

sup [ul/ |[E[e"™* X*y]| < 00, a€Z, .
ucR
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If j > 1, then the function g(x) = (21)"' Jr e " E[e"*Y]du is well-defined: in
fact, g(x) is a continuous version of E[y/|X = x|du* /dx, where u¥ is the in-
duced measure of X. The functional y is a truncation functional extracting,
from the Wiener space, the portion on which the distribution of X is regular.
If X is almost regular, we may take iy nearly equal to one. In this sense, we
call g the local density of X on . Under regulatiry conditions, we will
present asymptotic expansion of local density (27)~ f e " E[e™Xn) ldu and
prove a non-uniform bound for the error term of th1s expansion (Lemma 1 of
Section 3). From this result, one obtains the asymptotic expansion of the
mean value E[f(X,)] for any measurable function f of at most polynomial
growth order.

For practical purposes, the (partial) Malliavin calculus seems to be the
most effective to verify Condition [r]: with the aid of the (partial) Malliavin
calculus, the main results will be stated in Section 2 and proved in Section 5
as corollaries of Lemmas 1 and 1” of Section 3.

These results are generalizations of those in [35] and implement the theory
of higher order statistical inference, especially inference for diffusion type
processes. We will present in Section 6 applications of our result to estima-
tion problems for unknown parameter of ergodic diffusions and for diffusion
coefficients of diffusion type processes. For example, one can show the
uniform nondegeneracy (with certain truncation) of the Malliavin covariance
of the functional fo X dwt/Tz where /: R — R and X; is a one dimen-
sional, stationary, ergodic diffusion process satisfying some conditions. Thus
it is possible to derive the asymptotic expansion for this functional. It is well-
known to statisticians that the asymptotic expansion is an indispensable tool
to develop the higher-order statistical inference (Ghosh [9], Pfanzagl [21, 22],
Akahira-Takeuchi [1], Taniguchi [29], and vast literature). In spite of its
importance, there were no results for semimartingale models from lack of
expansion formulas for distributions. Beyond the first-order argument,
Mishra-Prakasa Rao [19] presented the Berry-Esseen bound for maximum
likelihood estimator for linearly parametrized (but in general nonlinear)
diffusion processes. For instance, their result gives O(T$)-error bound for the
Ornstein-Uhlenbeck process, and in this case, the O(T?)-bound was obtained
by Bose [5]. Our result concerning the second-order asymptotics improves
their results for a class of nonlinear diffusion processes as well as the linear
diffusions.

The estimation of diffusion coefficients (volatility) is an essentially im-
portant problem in economics. Among many papers, the recent crucial work
in the first-order was done by Dohnal [6] and Genon = Catalot-Jacod [7]. No
results have been known on asymptotic expansion except for the very trivial
cases. We here treat an estimator for the linear (but we often met in appli-
cations) parameter of the diffusion coefficient of Itd processes, and present an
asymptotic expansion as an application of our general result. If the diffusion
coefficient is parametrized non-linearly, then reasonable estimators asymp-
totically have a non-normal distribution even in the first-order, and this case
would be difficult to treat, at least from the second-order aspects, for we have
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not yet had any general higher-order limit theorem for such non-central
cases.

The first applications of the Malliavin calculus to statistics were done to
derive asymptotic expansions for small diffusions. The second-order expan-
sion was important to go into the second-order inference from already es-
tablished first-order theory, and the previous second-order results
(asymptotic expansion, second-order efficiency, etc.) for small diffusion
models are again obtained by using the results here. Another statistical ap-
plication is the asymptotic expansion of mixture type estimators. One there
meets an unusual expansion; unusual because each term consists of a non-
linear function multiplied by normal density, and hence it is no longer a
familiar Edgeworth expansion. This result has statistical importance, since
from this formula, we can show the inadmissibility of the natural prediction
region in the decision theory, as it is referred to as Stein’s phenomenon
(Takada-Sakamoto-Yoshida [26]).

The method here is a “global” approach in the sense that it applies the
Malliavin calculus directly to Wiener functionals. The global approach has
the advantage of applicability to various kinds of problems, a few of which
were mentioned above. On the other hand, as we recently found it, with the
aid of the Malliavin calculus, there is still another method (““local’” approach)
which provides in a more effective way a solution to expansion of a func-
tional of a process with the geometrically strong mixing property.

2. Main results

For each n € N, let (W,, H,, P,) denote an r-dimensional Wiener space, and
let Dy be the Sobolev space of Wiener functionals on #, (cf. Ikeda-Wata-
nabe [12]) More generally, D) ¢ may be the Sobolev spaces in the partial
Malliavin calculus (Michel [18] Bismut-Michel [3], Kusuoka-Stroock [15]);
for definition see Subsection 6.1. For each n € N, D is equipped with a
Sobolev norm, which is denoted by || - ||, ; without the index n. Let (r,) be a
sequence of positive numbers tending to zero as n — oco. We consider func-
tionals X, on (W,,P,), n € N, defined by:

X, =M, +r,N, )

where, for each n € N, M, is the terminal random variable M, 5, of a con-
tinuous martingale (M, 0 <t <7,) defined on W, with respect to some
stochastic basis (IF,: 0 < ¢ < T,), and N, is another random variable on 1.
We do not assume that N, has particular stochastic properties, such as the
martingale property. The predictable quadratic variation process of
(M, 0 <t <T,)is denoted by (M,), and for simplicity we will use the same
notation (M,) for (M,) .

Let ¢ be the density function of the standard normal distribution. As in
[33, 34], the truncation functional y, plays an important role in this article.
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We consider the following conditions (the first one is the martingale as-
sumption stated above):
[A1] M, is the terminal random variable of a continuous martingale van-
ishing at t =0, and X,, = M,, + r,N,, for any n € IN.
[A2]y My, N, € D)y and <Mn>T € Dy, for any p> 1. Moreover, sup,
M4l 1+ 0,y ()7, = D), + Sup, Nl < 00 for any p> 1.
[A3] The random vector (Mn,rn ((M,) 7, — 1), N,) converges in distribution
to a random vector (Z, &, ) on a certain probability space.
[A3], The condition [A3] holds and there exists the integrable bounded de-
rivative 0%(E[¢|Z = z]¢(2)).
[A4]; There exist y, € Mp>1 Dy, satisfying the following conditions: (1)
0 <y, <1; (2) There exists a constant ¢ such that 0 < a < 1/3 and such
that, on {w: r,,_(l_a)|<M,1>Tn — 1] > 1}, D'y, (w) =0 as. for all j € Z" with
0<j<k Q) y,—"1 as n—o0; (4) There exists ¢#>1 such that
sup,E[|D/ x//,7|H%,0X ] <ooforany p>1andje€Z" with 0 <j<k.

We then have the following theorem:

Theorem 1 Suppose that Conditions [A1], [A2]3, [A3]+ and [A4]s hold. Set A,
= sup,|PLX, <x] — [*_ pu(z)dz|, where

pn(2) = ¢(Z)+§rn55(E[fIZ=Z]¢(Z))—rn L(ElZ = Z)¢(2)) -

Then there exist a sequence €, with €, = o(r,) and constants C,(p > 1) such
that

A < Gy (1 +10g" (5, ) ) 1= vl + e
Remark 1. (1) If [A2], and [A4], hold true, then the integrable bounded deri-
vative 02(E[¢|Z = z]¢(z)) exists, and hence we can replace [A3], by [A3].

(2) The condition of the existence of the integrable bounded derivative
O*(E[¢|Z = z]¢(2)) can also be removed if (Z, ¢) is defined on a Wiener space
and if Condition [r] is satisfied for (Z, £, 4) (the definition is given in Section 3
below).

In case the Malliavin covariance of X, (or M,) is bounded from below
with large probability, we have the following result.

Theorem 2 Let Y, denote either X, or M,, and let oy, be the Malliavin cov-
ariance of Y,. Assume that Conditions [A1], [A2]; and [A3]+ hold. Suppose that
for some positive constant ¢, lim,_, P(ay <¢)=0. Then, for any p > 1,
there exist a constant C and a sequence €, €. = o(r,), such that

n»-n

A <C(1+ log"(r;! ))P(oy, < c) +€,

for any n € N.
The following four theorems are concerning asymptotic expansions of the
local density or are obtained through those expansions.
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Theorem 3 Suppose Conditions [A1], [A2]4, [A3] and [A4]4 are satisfied. Then
the local density gg of X, on V, exists and, for any o € Z.., there exist a
sequence (e,) with €, = o(r,) as n — oo, and a constant C; for any p > 1 such
that

sup [x|[g, (x) — pu(x)| < Cor, T =l + €

xeR

for any n € N, where p, is the function given in Theorem 1.
The following theorem gives the asymptotic expansion of E[f(X,)] for a
measurable function f.

Theorem 4 Suppose Conditions [A1], [A2]4, [A3] and [A4]4 are satisfied. Then,
Jor any o € Z,, there exist a sequence (€;) with (€;) = o(r,) as n — oo, and a
constant C; for any p > 1 such that

B = [ 1@ < o U

+ X)) =l
+ Il (R, vy €0

for any ne€N and any measurable function f:IR — R satisfying
E[lf(Xa)|] < oo and [y |f(x)|pa(x)dx < oo, where p' =p/(p—1) and the
measure v* is defined as dv*(x) = (1 + |x|*)"*dx.

The Malliavin covariance dominates the convergence rate explicitly in the
following theorem.

Theorem 5 Let Y, be either X, or M,,. Suppose that Conditions [A1], [A2)], [43]
are satisfied. Moreover, assume:

[A4'] There exist s, € D%, 4 =, Dy 4 satisfying

(D) sup,,eﬂ\1|\s,,||p’4 < 0o and sup,en Els,?] < oo for any p > 1;

(2) lim,_. P(ay, > s,) = 1.

Then, for any a€Z.,p>1 and ¢ >2/3, there exist a sequence
(€)= (€274 with €, = o(r,) as n — oo, and a constant C, such that

suﬂlg |X|“|g2(x) —pa(x)] < C;rn_q/P(aY” < sn);la +é
xe

for any n € N. Here ¢° implicitly depends on a certain choice of the truncation
Sfunctional \,, in the proof.

As a corollary, we have asymptotic expansion of the expectation of
funcionals of X,,.

Theorem 6 Let Y, be either X,, or M,,. Suppose that Conditions [A1], [A2]4, [43]
and [A4') are satisfied. Then, for any o« € Z,,p > 1 and q' > 2/3, there exist
a sequence (&) = (€'%P4) with & = o(r,) as n — oo, and a constant C, such
that
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B = [ 16 @] <G + 1 ean)

(79 P(oy, < s,)7 + )

for any n € N and any measurable function f satisfying E[|f(X,)|] < oo and
Jr I @) lpa (x)x < o0.

Remark 2. To obtain our results, it is not necessary to assume that M,,, N,,, (M,,)
themselves are smooth Wiener functionals as in [A2],. In fact, we can prove
the same inequality as Theorem 3 under Conditions [A1], [A3] and [A4”]:

[A4"] There exist M, € D%, _s,N, €Dl s, & €D, and §, € D2 _, sa-

00—,5?
tisfying the following conditions:

o<y, <1

(2) There exists a constant @,0 < a < 1, such that on {r4|&| > 1}, Djyy, =0
a.s. for 0 <j<4; moreover, with &, =r,'((M,) — 1), if |M, — M|+
IN, = N!| + |&, — E/| # 0, then Diay, =0 a.s. for 0 < j < 4;

3) Y, =P lasn— oo

(4) For some 1> 1.sup,oyE[IDjy . 03f] <50 for any p> 1. where
X, = My £ rN

(5) For any p > 1,sup,en M5 + supuen [Nl 5 + supyenl|&, .4 < oo

3. Preliminary lemmas

Our argument suits Wiener functionals on Wiener spaces, however, we will
start from a more general setting to clarify necessary assumptions for our
proof. There is a simple example of X, whose distribution converges to the
normal distribution but has an atom with mass r,, hence, it does not admit
approximation up to o(r,) by any continuous function. This example shows
that, in order to obtain such approximation, it is necessary to impose some
regularity condition on the distribution of X,,. For this purpose, Condition [r]
below will be adopted, motivated by the Malliavin calculus. Though, in the
later subsection, we will consider Wiener functionals and use integration-by-
parts formulas on Wiener spaces to verify it, Condition [r] originally does not
depend on a particular form of the integration-by-parts formulas.

In this subsection, we denote by (W, P,) probability spaces indexed by
n € N. Let ¥, be a random variable defined on W,, and let ¥,, be random
variables on W, with index u € A, for each n € N, where A, is a subset of R.
For each n € N, ¢, denotes a random variable on W, satisfying 0 <, < 1.
Let j € Z,. We say that Condition [r] is satisfied for (Y, ¥, Yuu, Au,j) if
W, Y, € L' for any u € A,,n € N, and

sup [ul |E[e"", Y, u]| < 0o .
LN

Moreover, if A, =R, Y, =Y,y,=1, Y,,=Y foranyue A, =R,neN,
we simply say that Condition [r] is satisfied for (Y, Y’, ).
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We are still considering a sequence of random variables X,, on W, de-
composed as: X, = M, + r,N,, where r, is a sequence of positive numbers
tending to zero as n — oo; for each n € N, M, is the terminal random variable
M, 1, of a continuous martingale (M, 0 < ¢ < T,) defined on (W,,P,) with
respect to some filtration (IF, : 0 <t < T,), M, = 0, and N, is another ran-
dom variable on W,. (M,) denotes the predictable quadratic variation of M,,
and the terminal value (M,); will be often denoted by (M,) for simplicity.

Hereafter we fix a truncation sequence y,, satisfying 0 <y, <1 a.s. As-
sume that there exists a constant @, 0 < a < 1/3, such that, if ,(w) > 0, then
M), — 1] < 1 as.

Each of the following conditions specifies the limit distribution of X,.
[C1] (a) ¥, =7 1 as n — oc; (b) the family (7, ' ((M,) — 1), y,Ny: n € N) is
uniformly integrable; (c) there exist random variables (Z,&,5) on a prob-
ability space such that

(M, 7, (M) = 1),N,) = (2, ¢,m)
as n — oo.
[C1], ¢, =P 1 as n — oo; For any p1,ps,p3 € Z4,

sup E [y, |[M | |, (M) 7, — DI N, | < 00
neN

There exist random variables (Z,&,5) on a probability space such that
(Myrg (My)y, — 1).Ny) = (Z,E,1) as n — .

Here the expectation means the one with respect to the probability
measure P,. The martingale central limit theorem holds that Z has the
standard normal distribution under Condition [C1] or [C1], (Jacod-Shiryaev
[14]). However, it does not generally lead to the asymptotic expansion.
Therefore, we need certain regularity conditions to go further.

Put

P“(M7Z’ r) = e_iuz_%uzr(_l.au)aeiuz-%uzr
and

1,2
O,(u,z,r) = e "P,(u,z,r)

for « € Z,,u,z,r € R. Define B* ,C* as follows:

nud S nu

B, = Z (;) (raND)* a2 Op (1, M, 0)
=0
- Qﬁ(u7Mn7 <Mn> - 1)}

and

. « o= —iur,
Cou = Z(ﬂ>ulrnl{(rnNn) P8y pe iy

- Op(u,M,, (M) — 1) .
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With ¢g=(1-a)/2, let Al={ucR|u/<r,9 and let A=
{u e R: 1 < |u| <r,?}. The following conditions ensure the regularity of X,,.
[C2]; Condition [r] is satisfied for

@) (X ¥, 1, R = A, 3);

(b) (X, 0, B, AL, 3);
© (X, ¥, CL, AL 2).

[C2], For any o € Z ., Condition [r] is satisfied for

(@) (X, X2, R — A), 4);
(b) (X ¥y, B2, AL, 4):
© (X, €L AYL3).

For convenience of reference, we name the following conditions while
they are fully or in part derived from the above conditions.
[C3]; There exist integrable bounded derivatives &/(E[(|Z = z]p(z)) for
j=0,1,2, and Condition [r] is satisfied for

(@) (Z,¢,3);
() (Z,n,2).

[C3]4 For any o € Z., Condition [r] is satisfied for

(a) (Z,27¢,4);
(b) (Z,2%n,3).

As shown later, [C1], [C2] (b) = [C3l4(a), and [Cl]. +[C2]4(c) =
[C3]4(b). Furthermore, [C1]+ [C2]5(b) = [C3]5(a), and [C1]+ [C2];(c) =
[C3];(b).

Let §*(u) = E[e™),X?]. Under Condition [C2], (a), the function §* is
integrable with respect to the Lebesgue measure for each « € Z, and n € N;
we can define g% by

i) =5 [ e g

Then ¢%(x) = x*¢°(x) for any o € Z... g%(x) is referred to the local density of
X, on y,,.

Let j > 2 and let k be any random variable. If, for any « € Z,,Z%k € L
and  sup,.g|ul|E[e"“Z"K]| < 0o, then a version of the function
y»—»yﬁB;'(E[Z“K\Z =y|¢p(v)), i <j—2, is continuous, tending to zero as
|v| — oo, and integrable with respect to the Lebesgue measure for any
opEeEL,.

Put ¢, = E[Y,], A(x) = E[{|Z = x] and B(x) = E[§|Z = x]. Define #°(x) by

Iy (x) = cap(x) + %Vn@,f(A(X)qﬁ(X)) — 10:(B(x)$(x)) -

Under Conditions [C3]4, A0(x) is well-defined. Let h*(x) = x*h%(x) fora € Z, .
With h = [ €“h%(x)dx, Conditions [C3], and integration-by-parts yield
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i) = [ @ l0g0) + 30 P) ~ nOBEIC)ds
= [ e+ 3ralw) + ) g0
where

Ay (u,x) = A){(iu)*x* + 2iuox® " + oo — 1)x* 2}
and
B, (u,x) = B(x)(iux* + ox* ) .
We may from the beginning define fzﬁ(u) by the second expression above: it is

well-defined just under [C1],.
We have the following preliminary results:

Lemma 1 Suppose Conditions [CI]+ and [C2]y are satisfied. Then, for any
o € Z.., there exist a sequence (&) with € = o(r,) as n — oo, and a constant
C, for any p > 1 such that

sup w7 lgn () = B ()] < Cor N1 =l + €
xe

for any n € N.

Lemma 1" Suppose that Conditions [CI] and [C2]5 hold, and that there exists an
integrable bounded second derivative O*(E[E|Z = z]¢(z)). Then there exist a
sequence €,, €, = o(r,), and positive constants C,(p > 1) such that

Ar < Go(1+10g" (5 ) )1 =y s + €

for any n € N.

4. Proof of preliminary lemmas

In this subsectiorl, we will prove Lemma 1 and Lemma 1’. First, we de-
compose §*(u) — h%(u) into three parts:

G2 00) — () = () + K2(0) + L) |
where
JHu) = E[, X"
_Ey, ;@(mm)“‘f‘gﬁ(u,m, (M) — 1)

1 .
— ErnE[e’”ZAa(u, Z)];
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Ely, Z( ) “POp(u, My, (M) — 1)e™]

=0
— EWY,0,(u, M,, (M,) — l)eiuM”]
— r,,E[ei”ZBa(u,Z)] ;

and

L(u) = E[,0x(u, My, (M,)) — 1)e"™] — E[,,(—id,)"e ] .
Define Sg(u,r), p € Z, by
Sp(u,r) = e*%uzra{je%“z’ = i"Py(u,0,7) .

Then it is easy to show the following lemma.

Lemma 2 (/) S/i(u r) = Zﬁ 0C i rU+h/2 K where ¢ =0 and % = 0. In
particular, ¢§ = 1;¢§ =0, ¢} fl ch=1,c1=0,3=1.

@ Plizir) = S )0 IS)

Lemma 3 Suppose Condition [CIl]y is satisfied. Then, for each u € R,
J¥(u) = o(r,) as n — co. Moreover, if Condition [C2]4 (b) is satisfied, then
on | (u)|du = o(r,) as n — oo.

Proof. Let &, = r,'({(M,) — 1). Define j5 (), j3,(u) as

o—1
=V, <0<) ﬂ{Qli(u M,,0) — Qp(u, My, r,E,) e
=0

and

jg,n(u) = lpn{Qoz(u,Mn, O) — Q“(M’Mm rnén)}eian )

Then, from Condition [C1], and continuity of Oy, one has r, /% (u) — 0 as
n—oo for each ueR. On {w:,(w) >0}, [r,&|<rl¢ as. Since
0 <y, <1, the boundedness of moments in Condition [C1], implies the
uniform integrability of (r,'ji,(u):n € N) for each ueR; hence,
r EE Nl = o(1) as n — oo for each u € R. Since Q,(u,z,0) = P,(u,z,0)
= z*, we have, from Lemma 2,

" /o ) ) I .
) = {M: B (j ) (M8, b }X

J=0
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_ eianlpn Mf;rn_l(l — e%”zrnin) + iaM,?_luéne%”z"”é"
1 o—2 2 22\ hLilré
oy = DM (G + Gt e
o B HB_ _j+B .
e5”r”c”z M“ ﬂZcr Exw 5.
=3 B
As rn“(l —em) = —x fol e"ds, it follows, from Condition [C1],, that the

distribution

Liry 2, ()} = L{e"“Z {—%Lﬂzfé FiowZ ¢ 4 L“; D Z“%} } .

Again by Condition [C1], and implied uniform integrability, we obtain

1 EL ()] — S EleAu(u, 2)]

for each u € IR. Obviously
o 0 0 1 iu.
i) = ELji, () + 5, ()] = 5 raEle" 4w, 2)] ; (1)

therefore J?(u) = o(r,) as n — oo for each u € R.
Under Condition [C2],(b), there exists a constant C; independent of
n € N and u € R such that

1 EL () + 73, )] [11 () = W Ele™p,B) ][151 (1)
<Gl +u)” (2)
for any n € IN and any u € R. It is also possible to replace A; by Ag in the

above inequality under Condition [C1],. With (1), (2) and the fact that
J¥(u) = o(r,), we see that

|E[e"” 4, (u, Z)]] < 2C1 (1 + Jul*) ™! (3)

for any u € IR. Therefore, by dominated convergence theorem, we obtain

[ ztwlda = o)
A

n

asn —oo. ¢

By induction with (3), we see that [C1], + [C2],(b) = [C3]4(a): it is suf-
ficient to note the inequality
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sup |ul*|E[e™?27¢]| < 2Cy + 20 sup |ul*|E[e™? 227

|u|>1 Ju|>1
+ a0 — 1) sup |ul*|E[e™? 27| .
Jul>1

Similarly, we see that [C1] + [C2]5(b) = [C3]5(a).

Lemma 4 Suppose Condition [Cl]+ is satisfied. Then, for each u € R,
K*(u) =o(r,) as n — oo. Moreover, if Condition [C2]s(c) is satisfied, then
S0 IK; (u)|du = o(r,) as n — oo.

Proof. Let
kllx,n (”) = 'an%(“vA/[m ”nfn)(emxn - eiuM") + 0,0, Ny Oy 1 (u,Mn, Vnén)eiuX”
and let

oa—2
k2n =y, ( ) ﬁQﬁ(” My, 1,y )e k-
=0

Then K (u) = E[k} ,(u) + &5 ,(u)] — r,E[e"*B,(u, Z)]. From Condition [CI],
and the property of ,,, one has r, 'E[k}. ) — 0asn— oo for each u € R. In
view of Lemma 2, we see, from Condition [C1],, that

L{Mn; &y Ny Oui (”aanrnén)7 ro(uaan rnfn)}
= L{Z,inZ27" 2} ;
hence

L{r, 'k, (u)} = L{"*(iuZ"n + «2* ')} .

The uniform integrability implies r, 'E[k} ,(u)] — E[e"*B,(u, Z)] — 0; there-
fore KZ(u) = o(r,) as n — oo for each u € R.
Since

r ' Ki(u) = uE[e"™", Cy ] — E[e"By(u,Z)]

nnu

it follows, from Conditions [C2], ( ) and [C1],, as in the proof of Lemma 3,
that |E[e ”‘ZB (u,2)]] < C>(1 + [u]*)™", and hence that

I K )L ()] < 2C5(1 + )™

for any n € N and any u € R, where C; is a constant independent of n € N
and u € R. Hence, we have [, r,'|KZ(u)|du — 0 as n — co. ¢

By the argument above, we see by induction that [CI], +[C2]4(c)
= [C3]4(d), and similarly that [C1]+ [C2]5(c) = [C3]5(d).

Lemma 5 Suppose Condition [C1], holds. Then, for any p > 1, there exists a
constant C, = C,(a) independent of n € N and u € R such that
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L5 () [1po () < Cp(fu + DT =, 1
for any n € N and u € R. Moreover,

[ il < Gt =

n

Proof. We extend (M, nt)o<t<r as M,; = M, r, for t > T,, the filtrations also
extended in a similar way. Define stopping times 7, as

=inf{t > 0: r, "I ((M,), — 1) > 1} ;
obviously, on {w: ,(w) > 0}, a.s. T, < 7,. By It0’s formula,

R Q1<M’MH’TMT"’<MH>THAT” 1) = (—id,)* e i’
T, Nty
+ U(u7Mn,t7 <Mn>[ - 1)dﬁln,t )
0

where

Uu,z,r) = (—i0, )" [iue™= "] .

If 1 < 7, and u € AL, then u?((M,), — 1) < u?rt=-r, " ((M,), —1) < 1. By
Lemma 2, we see that
|P (u z, }" luz+2u r| < Z ( )lc Lx)‘Zlccfﬁ|r‘ﬂ/2
f=0 j=0

if u?r < 1. Therefore, with some constant c¢(x),

SUp [Py (1, My (M,), — 1) e (1)

ue/\
z<Tn/\z,,

2
ZM:? //\}‘c,, T/\r,, + l)ﬁ/ .

Here, for a process X, Xt = SUPg<;<|X;|. Since
i
U(u,z,r) = iuPy(u,z, r)e™ 2"
+ oP. (u 2 r)eiuz+%u2r
o—1\U, <, )

by using the Burkholder-Davis-Gundy inequality and the inequality
(My)7 r. < 147y, we can obtain

T, Nty
H / U, My, (M), — 1)dM,,
0

< 1
o P(|u| + )

forany u € A” n € N, where p’ = p/(p — 1) and C,, is a constant independent
of u,n. Consequently,
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(o) = B, [ UM (04, ~ Db g0

— 15, -1 [ " U, My, (M), — 1My 1y (1)
< Gl =Y lly (] + 1) :

hence

[ it < G271 -

n

nilLp

for some C,. ¢

Proof of Lemma 1. Conditions [C3], implies that for each « € Z_, there exists
a constant C; independent of u € {v € R: |v| > 1} and n € N such that

2 ()] = |enEle2%) + %r,,{(iu)zE[ei“ZZ“é]
+ 2iunE[e™ 7% E] + (o — 1)E[e™ 2% 2¢])}
+ ro{iuEle™ 7%n] + aE[e"? 2 ]}
< (2m)e, | Hy ()| (u) + Caryu >
for any u € {v € R: |v| > 1} and n € N; hence,
o it = ot @

By Fourier inversion formula, we have

[ &Gzt ()

1
sup |g%(x) — h* =su
supg;(x) — () = sup

<5/ O(Iéi,‘(u)l + Vi) e

/|A“ — () )

It follows from Lemmas 3, 4 and 5 that

/ 19 (u) = h()ldu < Cor 221 =, |l + 0(ra) (6)

From Condition [C2],(a), one has, for some constant C, independent of
necNN,

/ 62(u)ldu < Carl® = o(r,) 7)
—A

as n — oo since a < 1/3 by definition. Consequently, it follows, from (5), (6),
(4) and (7), that
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sup 195 (x) = B ()] < Cor, 211 =, [l + 0(ra)
xXe

This completes the proof. ¢

For the proof of Lemma 1’, we use the following lemmas, which can be
proved in a similar fashion as Lemmas 3, 4 and 5. For details, see [35]. Put
Jy=J% K, =K and L, = L.

n?

Lemma 3’ Suppose that Conditions [C1] and [C2)5(b) are satisfied. Then

[l e — 0
A

n

as n — oQ.

Lemma 4" Suppose that Conditions [C1] and [C2]5(c) are satisfied. Then

[l )t = o)
A

n

as n — oQ.

Lemma 5" For any p > 1, there exists a constant C, such that for any n € N,
[ Ll < €, (1 Tog" (1)) 1 =,

Lemma 6" (1) Suppose Condition [C2]3(a) is satisfied. Then

[l e = o)
R-A?
(2) Under Condition [C3]3(a),

et ()

E[eil‘z(—%uz)éj] - /]R S ORELEZ = Z)g(2))ds .

(3) Under Condition [C3]3(b),

/ 0 ‘”lilrnli“E[eiuZn“d“ = o(ry)

n

du = o(ry)

and

and

Eliune™] = /]Reiuzaz(—E[MZ =z|p(2))dz .
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We will now prove Lemma 1’.

Proof of Lemma I'. Define G, R — R, by

Gn(x) - /:C E[wn|Xn :y]'an(dy) ’

where p¥ is the distribution of X,, and define H,: R — R by

o) = [ | B0t + yneEidz =106

o]

—m@wwz=4maﬂ&.

Then, from Lemma 6°, we see

and

Since

iim_+iG,(x) < fim_ [ 1dG, ()
X——00 x——o00 |
= lim E[ly, <, [X]]
=0 ,
the integration-by-parts yields

/(; Gy (x)dx = /: IX[dG,(x) < 00 ;

in the same fashion,

| e, - Guonar = [ 5idGi ) < o
0 0
Hence, by [C3]; one has

/R |G (x) — Hy(x)]dx < o0 .

317

Clearly, G,(—o0) = H,(—c0) =0 and G,(o0) = H,(o0) = E[,]. Thus, by
applying the smoothing lemma (e.g., Shimizu [25]) to G, and H,, we obtain,

for oo > 1,
sup |Gy (x) — H,(x)|
x€R

< Tr*u/w ™G (10) — H () + 247" sup | H, (x) 7
[ua] <7 ’

= A .
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Since

/ Jul ™ (1G (a0)| + | Ho () )l = 0 (1)
R—A)

from Lemma 6’, we obtain from Lemmas 3'-5’

Ny <t 0] 1K)+ 1)

et [ W G0+ 1 o)

]

+ 247 sup |H! (x)|r*

= G (14+10g" (=) ) 1L = vyl +0(r) -

Since
Suplen(x) - E[l(foO,XJ (Xn)“
= Supx|E[l//n1(foo.x] (Xa)] — E[l(foo.x] (Xl
<=l
and
E z)dz — z)dz| < ||1 — ;o
wl [ Ewloee— [ gl <11 wl,

we have finished the proof. ¢

5. Proof of Theorems

Proof of Theorem 3. We will verify Conditions [C1], and [C2]; of Lemma 1.
[C1], is obvious from [A2],, [A3] and [A4],(3).

Conditions [A2], and [A4],(4) with the integration-by-parts formula
under truncation imply that

(i) [, X7] = E[e" ¥ (59, X7)]

for some integrable functional ¥}"(-; ¥, X*); hence one has

Jul*[E[e"*",X7]| < Ca, (8)

where C4 is a constant independent of # € R and n € N. Thus Condition
[C2]4(a) has been verified.

When o = 0,8,0,(u,z,r) = (1/2)ue*"/%; when o > 1, from Lemma 2,
one has
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I 512 i G 23 ru—p £(j 2
8rQo¢(uaMn7 rnén) = Eu e T Z Co:.,/i‘jujry(,ﬂrﬁ)/ M: ﬁg}(1]+ﬂ)/
0<j<ﬁ<ot

e’” #u Z (] + B)cy b u’r(’ 2+)/2

0§j<[}<fx
- 2+8)/2
M ﬁér(l/ +B)/

o
12 . 1 L1
=ule o) :b“’k”<;7uri,r%,>Mffz , (9)

k,1=0

where

Cofpj = (;) (—i)’'e]

and b*%!(x,y,z) are polynomials in x, y,z. In view of Condition [A4],(2), we
have

D3l D5

m
i . luzr,,fns m 1 2
< [Dnlye >, ik 55U
=k

ki +...+kn=
m<k
Dhé ... @ Dfn¢
H,E)k
L
<eDWler D G Dyl - DGl (10)
ki +...+kn=k

if k€ Z,,ue Al and s € [0,1]. Here Dker’nés reads e < P(k), P(k) being
a tensor polynomial obtained by the formal differential rule, and the latter is
well defined without multiplication of the truncation functional ¥, or its
derivative. From (9) and (10), and approximating sequence argument using
tame functions {exp(—¢2/K): K € N} if necessary, we see that

o ry {Op(u, My, 0) — Op(u, My, 1)} € Dy
for any p > 1, and that for j < 4,
1D} 2, O, My, 0) = O, My, 7)Y 0
< /0] ds| D} =1, &0, Qp (s My, 1 E)] |

< S D Ky (IDEMa e DL ors k1 < J)
i<j

for any u € A,l, and n € N, where K;(xk,yg;k,l < j) are polynomials in
X, 1, k, I < j, independent of u,n. With [A4],(4), this shows that Condition
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[C2],(b) holds true, which is a consequence of the integration-by-parts for-
mula in the (partial) Malliavin calculus. See the notes after Theorem 7 below.
In the same fashion, Condition [C2]4(c) can be verified; thus we obtained the
inequality of Lemma 1. Since

sup el a () = Ay (0)] < sup W) = E, ]l < C@)|1 =,

the proof completed. ¢

Proof of Theorem 4. 1t is sufficient to prove the inequality for bounded f.
Obviously, we have

ELFG)] — EF G < 17 1T~ il
E[f (X)) = [g [ (x)g,(x)dx, and
x)g%(x)dx — X)pn (x)dx X )
| [ = [ remwa < [ 17610+ ) e

Ssup [(1+ ) (60(x) — palx))] -
xeR

Hence, we obtain the result from Theorem 3. ¢

Proof of Theorem 5. We may assume ¢’ < 1; put g = ¢'/2. Let ¢: R — [0, 1]
be a smooth function satisfying ¢(x) =1 if [x| <1 and ¢(x) =0 if [x| > 1.
Define y,, by

V= "’(z?n><f’<4as'—;’m>fﬂ<(rn“”>(<Mn> - 1))2) .

then [A4],(1) and [A4],(2) are trivial; [it is easy to show [A4],(3) by using
[A4'] and [A1]]. If for some j < 4, D/, # 0, then s, /2 < oy, and o,,y, < 5,/4;
hence oy, > s,/25; therefore [A4],(4) follows from [A4’](1). Thus we have
the inequality of Theorem 3. Clearly, [A4'](1), [A1] and Markov’s inequality
imply that

L=l < PW, < 1)
2
7,0N, N

< P(s, P —
< (S >0yn)+ (Sn 8)

+ P((rn““)(<M,,> -’ > %)

< P(sy > ay,) +o(rl)

—_—

for any m € N, which completes the proof. ¢

It is easy to prove Theorem 6 like Theorem 4. Finally we prove Theorems
1 and 2.
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Proof of Theorem 1. We will verify that Conditions [C1], [C2];,[C3]; of
Lemma 1’ are satisfied. [C1] is easy to check. In order to verify [C2]s, it is
sufficient to show that for any i < 3,i+j < 6 and for some ¢ > 1, the L¢
norm of (ay,) D (,Y,.) is bounded uniformly in u (in R — A? orin A}) and
inn, for ¥,, = 1,B°  CY . In view of Assumption [A4]5(2), we can show this
fact by using Assumption [A4];(4). Furthermore, it is possible to prove
Condition [r] is satisfied for (X,,¥,, X% '((M,) —1),R,3) and for
(X, ¥y, X2N,, R, 3) for any o« € Z.. In particular, there exists a constant
C, < oo such that

sup |uf*|Ele™ S, X7r, ((My) = D)]| < €y
neN,ue R

and

sup |ul’|E[e™y, X*N,]| < C, .
neN,uclR

Hence, by [A2];,[A3],, one has
sup [u|*|E[¢"/2*¢]| < C,
ueR

and

sup [ul*|E["? 2] < C, .
uclR

Therefore, there exist continuous, bounded, integrable versions of
HV(E[Z*EZ = 2 p(z)), H(E[Z*n|Z = z]p(z)) for j = 0, 1. Thus Condition [C3];
follows from this fact and Condition [A3],. ¢

Proof of Theorem 2. We will reduce this case to Theorem 1. We may assume
1/3<qg<1/2. Let ¢=(1—a)/2; then 0 <a < 1/3. Fix any a; so that
0 <a < 1. Let ¢: Ry — [0,1] be an increasing smooth function such that
p(x)=0ifx <1/2, and ¢(x) =1if x > 2/3. For v = 3¢/2, let

Vo =o([L+ 1, (M), = DFTT) - oL+ g,y ] e ay,) -

Then it is not difficult to verify that the Condition [A4]; is satisfied. In fact, if
Dy, #0 for some j, then 0)142 > a}w/nz — a:/]\z, > (v/2)"? = rl= when
Y, = M,. Clearly ox, > v/2 when Y, = X,. From this fact, [A4];(4) follows
immediately. Other conditions are easy to verify. Thus one has the estimate
for the distribution function of X, in Theorem 1. From the inequality

1 1
1= bully < P (1700 = DF > 5) 4 2(on, > 5)+ Pla <)

we obtain the result. ¢

Remark 3. Suppose X, has the form X, ==, 'M, with a positive random
variable s, converging in probability to 1. If we set N, = r, ! (s, ! — 1)M,,, then
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the asymptotic expansion of the distribution function of X, is given by
Lemma 1’ with

Pn(z) = 0(2) +%rn55(E[f|Z =2)¢(2)) + ra0:(EN'|Z = 2Jz9(2))

where the random vector (Z,¢&,n') is the weak limit of (M,, r,'((M,)
—1), 7, 1(s, — 1)); in this situation = —;'Z, and Theorem 2.2 of Mykland
[20] originally treated this case.

Remark 4. Here is a simple example suggesting the necessity of the condition
on the nondegeneracy of the Malliavin covariance. Suppose M is a N(0, 1)-
random variable of 1-dimension. Take smooth functions ¢, on R so that
@, (x) =x if |x| > 2r, and ¢,(x) =0 if |x| <r,. Then ¢,(M) has a decom-
position ¢,(M) = M + (¢,(M) — M); the second term on the right-hand side
is of 0, (r), for any m > 0, so this is a problem treated here. The distribution
function of ¢, (M) has a jump of order r, at the origin. Therefore no func-
tions written by an integration of a density p, can approximate this dis-
tribution function up to o(r,). Since ¢,(M) does not satisfy the conditions of
theorems here, it is not a counter-example; however, it suggests the necessity
of certain regularity conditions of distributions.

6. Applications to statistics

We present examples of applications of the results in Section 2. The first one
is a refinement of the central limit theorem for a functional of an ergodic
diffusion process. The second example gives an application to statistics, and
the asymptotic expansion of the distribution of the maximum likelihood
estimator will be presented. Finally, we will mention the asymptotic expan-
sion for an estimator of the diffusion coefficient (volatility) of an Itd process
defined on a finite time interval.

6.1 Asymptotic expansion of a functional of an ergodic diffusion

We will treat a one-dimensional, stationary, ergodic diffusion process
X = (X;: t € Ry) defined by the stochastic differential equation:

where f is a given R-valued function. The probability measure v denotes the
invariant measure of X. The martingale central limit theorem holds that if
v(f?) < oo, then

Mp= I/Tf(X)dwt = N(0,v(f%)) (12)
VTJo 7 ’

as T — oo. Martingale central limit theorems were extensively used in the
first-order asymptotic theory on statistical inference for semimartingales, but
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one needs more to go further into higher-order problems; asymptotic ex-
pansion is then one of the promising methods. In this subsection, we will
present an asymptotic expansion of the distribution of M7. In order to apply
the results given in Section 2, we will focus our attention to verifying the
boundedness of D, ;-norms and the uniform nondegeneracy of the Malliavin
covariance.

We are now considering a stationary, ergodic diffusion process defined by
(11) with the stationary distribution v given by

where n(x) = eJs 2w (cf. Gihman-Skorohod [8]). In order to obtain the
asymptotic expansion of the distribution of the normalized martingale (12),
we assume several conditions stated below. C{(IR) stands for the set of C’-
functions with derivatives of at most polynomial growth order.

(C1) X = (Xst € R,) is a stationary, ergodic diffusion process with sta-
tionary distribution v(dx).

(C2), p € C{(R) and satisfies sup,.g f'(x) < 0.

(C3), f € C{(R) and v(f?) = 1.

For continuous function g: R — R, define G,: R — R by:

Gy = = [ )™ [ 2ntu)gta

y

if [;° n(u)g(u)|du < co.
Theorem 7 Suppose that Conditions (C1),(C2),,(C3), hold true. Then

1
sup [P(My < ) — 0r()] = (ﬁ)

as T — oo, where
012

Or(x) = ®(x) + T (1=x")o(x)

with o, given by

o= — /}R F(X)G_ (x)v(dx) .

Before the proof of this theorem, we need notation and several lemmas. For
later use, we remind of several notations used in the partial Malliavin calculus.

Let (W%, B PW) i =1,2, be probability spaces, and let (W2, B?), p(2))
be a Wiener space, ie., W? ={w: R, — R" continuous, w(0) =0},
B®? = B(W?) and P? is a Wiener measure on B?). H denotes the Cameron-
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Martin subspace of W®. Let (W,B,P) be the product space of
(w®, BM pMYyand (W, B2, P?)). Given a separable Hilbert space E, S(E)
denotes the linear space spanned by E-valued smooth functionals F: W — E
such that for some n € Z,, there exists a measurable function f: W
xR" — IR satisfying that for any o € Z"}, for some constant c,, |8gf(w(1), 3]
<c (1 +1€*) for any wew® é¢cR”, and that F(wl) w?)
= f(w E(w?))e for any w € W, where e € E and &(-) € (W®')". S(E) is
dense in L' (W, P;E) for any p > 1. The differential operator in the direction
of each i € H is defined by D,F(w), w?)) = (9/01),_oF (W), w? + th) for
each F € S(E). We denote by D, (E) the completion of S(E) with respect to
the norm || - ||, = (Y5 1D/ - ||’L7,,(P)) "7 Then D is uniquely extended to an
continuous operator, denoted by D again, from D, (E) into D, (H ® E).
The integration-by-parts formula has the same form as in the usual Malliavin
calculus over the classical Wiener spaces.

In the sequel, we regard the diffusion process (X;: 1 € R ) as a solution to
the stochastic differential equation

X, (w) = BX,(w)ds + dw'® 13)
Xo(w) =wh
constructed on the Wiener space (W,B,P) with W) =R, P() =y, and
r = 1. Hereafter, w® will be denoted by w to simplify the notation.

For separable real Hilbert spaces H;,H>,L(H;, H>; R) denotes the set of
all bilinear forms v: H; x H, — IR that is continuous in the sense that there
exists a constant ¢ such that [|o(hi, k)| < clhily |hal,, for any
hy € Hy,hy, € Hy. L(Hy; H,) is the set of continuous linear operators from H;
into H,. Clearly, there is a one-to-one correspondence between L(H;, Hy; R)
and L(H,;H,). For a pair of bases {h;},{hs;} of Hy,H>, respectively, the
Hilbert-Schmidt norm (0| ., Iof a bilinear form v: H; x H, — R is defined

as [0l o, = (sz v(hl,,-,h;,-)zy. This norm is independent of the choice of

the bases {h,;} and {h,;}. Hy ® H, denotes the set of bilinear forms v sa-
tisfying that |v|; .y, < oo, and is a Hilbert space equipped with the Hilber-
tian norm [vy ., It is clear that Hy ® Hy C L(Hy, Hy; R).

Let F € L*>(R, — E ® IR, ds). Suppose that the linear operator L: H — E
is defined by

L[h]:/ F,-hds, heH
0

Then L: H — E is a continuous linear operator, and if L: H x E — R denotes
the corresponding continuous bilinear form then, L € H ® E and

\Llpyor = |FS|125®]R'dS . (14)
0

Lemma 7 Let (X;:t € R.) satisfy the stochastic differential equation (11).
Suppose that the following conditons are satisfied:
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(1) sup,er X, < 00 for any p > 1.

(2)0_ SU»pxelRﬂ( )>0

(3) B is j-times differentiable, and sup,cp . ||ﬁ ( )|| < oo foreveryp>1and
(0 <i< ])

Then supeg, ||Xi||,; < oo for all p > 1.

Proof. From (11), we see that for each & € H, D;X, satisfies

dDyX, = ' (X,)DpXdt + hydt
DXy =0 .

Therefore,
t .
DX, = / ot hyds (15)
0
for each h € H, where o = exp( [/ f'(X)dz). By (15) and by definition of c,
t t
1
pxfy = [(pds < [exa < <o
0 0 2¢c

and hence, together with Assumption (1), this inequality implies that
SUP/er ”AXth,l < oo forany p> 1.
From (15), one has

t t
DDyX, = / o / B (X.)DX.dx - hyds . (16)
0 K

From (16) and (14), applying Jensen’s inequality to the sub-stochastic kernel
2ce (=) ljo,1(s) and using it again, we have, for any p > 1,

t t 2 p
‘Dth HoH = [/ ‘326([5){/ |:3N(Xr)||DXr|HdT} ds]
0 s
1 =1 pt t 5
< {2} / e2€(ts>(t—s)2pl{ / |ﬁ/’(XT)2”|DXT|;dr}ds
¢ 0 s

1\ [
£, < swp e[l oorong] - (1) [ e veran
telRy 2C 0

Therefore,

for any + € R;. This means that sup,cg, [|Xi[|,, < oo for any p > 1.
In a similar fashion, by induction, we obtain the desired result. 0.

Remark 5. To prove the boundedness of D, ;- norms of X;, we used Condition
(2) of Lemma 7. However, as seen in the proof, for this purpose, it suffices to
assume that sup,cg, E[[y(o)"(t — 5)7ds] < oo for any p>2 and g € Z,.
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Lemma 8 Let My = \/‘fo f(Xy)dw,. Suppose that the following two conditions
are satisfied:

(1) super, [|Xill,; < oo for any p > 1.

(2) supeg, I/ (X0, < oo for any p > 1 and i (0 <i < j).
Then supyeg, [|Mrl|,; < oo for any p> 1.

Proof. Since

1, T .
DyMy /0 = ()Dy v, + /0 S (17)

for any & € H, it follows from (14) that
2

H 0

T T
DMréﬂ{‘ /0 ﬁf’(X,)DXtdw, + f(XJ }

The Burkholder inequality for Hilbert space valued square-integrable pro-
gressively measurable processes on W x IR, then implies that for some
constant c;,,

sup E[|1"(0) D[] + sup E[ 1/ () }} :

teR teR

sup E[|DMT|2’} < c;{
TeR,

Consequently, supzeg, [|Mrl|,; < oo for any p > 1.
Differentiating (17), and by using (14) once again, one has
2

T
1
/ ﬁf”(Xt)DXt ® DX;dw,
0

T
1
— 1'(X,)D*X,dw
/0 \/T ( t) ' ! H®QH

T 2
—|—2/ dtp .
0 H

sup E[|D*Mrlif., | < { sup E[|/"(%) 10X}
telR

‘D2MT|?{®H <4 {
H®H

2
+

1 !
ﬁf (X)DX;

Consequently

TeR,

+ sup B[/ () 710X

teR

+ sup E||f' (%) DXi [ }} ,

teR

which means that supzeg, [|Mrl|,, < oo for any p > 1.
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In the same way, we can show the general case. ¢

The differential operator L denotes the generator of the diffusion
X: L =107+ Bo. It is then clear that LG, = g. Set &r = VT((Mr.); — 1).

Lemma 9 Suppose that the following three conditions are satisfied:

(1) f: IR — R is continuous, and
/ n(u)|f*(u) — 1]du < oo .
0

(2) S‘uptE]RJr ||)(f||pj 1 < OOfOV anyp > ]
(3) sup,cr, 1GY (X)), < 00 for any p> 1 and i (0 <i < j).
Then supy.s ||§/ 1 < oofor any p > 1 and 6 > 0.

Proof. By using Ito’s formula, we see that

SN N L P
CT\/T/O [f(X,)" — 1]d

1 1 17
=—Gp_1(X7) ——=Gp_1(X -— 0G 21 (Xy)dw; . 18
TG (X0 = =G () == [ 0Ge (o . (19)
It follows from the chain rule and the assumptions that
sup T_%GfZ7l<XT)H + sup 2Gf’ 1(X0) H 00
T>6 pJj-1 T>6 pJj—1

for any p > 1. Moreover, by means of Lemma 8, we see that

sup
>0

< o0
piJj—1

1 T
o [ 96
0

for any p > 1. These inequalities together with (18) complete the proof. ¢

Lemma 10 Let r € Z.. Suppose that Conditions (C2), and (C3), are satisfied.
Moreover, suppose that [*_ f(u)n(u)du = 0. Then Gy € C{*(R).

Proof. First, from Condition (C2),, it is easy to see that

n (x) < eZﬁ(O)xfcxz

for all xeR. Since [;°|f(u)|n(u)du < oo,G; is well-defined and
Gr e C*2(R). Let 1 <j<r+2. By Leibniz’s rule,

Gy =—( 'n(y)™) /m 2n(u)f (u)du

X

jil | — . . .
“X (77 )@ oo et )
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where Py is a polynomial of B, ,8',-~~,,BU*2), and P, is a polynomial of
ﬁ,ﬁ',---,ﬁ("%) and f,f",---,fU=2). On the other hand, it follows that
q(u):= —2B(u) — mu~" is positive and increases as u increases for large u, for

any m € Z. . For large x,

/x " ) du < / Ty du

Therefore n(x)™" [ n(u)u"du = O(x"~') as x — oo for any m € Z,. The
same argument can be applied to a similar functional in the case where
x — —oo. If [ f(x)n(x)dx =0, then [ f(u)n(u)du = — [*__ f(u)n(u)du, so
that with the aid of (19), we see G, € C?“(]R). 0

Let g = (10 + B)f. Then 9G, = f and

1 T
Mr == /0 )b,

Lg(X)LG(X)L/Tg(X)dt (20)
\/T g\AT \/T g\ A0 \/T ) t .

[G, is of at most polynomial growth order due to Lemma 10.] Instead of the
nondegeneracy of the Malliavin covariance of M7, we will consider that of

M7y defined by
_ 1 [T
My =— X,)dt .
r=== [ o)

From (15), for h € H,
1 T t X
DyMr = — (X, /oc’hsds>dt
ity == [ a0 ([ o

— /0 Tdshs(\% / Tg’(x;)a;dt> .

Therefore the Malliavin covariance of oy, is given by
2

- :%/OT[/STg’(X,)agdt} ds . (21)

Lemma 11 Suppose that Conditions (C1),(C2),,(C3); hold true. Then there

exists a positive constant ¢ such that P(cy;, < c¢) = O(L) as T — oo.

Proof. f, f', p have at most polynomial growth order, and sup, f'(x) < 0. It
then follows from integration-by-parts formula that
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[ stamteris = [ (=50 40 o~

Therefore if g were a constant, then g =0, and hence (304 f)f =0. If
£ #0, then f(x) = f(0)n(x)"", which contradicts the assumption that / has
at most polynomial growth order. Consequently f = 0. Therefore, g is not a
constant.

There exists xg € IR such that ¢’(xp) # 0. Fix A > 0. We will take A suf-
ficiently small later. Let Sy =inf{z € R;: X; = x¢}. Next take any point
x1 € B(xo,A)", and let §) = inf{z > Sy: X, = x; }. Moreover we define stopping
times S;,S!,i € N, inductively by S; =inf{r > S ;: X; =xo} and by S/ =
inf{z > Si: X; = x1}. There exists a positive constant 6 = 6(A) such that if
SUPg,< <514 |[Xe — Xo| < A, then

inf  (54)? > 0 .
SE[S:,Si+A]

Define 4;(s) by

Si+A /( ) tdt
Af(s):fss—w

Let

M=M(A>=max{ sup gl sup |g"()l, sup |ﬁ’<x>}.
XEB(xp,A) XEB(xo,A) x€B(x),A)

It is then easy to show that
Ai(s) = 1i(s) + ri(s)

for s € [S;,S; + A], where /;(s) = (Si + A — 5)g'(x) and

sup  |ri(s)] < A’q(M, A, eMP)
SE[S:,S;i+A]

if supg << 4a |X: —xo| < A, where g is a polynomial defined on IR’. Choose
A > 0 so that sup(s, 5,1 [7i(s)| < 1¢'(x0)|A. For any u € R,

Si +A N +A
/ )+ ri(s ds > / ds
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Si+A
- / rlz(s)ds
Si
A3 3
> Ig' ()l 55— 9 o)l 5
V3-1 3
=2 L)1t (22)

Let

T
¢ :/ g (X))o  pdt .
S+A

By using (22), we see that if §; + A < T and if sup ¢, 5,4 a] [Xz — x| < A, then

Si+A T 2 Si+A 5
/ [/ g’(Xt):xidt] ds = / (@58 [44(s) + ci]ds
S; K S,

i

2
> a(ﬂ‘ 1) g (o) A3

6

2251 .
Therefore, by (21)
2

1 T T
Tir, :?/0 {/ 9/()6)“20"] ds
1 [SHAT T 2
> Z —/ [/ g’(X,)rxi,dt] ds
i:S,-JrAgTT Si s

* Hsupgeocgyon Yool <A}
00 51
> 27 Lisieasrisupg cocs, o XYool <A} - (23)
i=0
Let u = Py (supg<,<p [X: — xo| < A), and let
;1
& = JT Usirasr {l{sups,m,ﬂ Xe—xol<A} — H

By the support theorem, it is easily seen that p > 0. Let IF, be the filtration
generated by Xy and (wy: s < ¢), and set

n
T _ T
mnfg &
i=0
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It is then easy to show that (m!, IFs,. ) ez, 18 @ martingale for each 7 € R
(cf. Jacod-Shiryaev [14], p. 4, 1.17). With

2
V= Exo ( {l{supogg [Xe—xo|<A} — :u:| ) ’

we also see that
Z {( |IFS] - Z 1{S+A<T} (24)

Define positive random variables t;,i € Z ., as 19 = So,7; = S; — S;i_1(i € N).

It is well-known that 7;(i € Z.) are mutually independent, square-integrable

random variables, and that 7;(i € N) is an i.i.d. sequence with positive finite

mean value y,. [In fact, it is possible to express the moments of those stop-

ping times explicitly and to estimate them (cf. Gihman-Skorohod [8], [36]).]
By definition,

7 M
P ( > 7 lisasrt Hsung o o -nl<a) < 1)

i=0
—P(m <\/—;1 (—ZY 1{S+A<T}>>
1 i
2y 1 VT
<P<271{&+A<T} < 5) +P(m£c < _T/l> . (25

i=0

The first term on the right-hand side (25) is not greater than

P (TO+T1+.“+T[JI]+1>TA)

T -2
< (r-a-{Em+ (H +1) })
( { o] 2y, n
T
X (var(ro) + ([—] + 1>var(rl)>
2y,
1
o@ .
By (24) and Lenglart’s inequality (cf. Jacod-Shiryaev [14], p. 35) under usual

extension of processes m!, > " 1(s+a<r}. and filtration (Fy,,, ), we see that
the second term on the right-hand side of (25) is not greater than

24y,v Y 3
Tl —|—P< lzl{S+A<T}>2> )

the last term can be estimated in the same way as above. Therefore we obtain
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51# 1
Ploy, <-2) =0(-
(oue <) =(z)

The following lemma is easy to show by the martingale central limit
theorem.

as T —oo. ¢

Lemma 12 As T — oo,
(Mr VT(Mr,)r = 1)) = N(0,3)

where X = (aij)ij:l is given by oy =101 =0y =— [ f0Gp_1dv and

02 = f]R (asz,l)zdv.

Proof of Theorem 7. 1t suffices to verify the assumptions of Theorem 2. [A1]
is trivial. We see that the inequality sup,cg, [|Xi[|,4 < oo follows from (C2),
and Lemma 7; suprcg, [[Mr|,4 < oo from (C3), and Lemma 8; similarly,
supy.s [[¢rll,3 < oo from Lemmas 9 and 10. Thus we obtain [A2];. Lemma
12 implies [A3],. In view of the inequality

1 C% 1 C% 1 1
Play, <5 ) <Pl >5 ) +P(ay, <)

where Ay = T73[G,(Xr) — G,(Xo)], we have P(ay, <c/4)=O(T"), and
obtain the desired result. ¢

6.2 Asymptotic expansion of the maximum likelihood estimator
for an ergodic diffusion

In this subsection, we consider the following stochastic differential equation
like the previous subsection but with unknown parameter:

dxt = b(x,, H)dt + dW[

Let 0y be the true value of the unknown parameter 0 and we abbreviate 0y in
functions of 0 when they are evaluated at 0. We assume that x; is stationary
and xp obeys the stationary distribution v = vy,, and that sup,cr 0b(x, 0p)
< 0. Furthermore, we assume for simplicity that b is smooth and
6'@b(x, 0)| < C;;(1 + |x|“") for any x € R and 0, where & = /90, and often
denoted by dot. Under a usual identifiability condition, the statistical ex-
periment induced by this diffusion model is entirely separated, and hence
there exists a consistent estimator. By using this consistent estimator, it is
easy to show the existence of the consistent maximum likelihood estimator Or
for which there exists a sequence of events A7 such that P(47) — 1 and
I7(07) = 0 on A7, where I7(0) is the log-likelihood function:
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T 1 T
17(0) = / b, O, — 5 / b(x,, 0)2dr .
0 0

Moreover, on some condition of global nondegeneracy of an information
amount, the unique existence of 07 is ensured and P(|0; — 0y > T°)
=o(T~ ) for some p > 0 (e.g., [24]).

Then it is not difficult to show by the well-known Delta-method that the
asymptotic expansion of the distribution function of IT(07 — 0p)
(I:= v(b?), the Fisher information amount as 6) coincides up to o(7~2) with
the asymptotic expansion of the distribution function of X7 defined by

1
XT = MT + ﬁNT )
where My = (IT) [T b(x,, 0p)dw;, and Ny — rlMTZ2 r—LSIME with
ZzT:\/T(L“rI) ande—llmT_m‘”T*3flR )v(dx).

Let k= aG(h(H Yot for B =b(-,0p). Then fT:\/_((MT> —-1)=
fo (x;)dwy; and Z p = —fo b + k] (xs, 60)dwy, where =4 stands for the
asymptotlc equivalence. In part1cular (Mr,ér,21) — 4(Z,¢,7,), where the
random vector (Z, £, Z,) has the 3-dimensional normal distribution N3(0,X)
with Ty = 1,21y = —1"Sv(bk), ;3= 1—0-5v(b[b' +k]), Ty =1"2(k?),
S0y = —IY(k[b + k]) and Z33 = v([b + k]*).
Since L{Z, &, n} = L{Z,&,17'ZZ, — 117 13L7%}, it follows from the above

fact, that E[¢|Z=x]=Zx and that E[n|Z =x] = (B2 — shs)x%  Let

A=22 = y(bk)/(20') and B =22+ 28 — Lo —{y(bb) — v(Bk)}/(21"7).
We can still use the proof (Section 6 1) of the nondegeneracy of the first term

M7y. Thus we obtain

Theorem 8 The distribution function of /IT (07 — 0y) has the asymptotic ex-
pansion

p(\/ﬁ(éT - 90) < x) ~ O(x) + —= (4 — B (x) + 0(1) .

1
VT VT

This expansion holds uniformly in x € R.
For a scalar parameter o, the Amari-Chentsov affine a-connection is ex-

pressed with coefficients Flk r =E[{6:0;lr + = 5%0ilr0;lr}orlr] for co-
ordinates 0 = (6') in multi- parameter case. Returnrng to our one-parameter

case, let (%) =limy_o T 111‘T/T Indeed, by simple calculus with Ito’s
formula and ergodicity, we see that this limit exists and that
(=) = v(bb) — v(bk). From this relation, one has B = —r(9)/1'5). De-
note by 9* a second order mean-unbiased maximum likelihood estimator of
0, then Theorem 8 provides the asymptotic expansion:

r(-%)

P(VIT (05 — 0p) < x) ~ D(x) + 211'5\/7(362 —1)o(x) + 0(%) .
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This expression was familiar one in independent observation cases. Grige-
lionis [10] calculates a-connections for Markov statistical models.
It is also possible to derive asymptotic expansions for M-estimators ([24]).

6.3 Estimator for diffusion coefficient

Let us consider a semimartingale X; having the following decomposition with
unknown parameter 0:

t t
)g:X0+/ bsds—i—/ Vlo,dw,, tel0,1] ,
0 0

where b,, 0, are 1t0 processes defined on a one-dimensional Wiener space
(W,H,P) in the partial Malliavin calculus: W = R x W@, B = B! x B?,
and P = L{Xp} ® P, where (W® B? H, P?) is a one-dimensional Wi-
ener space. (F)y,<, is the filtration generated by X, and w: F?
=0o(Xp,ws: 0 < s <1) and F, = N,~F . b, may depend on unknown para-
meters (0,9). We assume that b,, 0, are adapted to the filtration (E)O<t<l

Assume also that b, has the decomposition b, = by + fo aw, + fo 9 g5, and
that b,m has a decomposition b,m = b([)]—k fo P aw,  + fo bl ds
Similarly, assume that ¢, ¢!!! and ¢! have a corresponding decomposition.
Suppose that SUPyefo,1] ||f,||p3 < for fi = by, bgl], bﬁ‘”, bﬁ"‘”,

b;l’”, oy, agl], ot[o], 0?’0], 0?’1], JLO‘O], [0.1] , and for p > 1.

Based on the data set {X;,o0,:i= 0, l,--+,n} with # =i/n, a natural
quasi-likelihood estimator of the unknown parameter 0 is given by

. n )(t-_)(t, 2
Gn: i i1
Z( (7 >

i=1

(cf. Genon = Catalot-Jacod [7]). We assume that sup,c( ) [|1/04], < oo for
each p > 1. Let 0 denote the true value of the unknown parameter. Then
Xp= %(0,, — 6) asymptotically has the standard normal distribution. Let
Hy(x) = x,Hy(x) = (x> = 1)/v/2, and H;(x) = (x* — 3x)//6. Denote Aw; =
w;, —wy,_,. The following lemma gives the stochastic expansion of %, from
which the asymptotic expansion of the distribution function of 2, will be
presented later.

Lemma 13 %', has the stochastic expansion: X, = M, + \/%TN"’ where

M, = Z = Ha(Vnhwi)
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and

"
N, = \f%‘H(ﬁMm)

a i=1 \/ﬁ Oy
1 1 \/_O't \/_b[
+ L 7V Hy (VnAw;
Z \/— ( Oy \/—0 i 1(\/_ )
+2;;a4+Rn

with || Ry, = 0( )fo; any p > 1, and with F; given by

\?
7 \/EO'EO] N (“t ) \/EbP V2b?
! 20, 2\/50'% 2\/go't 206? '

Proof. First, we see that 4, = ¥ + ®©, + @3 + @4, where

n \/ﬁ 1 </tl )2 1
VY= — odw; | ——»,
O, = \/ﬂ / / bydsadwy,

\/50,2 1

V2n / /
()] asdwgb,dt
3= \/—Gt2 I t

and

n 2 t t
}:V??/ / bydsb,dt .
— QO'ZM ti-1 Jti-1

We say that T, = R(n %) if ||T,||, = O(n™*) for any p > 1. By assumption and
by Burkholder’s inequality for martingales with discrete parameter,

Vs = Z\/é2{/b/ st
Lo ([ o [ [ 10
L [ [ e e
- [ e
H‘/’/iﬁm}+R@°ﬂ, (26)
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and similarly,

Lt
Vn®, = Z\/\/_gbt’ ‘/ dsdw,—i—R(n_O'S) )
(7 i1 Jtic1

From (27) and (26), one has

V2b,
D, + /n® = (wy, —w
Vi + /iy = Zﬁom )
no2pll
_|_ i—1 *+R n70.5 i
i=1 2\/_0-&4 ( )
Obviously,
n 2b2 1
D, = lio1 R -0.5 )
Vi =2 g )

On the other hand, ¥ is decomposed as follows:
Y=Y +Y¥Y,+Y¥;,

where
- \/ﬁ( » 1
VY, = — 1 (Aw) == ,
2.3
n \/2_’1 ti
¥, :Z Awl/ (6; — 0y, )dw; ,
i=1 Oty tioy
and

By repeated use of Burkholder’s inequality, we have

Vit =3

i1

Z\/‘az

i

2

i 2
=S ) dsdr + R(n"3
o s n
;ﬁaﬁ,l iy [1( ’ ( )
2

NGO

t t 2
(/ / agl]dwsdwt> +R(n_0'5)
tio1 Jti—
t
/ (/ agl]dws> dt—I—R(n_O‘S)
i1 i1

(27)

(28)
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Moreover, in a similar fashion, by using It6’s formula, we obtain

S22t [ [+ 30 ) 32

From (29), (28), (31), and (32), we obtain the desired expansion. ¢

V¥, =

l:l

Let F nt = FM . We will use the following notation later:

[n1]
_ 1 .
A/[f-,"(t) = n (tl 1) (\/_AWI) J = 17273 9
i=1
where
20'[1] \/Z t
G (t L+ , G =1,
()= 6
360 ] |
Gy(t) =— F,(t) =) -F,,
Ot i=1
. [ni] 4
M:(1) = Z dn/n | (i —u)(wy — w_1)dw, .
i=1 li-1

It is easy to show that &, = M<(1) [here

AL
nt - Z 2\/_/ / dwudws

Aty St

and &, is defined with the original (F;)-bracket (M,..) . Then the predictable
quadratic covariations with respect to the filtration ( F,, oeret are given by
S/ 0<t<
[n1] 1
<M/n7Mkn - jk tl l)Gk(tz 1)* A/kn() 5

for wy,, = W,
[nt]

<17V,,,17v,,>t =

= Ca(2)

nt

<Wn7 _51JZ Gl i— 1 (t) )

Dju(t) = (M, M),
En(t) = <"_VH7M;§>N Gn(t) = <Mrf>t

Lemma 14 The following relations hold for the predictable quadratic covaria-

tions E,(t), D;,(1) and Go(1): Ey(t) = 0,D1,(f) = 0, Do(t) =220 Py (1)
4.

3 n?
=0and G,(t) =%~ n.
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Proof. First,

[nd]

(W, M5), Z4n\/—/ (& — u)(wy —wy—1)]du =0 .

Next,

[nf]
<Mi«”l7Mrf>t = 4”\/52 E

i=1

1
\/— tl l \/—\/_Ij ll du|E

/ (1 — ) (owa — w, )

3

where Ip;(u) = 1 and

I/ ll(u] 1 / / qul . dwujl .

It is then not difficult to obtain D;,(7); and similarly G,(¢). ¢

We need the following notation.

Aji(t) = 0k /Oth(S)Gk(S)dS ,

B)(t) = b1, / Gis)ds, C) =1,

E() =0, G(t)zgt, Hf) = / 'R
0

In order to identify the limit distributions, we shall adopt the method used in
Genon-Catalot and Jacod [7] for first order asymptotics of estimators, while
it may probably be possible to simplify to some extent the proof of Lemma
15 and the first part of that of Lemma 16 if we use the latest theorem
presented by Jacod [13]. Define 1, by:

Th = (Xo, wi’laF;’l; (A’aj,k,n), (Bj,n)a 6/1» (Dj,n)aEm Gna (Azjn);M,f) .
7, 1s a random element taking values in

=D([0,1]] R xR xR xR xR*xR xR*x R x R x R* x R)

(Xo is embedded in the first argument as constant functions). Denote the
canonical variable on Q by

©= (%, w,F, (4;1), (B)),C, (D)), E, G, (M;), M*) .
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Clearly, th:= (X0, Wu, Epy (Ajkn)s (Bjn), Cuy (Djn), Eny Gy) converges in dis-
tribution to (Xo, w, H, (4;4), (B;), C ,(D;),E, G); hence (t: n € N) is C-tight.
Since (4;,: n € N) is C-tight, (M;,: n € N) is tight. It is not difficult to show
that for any positive e,

_ 1
P(sup 1A > 0) = o(:) -

Therefore, (M;,: n € N) is C-tight (Jacod-Shiryaev [14], p. 315, Proposition
3.26). Similarly, (M:: n € N) is also C-tight. Consequently, (z,: n € N) is C-
tight (Jacod-Shiryaev [14], p. 317, Corollary 3.33).

We shall show the uniqueness of the weak limit point and identify this
limit. Without loss of generality, we may assume that the sequence
(t,:n € N) converges weakly to a probability distribution P on Q. Let
(F/)o<,<, be the filtration generated by t.

Lemma 15 On the stochastic basis (Q, F1, (Ft)oq<17 P), the canonical processes
w,M;,M ¢ are continuous square-integrable martingales with predictable
quadratlc covariations: (M;, My), = 4;(t), (w,M;), = B;(1), (w,w), = C(t),
<Mj’Mé>t:Dj(t)’<w7Mé>t () and (MC MS> _G()

Proof. Put m(t) = M;(t)My(t) — 4;(z). The mapping Q > t+— (t,m(1)) €
is continuous with respect to the Skorohod topology, where
Q =D(0,1] =R x --- x R x R).  Therefore Y= (t,,m(t,)) =% Y:=
(t,m(7)) (under P). Since (m(z,),: t € [0,1],n € N) is uniformly integrable, it
follows from Lemma 14 and Proposition 1.12 of Jacod-Shiryaev [14], p. 484,
that m(t) is a martingale with respect to the filtration generated by Y, hence
by 7. (Let M =mop; with py: (t,m’)— 1. Then M, 0 Y" =m(z,),, and put
M" = m(z,).) This means that (M;, My), = 4,(¢). In a similar way, we obtain
other martingale properties and the quadratic covariations. ¢

Lemma 16 (1) P is uniquely determined.
(2) E[¢|Z = z] = Dy(1)z and En|Z = z] = EP[H(1)].

Proof. Enlarge the stochastic basis (Q, Fl,(F,)(Kt<17 P) to (Q', F17 (F Jo<i<1s
P') on which there exist mutually 1ndepg1%dent Wiener processes Z; (i =
1,3,¢) independent of (¥,w, M;, M¢). Let (F,),.,., be the filtration genera-
ted by (¥, w). Note that o

L{(J@W,F, (;lj‘k)v(Bj)aC,( ) E G)‘P}
= L{(Xo,w,H, (4;4), (B;), C, (D), E, G)|P} ,

and that B;_is absolutely continuous P-a.s. for which an adapted (with

respect to F \) derivative dB /dt is well-defined P-a.s. on Q. Let M| =
—dBy/dt - w and let M’ = —dD,/dt - M,. Then w Ml,Mz,M;,M are

mutuallly orthogonal (F,)(K,<1 -martingales. Next, for i = 1,3, &, let
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_ 1
_ AN i
M_// = l{dgf‘{)#o} (7 . Ml + 1{(/(33!():0} . Zi

with Mj; = M. Clearly, (w,M{, M), My, M!) are independent (F, )Wlener
processes. Furthermore, by these Wiener processes, M;, M3 and M < are ex-
pressed as:

— 1

v dBl — d<M{> : Vel
M = e VR WY v
Tar W+< dt

_ 1
()
M3 = < 7 > - My

_ . dD, _ d{M)\? _
Ms=—=M =) M

T < dt ¢
From the facts that (M{,M,, MY, M!) are independent of F?, and that
d_Bl d<M,) d(M3> dD, d d<M£>
dt T dr a0 di Tar - -
condmonally on F], the processes (%) My, (d<M’>) MY, %2 . iy and
d(M.)
(%)
variations % Jo (dD") dt and (M@, respectively. Therefore, P is
uniquely determmed -
As seen above, M, is independent of (x,w, M}, M;
_|_

X, M3, F
take Z = M>(1),& = M*(1) and n = M;(1) + _1 1)+ F(
El|z =2 = EP[F(1)] = EP[H(1)] ;

and

=

=2 .
are F|-measurable by assumptlon we see that

M ! are mdependent contlnuous Gaussian processes with quadratic

) under P. We may
1). Therefore,

and

E[¢|Z = 2] = EP[M*(1)|My(1) = 2]

Define an orthonormal basis (i) C H such that iy (¢) = Vil () for
k=1,..,n. The H-derivative of H;(v/n(w, —w,,)) 1is given by
VJH-1(v/n(w;, —wy,_,))0k;. Consequently, the H-derivatives of M, and N,
are uniformly bounded with respect to each || - ||, ;-norm. It is easy to verify
the nondegeneracy of the Malliavin covariance of M, under a suitable
truncation. Thus we can apply Theorem 2 to %,. Put a:%i and

p=E"[H(1)].

Theorem 9 Let 0 denote the true value of the unknown parameter. Then

4 (5

sup
xeR

(0, 0) <x) = (9
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