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Malliavin differentiability and strong solutions for a
class of SDE in Hilbert spaces

F. Flandoli, T. Nilssen, F.N. Proske

Abstract

We consider a class of Hilbert-space valued SDE’s where the drift coefficients are non-
Lipschitzian in the sense of Holder-continuity. Using a novel technique based on Malliavin
calculus we show in this paper the existence and uniqueness of a mild solution to such
equations. We emphasize that our approach does not rely on the Yamada-Watanabe
principle. Moreover our method gives the important additional insight that the obtained
solution is Malliavin differentiable - a property which was recently shown to play a crucial
role in the study of the geometry of certain optimal causal transference plans, [12].

1 Introduction

In a separable Hilbert space H, consider the stochastic differential equation
dX; = AXdt + B(t, X;)dt + /QdW;, Xo == (1)

where A : D(A) C H — H is the infinitesimal generator of a Cy-semigroup etd t > 0;
B : [0,T] x H — H is continuous, W is a cylindrical Wiener process. If the operator
Q: = fot e*4Qe*" ds is trace class, and suitable linear growth conditions on B are assumed,
weak existence is known for equation (1), see [5].

The aim of this paper is to prove Malliavin differentiablility and a direct proof of strong
existence, under additional assumptions on (A, B) stated in section 1.1. On B we assume
Holder continuity in z uniformly in ¢. On A we assume certain non-degeneracy condition
related to null-controllability. See [2] for the case of Holder-coefficients. For merely bounded
and measurable coefficients, see [9] and the recent work in [3].

1.1 Notations and assumptions

Norm and inner product in H will be denoted |- | and (-,-). A complete orthonormal system
{en}n>1 in H is assumed to be fixed. If ¢ : H — H , we shall denote its components with
respect to {en}nZI by ¢n: @n(li) = <<p(l‘),6n>.

Given a,T > 0, we shall denote by C([0,T]; C{*(H, H)) the space of all functions G :
[0,T] x H — H which are continuous and bounded in (¢, z), and such that there exists C' > 0
such that

IG(t,z) — G(t,y)| < Cla —y|*, z,y € H, t € [0,T).

We denote by ||G||q,7 or simply |G|l the norm

G(t,z) — G(t,
|Glla = sup |G(t,z)]+ sup sup |G, z) a( y)|
tG[O,T},IEH tE[O,T] x#yEH ’l’ — y|



We use the notation |Gy, |4 also for the similar norm of the components G, (t, z) = (G(t, x), ep,).
We denote by Lip(H, H) the space fo globally Lipschitz continuous maps on H.
Let us now list the assumptions of this paper:

1. The operator A is selfadjoint, with compact resolvent, and Ae, = —an,e,, with non-
decreasing positive {ay, }n>1 such that

S s <o @)

n—=1 &n

2. BeC([0,T];Cy(H, H)) for some «, T > 0.

3.
eA(H) c QV*(H) for all t >0 (3)

4. The well defined bounded operator A; = @, V20t gatisfies

T
/0 | Ag||*T0dt < oo (4)

for some 6 > max(«,1 — «).

Remark 1 From assumption (4) we have, in paricular,

T T
/ ALt < oo, / A2t < oo
0 0

2 Idea of the method

In this section we do not care about the rigor of the computations. The aim is to explain the
idea.

For ever n, consider the following (backward) PDE in H of Kolmogorov type, on some
interval [0, T'):

ou,
ot

1
+ 5T (D*U,Q) + (Az, DU,) + (B, DU,) =B, (5)
Un(T,z) =0
Notice it is a non-homogeneous equation, opposite to the usual equations of Kolmogorov

type; the right-hand-side B, is the n-component of B. If U, is a sufficiently regular solution,
from It6‘s formula we get

AU, (t, X;) = Bp(t, X;)dt + (DU, (t, X;), QY 2dW;)
= (B(t, X;)dt + DU (t, X,)Q"/2dWy, e,,)



namely
dU (t, X)) = B(t, X;)dt + DU (t, X,)Q"/2dW;

where U(t,z) = ), Uyn(t,x)e, and where we have used the PDE above. About our vector-
valued notations, let us stress that U(t,-) : H — H, hence DU(t,X;) € L(H, H). Moreover,

for every v € H,
<DU(t7 Xt)vv en> = <DUn(ta Xt)a U>-

Formally speaking, the previous identity gives us a formula for B(t, X;)dt:
B(t, X;)dt = dU(t, X;) — DU(t, X;)Q"/?dW;.
We put this formula in equation (1) and get
dX; = AX,dt + dU(t, X;) — DU (t, X;)Q?dW, + Q'/2dw,.
Now we follow the usual variation of constant method and get:

dye=AX, =940 (s, X,)
+et=)AQV2qw, — =ADU (5, X ) QY2 dW,

namely
¢
X; — e 93—/ =440 (s, X,)
0

t
+/ (t— s)AQl/ZdW / (t— S)ADU(S X )Ql/QdW
0

Integrating by parts the first integral we finally get the equation

t
Xi = eMNae —U(0,2)) + U(t, X;) + / AU (5, X, ds

0
t
+ / et=94QV2qw, — I,(X) (6)
0
where .
L(X):= / e=DADU (s, X, )QV2dW. (7)
0

The non-regular drift B has been removed from the equation, this is the point of the trick.
Several new terms appear, which however will be proved to have good Lipschitz properties.

In order to make rigorous this program we need: i) to solve the PDE (5) in a sufficiently
regular space to be able to perform the previous computations (one bounded derivative plus
an approximation argument is sufficient for this); ii) to prove that all the terms in equation
(6) are Lipschitz continuous in the space variable (for this we need a uniform control of first
and second derivatives). Morover, we need that the Lipschitz constant of the term U (¢, X;)
is small; we get this by taking small 7" and using the condition U, (T, x) = 0.



3 H-valued Ornstein-Uhlenbeck semigroup

Let R; be the Ornstein-Uhlenbeck semigroup, defined on By(H) as
Rip(z) = Elp(Z)], ¢ € By(H)
dZE = AZEdt + QY2dW,, Z§ = x.

See [6], Chapter 6, for an extensive analysis of it. We introduce the analogous semigroup on
H-valued functions:

We have
<Rt©($)’h> = Rt@h(x)v (,Oh(iU) = <(I>($)7 h>7 heH

Theorem 2 Under the assumption (3), we have
®cUCy(H,H) = R® c UCF(H, H)
for all t > 0. The differential DR:®(x) € L(H,H) at a given point x € H s the linear

opeartor given by

DR;®(x)g = /H<Atg, Q; Py (e + y)No, (dy) (8)

(DR:®(x)g, h) = (DRipn (), 9)

= /H (Mg, Q; Py (e'x + y)No, (dy)

for allt >0, g,h € H. The second derivative D*Ry®(x) € L(H,L(H, H)) at a given point
x € H, is given by (recall that D*R®(x) is a linear operator in H, for every g € H)

[D*R® () g]k (9)

= /H [(Aeg, Q7 2 Ak, Q) — (Aeg. Ack)| @z + )Ny, (dy)

([D*Ry®(x)g]k, h) = (D*Rygn(x)g, k)

= /H (09, Q7 2y (Aek, Q) — (Aug. Adk) | dn(e ' + 1) No, (dy)

forallt >0, g,k,h € H. If ® € UC{(H, H) then

([D*Ry® () g]k, h) = /H<Atk, Q;?y) (Dgn (e +y), e g) N, (dy).

Finally,
[DRe® ()] < [[Aelll| o (10)
ID*Re@(2) ]| < V2| Ael?[@]lo (11)
ID*Re® ()] < [le" || Adll[|]2 (12)



Proof. Step 1. Let us chech that the right hand side of (8), namely the mapping

g1 Tag i /H (Mg, Q) B(AMa + y)Ng, (dy)

defines a linear bounded operator in H; x € H and t > 0 are given. The integral is a well
defined element of H, because

| Jg. @ Pdietta +)| Mo,y

_ 2
<110l [ |, )| Vo (ay).
Linearity of I; , is clear; in addition, from this estimate it follows that I; , is bounded, and
11zl < [[A¢]|||®]]o- So inequality (10) well be true when we can say that I , = DR ®(z).
Step 2. Let us prove that R;® is differentiable at x and I, is the differential. We
have, for g,h € H,
(Ri®@(x + g) — Ri®(x) — It 29, h)
= Ripn(v + g) — Ripp(w) — /H<At9, Qt_l/231>¢h(€At$ +y) N, (dy).
Now, by Theorem 6.2.2 of [6],
1
Rion(a +9) = Ruon(e) = | (DRidn(o -+ sg). g)ds
0
! -1/2 A
| 890 P ione a4 s0) + 1) N (s

/H<Atg, Q%) </01 én(e™(z + sg) + y)d8> N, (dy).

Thus we have
(Ri®(x + g) — Ri®(x) — Iy 29, h)

/H<Atg, Q') [/01 én(eM (@ + s9) +y) — dnlez + y)d«S] Ng, (dy)
< (/H<Atg, 2902 N, (dy)> v

(/H [/01 on(e(x + s9) +y) — dn(ez + y)ds] 2 No, (dy)>

< [Aglwi(g) < |A¢lllglwi(g)

1/2

where

w(g) = sup |D(e"x+sg) +y)— Bz +y).
s€[0,1],x,yeH



Since ® € UCy(H, H),

lim w(g) =0
g—0

and thus R;® is differentiable at x with differential I; ;. One can check that the differential
is uniformly continuous in x. Clearly, by (10), it is also bounded. Thus we have proved
R.® € UC}(H, H) and all claims about DR;®.

Step 3. For given ¢,z let us analyze the right-hand-side of (9). Following [6], Lemma
6.2.7, for every bounded measurable ¢ : H — R, let us introduce the linear operator fo in
H defined as (we use different notations for the Gaussian measure with respect to the quoted
reference)

G.8) = [ [(0.Qr (3.0 ) = (e B)] elea + )Ny ).

It is prove in [6] that Gfp’m is even Hilbert-Schmidt, with Hilbert-Schmidt norm bounded by
2||¢llo. Therefore, in particular, G4 is a bounded linear operator with norm

IGS"1 < 2lllo-

To understand the right-hand-side of (9), let us introduce the linear mapping in H

ks Jyagh = /H (g, Q7 2y) (Aik, Q71 2y) — (g, Auk)| (e + ) N, (dy).
We have

[(Jeagh, )| = (G Arg, Aek)| < NG N[ Avgl|Ack| < 2]l onllollAell?|gl K]

< 2| Adl?l|®lolgl K] Al-

Thus J; ;4 is bounded and

1 ea,gll < 201 A¢]%[1@lo]g-

Therefor g — J; 4 is a bounded linear operator from H to L(H, H), denoted by J; , in the
sequel of the proof (we have J; ;9 = J; 4,4), and

[Tt

v ) < 2AdP]@]o-

If we prove that J;, is D*R;®(x), we have also proved inequality (11).
The proof of (12) is similar and based on the Hilbert-Schimdt property mentioned above.
Step 4. Given t,x, let us prove that DR;® is differentiable at x, and its differential is
Jtz. Recall that (DR:®(x)g, h) is equal to (DRpp(x),g). We have, for g, h,k € H,

([DRt®(z + g) — DRt®(z)|k, h) = (DRidn(x + g) — DRron(x), k)

hence, by Proposition 6.2.2 of [6] this equals,

1
/ (D?Rypp(z + s9)g, k)ds
0



1
= /0 /H (009, Q7 2y) (Aik, Q71 2y) — (Nag, Auk) | dn (e (wsg) + y) N, (dy)ds

= [ v @ 24k @20 = (g )] ([ (e s + s ) N ),

Moreover,

([Jraglk, h) = /H (a9 Q7 2y) (Aek, Q71 2y) — (ag. Auk) | én (e + ) Ny (dy).
Therefore
<[DRt(I)(x + g) - DRt(I)(x) - Jt,mg]k7 h)
/H (009 Q0 2y) (k. Q7 2y) = (Aig. Ak | D100, () N (dy)
= <G’(/)t7x’g,hAtgaAtk’>
where

1
Vtagn(y) = /0 [on(e"(x + sg) +y) — en(ez +y)
Hence, by Lemma 6.2.7 of [6],

([DR®(x + g) — DRi®() — Juaglh. )| = (G, Avgs Ack)]|
< 2t,mgalloll A lgl ]

But
1
[t w90 (y) < |h] /0 [@(e"(z + sg) +y) — D(e"z + y)]dsleg|hlwy(g)

as in step 2. Therefore DR;® is differentiable at z and D?*R;® is Jiz. One can check
that D?>R;® is uniformly continuous in z. By (11), it is also bounded. We have proved
R:® € UCE(H, H) and all claims about D?*R;® when ® € UC,(H, H). The proof of the
claims on D?*R;® when ® € UCY(H, H) is similar and based on Proposition 6.2.9 of [6]. We

do not give the details. The proof is complete.
]

4 Non homogenuous Kolmogorov equation

In this section we assume the conditions on A, B, () stated in the introduction and section

1.1 and we study the sequence on non-homogeneous Kolmogorov equations in H

1
%Ut =T (D?U,Q) + (Az, DUy) + (B, DU,) + Gy
U,(0,z) =0



where G, are the components of a function G € C([0,7T; Ci*(H, H)). In this section we use
forward notations for the PDE, for the sake of simplicity. The final result will apply to the
backward PDE (5) (in particular, the assumption B € C([0,T]; Cy*(H, H)) is invariant by
time reversal).

We also show that the H-valued function U(t,z) =), Uy,(t, z)ey, has a meaning and we
analyze its properties.

We interpret the PDE (13) as the integral equation

Upn(t,z) = /0 Ri_s((B(s), DUy(8)) + Gn(s))(x)ds. (14)

Here we write B(s) for B(s,-) and so on. Let us introduce alse the H-valued equation

Ut z) = /0 R o((B(s), D)U(s) + G(s))(x)ds. (15)

where we have denoted ), e,(B(s), DUy(s)) by (B(s), D)U(s).
We can state the main result of this section. The regularity we prove for U is not optimal,
and the theorem is restricted for simplicity of exposition to small T"s.

Theorem 3 Under the assumptions of section 1.1, given
Ba G e C([Oa T}? UCb(Hv H))v
for T small enough there exists a unique solution U of equation (15) in C([0,T);UC}(H, H)).

If we put Kp := |DU]|o, then

lim KT =0.
T—0

Moreover, DU € C([0,T); C{(H, H)), 0 such that assumption (4) hold.
If in addition B,G € C([0,T); C¢(H, H)) for some a > 0, then U € C([0,T); UCZ(H, H)).
Finally, there is a constant Ct > 0 such that

ID*Unllo < C7l|Grlla (16)
for every n € N.

Proof. Step 1. Consider the map £ defined as
t
LU(t,z) = / Ri—s((B(s), D)U(s) + G(s))(x)ds.
0

It is defined on functions U € C([0,T); UC(H, H)). 1t is easy to check that LU € C([0,T); UCy(H, H)).
But we also have the bound

/0 |DRo_o((B(s), DYU(s) + G(s))(x)|ds

< [ 1A B, DU + Gls)ods
0

8



t
< (IBllo| DUl + G ]l0) /0 1A, lds

which implies LU € C([0,T); UC{(H, H)) and
DLU(t,z) = /0 DRi_o((B(s), D)U(s) + G(s))(x)ds.

Since limp_y fOT |Al|ds = 0, and the map £ is linear, it is a contraction in C([0, T); UC} (H, H))
for sufficiently small T' (one has to use also an estimate on U in the norm of C([0,T]; UCy(H, H))).
Moreover, if U is a solution, then

t
DU(t,z) = /0 DRi_o((B(s), D)U(s) + G(s))(x)ds (17)

hence .
10U < (I1BlollDU o + 1G1lo) /0 1A, lds

hence, for T such that || B||o fOT IA||ds < 1/2 we have

1 t
31PUlo < Gl [ 1A4lds

which proves limp_,g K7 = 0. We have proved the first claims of the theorem.

Step 2. Let us recall a result from interpolation theory developed in [6], Chapter 2.
From Theorem 2.3.3 and the remarks at the beginning of section 2.3.3, for every 61(0, 1) there
is a constant Cyp > 0 such that

1-0 0
lello < Collello™ llelly

for every ¢ € UCY(H,R). The same result is true for ® € UC}(H, H). Indeed, for every
h € H the function ¢, = (®(-), h) belongs to UCY(H,R), hence

(@ (z) — (y), ) < Collenllo lenllfInllz —y|°.
But [lgnllo < [[®[lolh| and [lpn[ly < [[®[[1]h]. Hence
|(@(2) — D(y), h) < Coll®llg~° [ @IIFIh]|z — yI®

which implies
—0 0
@]l < Coll®ll5~°l|@|1{.-

We also have
1®]lg < Coll®lls~° ID2|§ + Col|lo-

Similary, if ® € UCZ(H, H), we have

ID®]lg < Cyl| DLIlg~ || D*®I§ + Col| D2]o-



Step 3. Let us apply the previous interpolation inequality to R,®, ® € UC,(H, H),
t >0, with 6 € (0,1):

|IDR.®|lg < Co|| DR ||y ~%|| D* R ||§ + Col| DR Do
< Co(|| A [|®]10) 0 (V2[|Adl 2| @10)? + Call As]l|®]l0
< CH(|IA 0+ D)D)l

for a new constant Cj > 0, where we have used inequalities (10) and (11) . Thus from (17)
we have

IDU®)]ls < /0 | DR s((B(s), DYU (s) + G(s)lods
< /0 oA + )| (B(s), D)U(s) + G(5)ods

t
— CY|(B.D)U + Gllo / (A + 1)ds.
0

If 0 satisfies the assumption of section 1.1, namely f(f | A¢]|*Hds < oo, we deduce that DU (t) €
CY(H, H) for each t € [0, 7). Easily one can check that DU € C([0,T],C{(H, H)).

Step 4. Assume now B,G € C([0,7],C{*(H, H)). Since § > « (see section 1.1), we
know that (B, D)U + G € C([,T],Cy'(H, H)). We use again an interpolation result of [6], see
the proof of Lemma 6.4.1: there exists C// > 0 such that

ID? Rep ()| < CallAel*~ [l lla
for all ¢ € C;'(H,R). It follows that
ID*Re@ ()] < CallAdl®~*|®la

for all & € Cy'(H, H).
Using these fact, from (17) we have

102U (1)) < / ID?R,_o((B(s), DYU(s) + G(s)||ds
/ CYIIAZ (B (5), D)U(5) + G(5) ladls
— CYl(B, D)U + Glla /0 1A ]2 ds

We have fg | A¢]|*~*ds < oo (see section 1.1), hence U € C([0,T]; UCE(H, H)).
Step 5. From (17) or directly from equation (14) we have

n(t,x) / DR;_4( ), DUn(s)) + Gn(s))(z)ds

10



and thus
DQUn(t,x):/O D?Ry_s({(B(s), DUy(5)) + Gn(s))(z)ds.

From the first one of these identities, with the same computations of step 1, we get (on the
interval [0, 7] found in step 1)
||DUn||O < ClHGnHO-

As in step 3, we get
[DUnlla < Cal[{B, DUp) + Gallo

and thus
[DUylo < (C1C2||Bllo + C2)[|Gallo-

Finally, from the equation for D?U,,(t, z), exactly as in step 4, we prove
HD2UnH0 < C3H<ByDUn> + GnHa~

Putting together these estimates, we obtain (16). The proof is complete.
]

5 Malliavin Differentiability

5.1 Strong Uniqueness

We fix a filtered probability space (2, F, P), {Ft}ie(o,r) such that W is a Fi-cylindrical Brow-
nian motion on H. A mild solution of equation (1) is a process X = (X);c[o,7], which is an
Fr-adapted continuous process in H and satisfies

¢ ¢
X; =ela + / e(t_S)AB(S, Xs)ds + / 6(t_s)A\/§dW8.
0 0

The stochastic integral is well defined since we have assumed @), is of trace class.
The following rewriting is essential to our estimates:

Lemma 4 Under the assumptions of section 1.1, let U be the solution given by Theorem 3.
If X = (X)iejo,r) is a mild solution of equation (1), then the equation (6) is satisfied.

Proof. Having now Theorem 3, the proof is the one given in Section 2. The only point is
the application of It6’s formula. In order to use elementary versions of it, one can introduce
the approximations

dX]" = A; XAt + B(t, XM dt 4+ Po/QdW:, X" =

where A; are the Yosida approximations of A, P,z = Z?:l x;e;. The computations of Section
2 can be done on these approximations and then one can pass to the limit in the final equation.
We omit the details which are classical.

]

Using the previous lemma we proceed to prove pathwise uniqueness for the equation (1).

11



Theorem 5 There exists a T > 0 such that pathwise uniqueness holds for (1) on [0,T]. That
is, if X1 and X? are two mild solutions, then we have for lebx P almost all (t,x) € [0,T] x Q,
Xi (w) = XP(w) -

Proof. Assume X' and X? are two milds solutions, and define V; = X} — X?. Then, by
Lemma 4 we have

T T
| mPar<s [ xd - v xh P
0 0
T ot
+ 3/ y/ A=A (s, X1) — U(s, X2)]ds|dt
0 0
T
+3/ (X1 — L,(X?)|dt.
0
From Theorem 3 we have
To deal with the second term we use the maximal inequality
||/0 Ae(._S)Af(s)dS||%2(0,T;H) = CT||f||%2(o,T;H)

where Cr is a constant independent of f. Notice, however, that C7 does not converge to 0
as T'— 0. We then make the following estimate:

T T T
/\Vt\zdtg(3+3CT)KT/ my2dt+3/ (XY — L(X2) Pt
0 0 0

For T small enough we thus have

T T
/ Vi2dt < 6/ L(XY) — I(X2)Pdt,
0 0

and in particular
T T
| B <6 [ EIRee) - B
0 0

The proof will be complete once we find an estimate on the right-and side of the previous
inquality. We have

T t
/0 EI(X") — L(X?)[2)dt = /0 [e=94(DU (s, X1) — DU (s, X2))/Q|%gds.

12



For the kernel, we write

He‘H)A(DU(S X.) = DU (s, X))V Qs
Z A(DU(s, X)) — DU(s, X2))\/Qen, en)?

h>1
_ Z “2t=9)n (DU, (s, X1) — DU, (s, X2)), v/Qep)?

n,h>1

= 3 2900 5 ( QDU (5, X2) — DU (5, X2)), €1
n>1

< QIS e =) DU, (s, X}) — DU, (s, X2)[?
n>1
< QIS e 2= | DU |2 | X) — X2

n>1

From Theorem 3 we have
|DUslloo < C7||Bnllas

hence
ElIL(XY) — L(X?)) < C2Q| / S e 2=s)an | B, 2|V 2ds.
n>1
Therefore
T 2 2
E[/0 (X" — 1(X?) ] <OTHQ||/ /Ze t=9)an | B, |2 |Val2ds
n>1

< G2lQIlIBI2 / [ e | wipas

n>1

T
< 21QIIBI2 / S e Ran gy / Vi 2ds.

n>1

By assumption (2) we have limp_, fOT > opsi e endt = 0, so that for small enough T we
which gives the result.

have -
Bl / Vi[2ds] = 0
0
| |

Notice that by the Yamada-Watanabe theorem, the previous theorem coupled with weak
existence is enough to guarantee strong existence of equation (1). We will not elaborate
further on this here.

In this paper we will however use Malliavin calculus to construct the solution. As a by-
product of the construction method, we will prove that the solution is Malliavin differentiable.

13



5.2 Malliavin Differentiability

In the remainder of this section we want to use a compactness criterion for L?-functionals of
Wi based on Malliavin calculus (see Appendix, Theorem 14) to construct Malliavin differen-
tiable mild solutions to (1).

To this end we need some definitions and auxiliary results.

Denote by Lo(H) the space of Hilbert-Schmidt operators from H into itself with norm
|-l g In what follows let A/ : D(M) C H — H be a non-negative self-adjoint operator
with existing compact inverse M 1. Further consider the space E obtained by completion
with respect to the norm |-|| ; given by

2 2
1K =D 1K Mey||

n>1

for K € Lo(H), if defined.
From now on we also assume that Q'/2M has a self-adjoint continuous extension to H
such that

2
(t—u)A 1/2H <C 18
[err] ) < E—w)is (18)
for all ¢t > u >0 and
He(tfm)AQl/Q _ e(t7u2)AQ1/2H2
E
1
< C———— — ug|" 19
>~ (t—U1)176 |U1 U2| ( )
for all t > u; > ug > 0 and some g > 0. Further we also assume that
2
[ ety - Vo) < € Jun = wap (20)
H

for all u; > us >0, s > 0 and some 7 > 0.

Remark 6 Since ||K| ;¢ < C||K| g for all K € E for a constant C' depending on M we
also see that

He(t_u)AleHZS < C(t—i)l—(s (21)

forallt >u >0,
St—u)Al/2 _ (t—u2)An1/2|)?
e 2ok

1 9
< _ 22
< C(t_u1)1_5 lur — us (22)

for all t > u; > ug > 0.
The next result shows that if B in (1) is ”nice” then the EF—norm of the Malliavin

derivative D, X; of X; exists u-a.e., P—a.e.

14



Lemma 7 Suppose that B € C([0,T); CL(H, H)) in (1) . Further assume the conditions (18)

and (19). Then
T
E U HDuXtH%Edu]
0

1
< C(T° +exp |2 sup HeTAH sup |[[DB(s, )|loT])
0 0<r<T 0<s<T

forall0 <t <T.

Proof. Since

t t
X, =z + / eU=D4B(s, X,)ds + / =941 2qw,,0 <t < T,
0 0
we find for all 0 <« < T that
t
Dy X = / e DADB(s, X;) Dy Xods + eWAQV2 u <t < T.

So we obtain by Picard iteration that

D, X
e(tfu)AQl/Z —|- Z ussl<__.<Sn_1Ste(snisnfl)ADB(Sn—l7 XSn—l)"'
n>2
6(82—81)ADB(51’ Xsl)e(sl_u)AQ1/2d81...d5n_1 (23)

in L?(Q; Ly(H)) for all u <t < T.

15



Hence it follows from (23) t > u that

[ DuXt|l g
< He(t%)A 1/2H 4 e e sup ||l IIDB(sy_1, )| .. 94
< Q Eg;sK<MgM%HH\ (sn-1.)llo (24)
sup [l IDBsa, g e~ 94QY| dsi..dsns
0<r<T E
< He(tfu)AQl/QH n T n—1
L3 1]
41 S1—U
Kn_lﬁquluDB@n1fwmn~nDB@h»mHél QY| ds..dsnr
n—1
1
< He(t_“)A 1/2H +C —— | sup |le"]| sup ||DB(s,- T —u)" 2
Q"+ 0% Gy e, el s 1B ) (7=
T
1
N S —;
/u (s1 — u)l=9 51
n—1
1 1 1
< He(tﬂ”)A UQH +C(1+ ——— | su A sup ||IDB(s, )|, T (T —u)’=
Q"+ 00+ ity (s, el s, 1PBG T )3T -y
< [|et=1Q2| 4+ Cpsexp ( sup_[le™ ]| sup nle<sf>m;r> . (25)
E 0<r<T 0<s<T
So
T ) t )
/ ||DuXt||Edu:/ IDWX 2 du
0 0
t 1 A
< o —— 4 2 r DB(s. . T
= (/0 ({—qi o™ TP Ogllg’TH@ HoiglgTH (s, )Mo T))
1 6 rA
= C<5t +exp |2 sup He H sup |DB(s,)||oT |) < co.
0<r<T 0<s<T
m

We shall also use the following Lemma

Lemma 8 Let B in (1) be in C([0,T);CL(H,H)). Then X; € D(AY?) P—a.e. for all
0<~v<1and

2 1
Bl|42x| 1< e+ 11BID)
forall0 <t <T.

Proof. Since

t t
X, = ey —I—/ e(t_S)AB(s, Xs)ds +/ e(t_s)AQ1/2dW5, 0<t<T,
0 0

16



it is sufficient to prove that

1 ,
E[|Qil*] < Ci-(1+|IBlg),i = 1,2,3,

el
where
t
Q1 . =A%t Qy ::/ A2=)AB (s X )ds,
0
t
Qs : = / A2t Aqy,
0

Then using the inequality
H Av/ze(t_smH <_ G
= (t—s)/2
and It0’s isometry the result follows. m
The next Lemma will be crucial for the application of the compactness criterion Theorem
14 in the Appendix.

Lemma 9 Assume that B € C([0,T); C{(H,H)) N C([0,T); C(H, H)). Let X. be the mild
solution to (1) associated with the coefficient B. Then for all 0 < 6 < T there exists a
0<pB< % such that

E [ /0 LRI du} < Li(I1B2) (26)
and )
p|[ [ 1Putes Df‘i;?”Edwduz] < Lo(|BJ2) 1)
o Jo u1 — ug
where L;,1 = 1,2 are non-negative continuous functions on [0, %T] with Vp — 0 for T — 0.
Proof By applying the chain rule for the Malliavin derivative (see [13]) we know
that

DyX; = DU(t,Xy)DyX;+ /t Ae=9ADU (s, X,) Dy X ods
_|_€(t—u)AQ1/2 . e(t_Z)ADU(u,Xu)Q1/2
— / t e=DAD2U (s, X) QY2 D\ X (AW,
= I1j12+1—3+f4+15 (28)

foru <t <T P-—a.e., where

t
I, : =DU(t,X)DuXy, I = / Ae)ADU (s, X) Dy Xds, Is := et=04Q1/2

u

t
I @ =—e"WADU(u, X,)QY?, I5 = — / e IAD2U (s, X) QY2 Dy X o dWs.

u

17



We want to use Gronwall’s Lemma to show (26) and (27). To this end we need some
estimates of I, ..., I5.
1. Estimate for I; : By Lemma 7 and the estimates of Theorem 3 we find that

Ef|L %] IDU 1§ Bl Du X 5]

<
< Kr||Bllg E[IDuXe|*]E < o

for ¢t > wu, where limp__,o K7 = 0.
2. Estimate of I5 : Using the inequalities
et < e
tG

and

|A“DU (s, X3)|| < Cerr || Bl

for 0 < e < 1 (see [8]) we obtain

AR
t 2
< (- wEl [ [l MDUs. x| DX ds
t 2
< (- wB( [ [l et DU s X DX d
< S

t
(t —u)Cer |B||3E[/u =20 | D X7 ds]

t

= (- wCC 18I [ SB[ DX, 3]ds

ot
(t — s)20—

for 1 >~ > 0 with 2(1 — ) < 1(see (25)).
3. Estimation of I3: We know from (18) and (19)that

1

L2 <C0—-——.
H 3HE = (t—u)1—5

As for the other two estimates we use the notation of the previous section and let

O = d(s) := (B(s),D)U(s) — B(s).

18



4. Estimate for I4: Because of our assumptions and Theorem 3 we obtain

2
ILE = |4, x)Q"?|
2
_ | t—wa 1/2
He DU(u, Xu)Q MHHS
= Z (e=WADU (u, X,)QY? Mey, en)?
n,h>1
= Y el (DU(u, X,)Q2Men, e)’
n,h>1
= Y e t(DU, (u, Xy), QY2 Mey)?
n,h>1
— Ze—Qan(t—u) Z(Ql/QMDUn(quu)7€h>2
n>1 h>1
2
< Y= QY2 || DU (u, X,
n>1
2 T 9
< [l@eu] ca( [ 1ads2 3 e s,
0 n>1
2 T
= Jereu] er( [ iasgasy
(O Qan(t — w) 1 02e 2= (20, (t— )~ || B, |I7)
n>1
121 7|? g 2 1 2112 o—(1—3) 1
< CaHQ MH Cr( ; |As ds)” || Bllg 2 w9
if T' is small enough. Hence
Bty < osj@vem | or( [ Iadas? 1200 L
&l < o 1 o e

5. Estimate for I5 : By our assumptions and the estimates of Theorem 2 we get for fixed

19



reN

IN

IN

A

2
Z He(tis)ADzU(Sv Xs)[Ql/Qem DquMeT]
h>1
Z <6(t*s)AD2U(Sa Xs) [Q1/2€h7 DquMeT]v €n>2
n,h>1
> e 2N DU (s, X,)[Q" ?en, DuX Me,], en)’
n,h>1
S 2l (D2, (s, X,)[QV 2en, DuXoMe])?
n,h>1

> e 2= N (DU, (s, XL)[Q 2en, DuX s Me,])?

n>1 h>1

3" 720l Q||| DUy |3 || Du X s Me, |

n>1

Cr HQH Z 672an(t78) HBnHi ||DquM67~||2

n>1
CT HQH Z(20zn(t — 5))(1_5)26—2an(t_5) )
n>1

(20, (t - 5))_(1_5) ||Bn||i ||DquMer||2

1

CoCr |1QNI 2~V IBI; IDuXeMer P 55

So it follows from the It6 isometry that

[HI5II%]
2
= eU=IAD2U (s, X,)[Q?en, Dy X Me,]|| ds
r>1 h>1
< CCr)Ql 20 B2 /auDst
So using the above estimates we get
E[|| Dy X 7]
t
< C(KTIIB\ZE[HDuXtH]%Jr(t—U)CaTCwIIBHZ/ (1 5)21=) (1 DuXs %]
+C¥+C&HQ”MH20T< IV PR TPt —
(t —u)t=o ’ “ (t —u)1=9)

L0307 Q) 2709 B /

ﬁ 1D X ds)

20



for u <t <T. Thus

E[||DuX4|[3)
¢
1 - CKr||B|
(s v as @ e [ nasz Bz 00 L
(t—u)t=s " o 1 o (t—w)a
C

+ 2 :

1- CKT ”BHa

t
_(1— 1

(¢ =0)Cuir O 1B + CCr QI 2 1B12) [ osms DX s

for u <t < T with T small enough such that CKr || B||, < 1. Hence by a generalized Lemma
of Gronwall for weakly singular kernels (see [1, Theorem 3]) we get

Bl < o)+ [ 3 YT ¢ gicragepas
u n>1
for u <t <T , where
a(s)
___ ¢
1 - CKr||B|2
o+ 6 |[Quamlf on( [ 1A ary? B2 2-0-) !
(€ +Cs Q| ([ 1A ar? 1B 20 .
g(t)
C 2 —(1— 2
- ((t—u)C.rC,||B|% + CsC 2-1=9 B
1—CKTHB||2(( )CerCy || Bl + CsCr Q)] IBII5)

and where I' is the Gamma function.
Let us now assume that ngd < 1, but (ng + 1)d > 1 for ng € N.
Therefore by using the following relation based on the Beta function

/u (t — 501 = 2)1—5 ds — 11:((7711?5—(:55)) (t — w)n o1

where I' is the Gamma function, we obtain

)

E[|| DuX:|| 3]
< LB i + 151 3 PO L i
n>1
1 "L (Ly(||B nT(§ 1
< Be s o) SRR



where L; and Ly are non-negative continuous functions on [0
T — 0.
Altogether we get

1
,m], where K7 — 0 for

T
E[/O DX dui
¢ 2
e / | DX |2 dul

no—1 n (n+1)6
LA(IBl2) 52 + La(lBll, D> e

=1
(Lz(\lBlla)F(5))”T (0711 (6)
[((n +1)3)

IN

+Li(IBlla) Y

nzng

Let us now show the estimate (27). Assume that t = 0 > u; > ug > 0. Then it follows
from (28)

Dy Xt — Dy X = ij,
where
J1 o :DU(taXt)(Duth_Dth)’
ul
J2 c = Ae(t_s)ADU(S,Xs)DuQXsdsa
u2
t
Jy = / Ae)ADU (5, X ) (Dyy Xs — Dy, Xs)ds,
ul
Jy o= etru)Apl/2 _ (tmu)Apl/2
Js 1 = —(e"ADU (up, Xy )Q"? — e ADU (uy, X, ) QM)
u1
Jo @ =— / e =IAD2U (5, X) QY2 Dy X (dW,
u2
t
Jr :—/ e IAD2U (5, X,)QY?(Duy X5 — Dy X)W
ul

Let us first estimate the terms Jy, J5, Jo and Jg.
1. Estimation of Jy: By assumption we have

He(t—uz)AQl/Q _ e(t—ul)AQ1/2H2E <C

‘ul — U2

1
(t — U1)1_6

for all 0 < wug < u; <t and some 0 < p < 1.
2. Estimate for Js : We can write J5 as

Js =T + T + T3,

22



where

T = _(e(tqu)A - €(t7u1)A)DU(u2= Xu2)Q1/2’
T o = —el"WA(DU(us, X,,)QY? = DU (s, X,,)Q'?)
T3 . = —e(t_ul)A(DU(m,Xm)Ql/z - DU(Uleul)Q1/2>

2.1. T5 : Because of our assumptions, Theorem 3 and the mean value theorem we obtain

2
Bl = [t 04DV (e, X,)QY? — DU, X))@V

- He(p“l)A(DU(W,XuQ) - DU(“%XW))QWM)HZ.S.

= Z <€(t_UI)A(DU(u27 Xu2) - DU<U'27 X, ))Ql/ZMeha €n>2

n,h>1
= Y e 2 m(DU (ug, Xuy) — DU (ug, X, ))Q'>Mey, €,)”
n,h>1
= Y e 2 (DU (ug, Xuy) = DUn(u2, X)), Q> Men)?
n,h>1
= Z 6_2an(t_UI) Z<Q1/2M(DUn(u2a Xu2) - DUn(u27 Xul))v eh>2
n>1 h>1
2
< et | QUM DU (2, Xoy) = DUn(uz, X
n>1
2 1l 9
< Y errenltmu) QN2 0y / [ D2Un (w2, Xy + 5(Xup — Xy ))(Xup — Xoy)||” ds
n>1 0
_ _ 2 2
< Ze 20, (t—u1) Ql/QM HDQUnHOHXuz _Xu1||2
n>1
2
< Cr|[Q'2u||” ST et 1B, 2 || X, — X I
n>1
2
= Or |QVPM| > (2an(t —ur)) Ve =) 20y, (t = ur)) "0 || By[2 | Xuy — X, |1
n>1
2 (1 1
< Cr QM| |B|Z27 " 6)m||Xuz—Xu1||2-
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Further we have that
X, — Xu,
Ul u2
= Wiy — vy +/ M)A B(s, X, )ds / e2=)AB (s X, )ds
0 0

+/u1 e(ulis)AQl/deS B /UQ e(u275)AQ1/2dWS
0 0

u1

ug
— A, gu2A, +/ (e(mfs)A _ e(uzfs)A)B(Ssz)dS +/ e(UI*S)AB(S7XS)dS
0 u

2

/u2 (e(ul—s)A _ e(u2_S)A)Q1/2dWS " /Ul e(ul_S)AQl/ZdW&
0 u

2

On the other hand we find for all 0 < £ < 1/2 that

H(e(ul—s)A — w29y, ‘2

= Z<x, €k>2(1 - 6_(u1_“2)°‘k)26—2(uz—8)ak

k>1
= Z<ZE, 6k>2((u1 — U2)ak)_25(1 _ e—(ul—’LLQ)Oék)2 .
k>1
_ )2
((UI — U2)ak)262u28;266—2(ug—5)ak
Uz — 8
1
< 2 _ 257.
= el =) (ug — 5)%

Hence it follows in connection with (22) and (30) for 7' < 1 that

2
Efl[Xuy = Xu, [|7]

(30)

1 1 _ 2
< Clz))* =z (ur — u2)* + || B3 uy % (g —u2)* + sup |le"||” || BI§ (w1 — u2)
Uy 1—2¢ 0<r<T
|t —w)ds+ [ a)
+ T s \U1 — U2 ds +/ 7_618
o (ug—s)170 wp (w1 —s)170
1 1 2
- C 2 - _ 2e B 2 1-2¢ _ 2e rA B 2 _
([[ & (u1 —u2)™ + | Bllg 7 —5_u2™ ™ (w1 — u2) +02}I§>TH6 |7 11BllG (w1 = u2)
1 1
—I—gug(ul — uQ)19 + g(ul — uQ)5)

1
< H([|Bllp) 5z (u1 — u2)*"*",
u3
where H is a non-negative continuous function on [0, c0).
Therefore we have
2
BT[]

2 - 1 1
< CTHQl/zMH IBI12 H(|Bly)2~ " 5)W@(uliu2)mm'
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for all u; > us.
2.2. T35 : We know that

—e"" (DU (ug, X,y )QY? — DU (w1, Xoy) Q"
= [ DR, @) (X) i / ADR,,, - (0)(X,)QY2hdr
= C191+G2, '
where
G o+ o= /ul CEIADRL L (B)(Xu, )QY2R]dr
u2
Gy : = /D " UTWAIDR () (X, )QY2h)dr — /0 " UTWAIDR o (®) (X, ) QY 2] dr

We also see that

u 2
e(tul)A/ (DRuy—r(®)(Xu,) — DRuy—r(®)(Xo, ))drQ"/?
0 FE

e(t7u1)A /OU2 (DRUl_T(CI))(Xul) — DRuQ—r(q))(Xqu))d'I“

H.S.
= D felmH /UQ(DRul—r(‘?)(Xul) — DRuy—r(®)(Xuy))drQ'? Mey, en)?
0

n,h>1
2
= 3 el / (DR (8)(Xar) — DRy (8)(Xo))drQY2 Mep, )
nh>1 0
u
= Y el / (DRuy - (B) (X)) — DRuyr ()Xo ) ), QY2 Mep)?
n,h>1 0
= el S QUM [T DRy (#)(Xun) = DRy () (X )
n>1 h>1
U 2
< Zef2an(tful)‘ / (DRy, —(®,)(Xu,) — DRy, (®,)( Xy, ))dr
n>1 0
2
o0 3 e - 00
n>1
U2 2
: ‘ /0 (DRul—r(q)n)(Xm) - DRUQ—T((I)n)(Xm))dT
2
Us 1
< _ ~-___ L
< ) | DR (@)(F) = DR (@) (K| 270y

On the other hand it follows from the semigroup property of R; that
DRy, —r(®)(2) = D(Ruy—r(Ruy —uy ®)) ().
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This in connection with Theorem 2 gives

/uQ(DR'm T( )(X ) DRU2 T((I))(Xul))th

L (haeh @2 (R = R + ) No,, ()

Further, we find for a = e(“T”)AXu1 +y and arbitrarly small 0 < 2p < 1 by using Burkholder’s
inequality, Lemma 8 and (21)

IN

IN

IN

[(Ruy—us® — Ro®)(a)|?
|E[®(r, 22 _,,) — ®(r,a)]|?

up—ug
2(1]

@15 Bl 28, -, — Z8
(6(u1—u2)Aa Ca+ /u1 Uz e(ul_“2_s)AQ1/2dWs
0

2c

15 B ]

2«
C@, (|2 (w2) = 24X, (w2)

2a

)

2c
(1 IAATP (A0 X (w2)) — el TIAATP (AP X ()|

2c Ul —u2
+ /
0

+ He(ul—ug)A 2a

ol

/UI_U2 e(ul—UQ—s)AQl/QdWS
0

Ca 125 (

2c
(u1—u2)A, (u1—uz—s)A 1/2H d
+ He y—y € Q H.S S)

2«
Ca | @I (Jur = ua ™ [| 47 Xy, (w) [P + || el 2204y —
; 1—-(1-%)a
AT TR G )

Hence by (20) in connection with Holder’s in inquality we get

IN

IN

IN

/0 DRy (8)(Xur) — DRy (8) (X))

2

L Wl ][ (R = Ro® 0%, 4 ) [ N, )2

u2
(/0 Ayl (Ca 1RI12 (Jur — ua] | AP X, (w2) [

/|

2a
ety —y |7 N, (dy)dr + (w1 = ) =79 2y

1
T—(=0)a

ug
Ca(/o 18— | dr)?(Ca 19115 (Jur — ua [ [ A2 Xy (w2) |

+ Jug — g1/ (170

; _ 1-(1-9)«
= (1)) )
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So for T' < 1 we have
2
B[] G| %]

2 T
< Caampr [ QM ([ Wuarrl ar (1012 BUAX 2]+ 1)

1

( = 2pa)An(e/(1—a))A(1-(1=b)a)
t—uyp)t—

|y — "

2 T
< Cranpr [ QM (| 1uamrll ar)((C1IBIE + Ca IBIBIA X ] + 1

1 (
'm\m — ug]

2pa)An(a/(1-a))A(1=(1=6)a)

On the other hand we know by Lemma 8 in connection with Holder’s inequality that

1

(2@l =a)

E[|APX,, %] < C(1 + || B|2)*/0-)

for arbitrarly small p > 0.

E[|Gz%]

2 T
< Conmpr [ QM ([ Iwar (o IBIE + Ca I BIZN 1+ BI04 17
1 1

'u§p<a/<1—a>) (t —up)l=?

lug — u2|(2pa)/\n(a/(1—a))A(1—(1—5)a)

for arbitrarly small p > 0.
As for the term GG we argue just as above and get

2

ul
elt—u1)A / DRy, —r(®)( Xy, )drQ/?
u2

E

2
o—(1-0) 1

< @] Ty

2 ’

ul
/ DRuy—r(8)(X,,)dr
u2

But

2

ul
/ DRoy—r(®)(Xy)dr
u2

Ul
< o / 1 Aus—r dr)? B2

u

UL —ug
< o /0 IA | dr)2Cr (K | BIP + Koy |1B),)?

T 2]
< o /0 1A |74 dr)/ 4O O (6, | BI2 + Ky |[B]l,) (s — ug) 750
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Hence

E[|G1 3]
1

2 T 0
Cs @2 200 [ a5 ) OB + K Bl = a) T

So we obtain

E(|I T3]

2 T
< Caampr [ QM ([ Usar (o IBIE + Ca BN+ BI04 17

1 1
. — oo |@pa)An(a/(1=a))A(1—(1-6)a)
uip(a/(l_a)) (t — u1)1_5 |U1 UQ‘
2 2a 1
+205 @2 200 (GBI + Co IBIZ)? sup e 1QV| (e — )
0<s<T s (t —w)
2.3. 17 : We find that
2
| (elimm4 — =04 DU 1y, X,,) Q2|
2
= Z H(e(t_UZ)A — e(t_ul)A)DU(UQ, XuQ)Q1/2MehH
h>1
_ Z <(e(t—ug)A . e(t_ul)A)DU(UQ, Xuz)Q1/2M€ha en>2
n,h>1
= 2 (e_(t_UQ)an - 6_(t_u1)an)2<DUn(u2a XUQ)? Q1/2M6h>2
n,h>1
— Z (e—(t—ug)an _ 6_(t_u1)a")2<Q1/2MDUH(UQ,XuQ),eh>2
n,h>1
2
< ||@UEM|IDUG Y (eI — em(mman)2
n>1
_ Q1/2M 2 ||DU||§ Z e—2(t—u1)an(1 . 6—(u1—UQ)an)2
n>1
2
= ||Q*M| IIDU|G -
. Z(Q(t o ul)an)lféefZ(tful)an (2(t - ul)an)éfl(l - 67(u17u2)an)2
n>1
2
|@v2m | 1pus -
. Z(2(t - ul)an)lféefZ(tful)anT;fl(t o ul)éfl(ul o Ug)lié((’u,l . UQ)an)éil(l - ef(ulfuz)an)Q
n>1
< sl 1D s )
- 0 (t — ul)lfa

1

= CrCs HQl/2MH2 HBHIQI m(ul
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Hence
2
BT[]
2 1 3
< OrCs [ QV2M | IIBIR, s (1 — w2,

(t —up)t=° (wr = u2)

Altogether we see for T' < 1 that

E[||J5)1 %]
S C<Ta 57 «, Mv Qa 97 H, 07 €, A)G(HBHQ)
1 16 1 R IR Y 1
((t—u1)1—5(UI ug) "+ (= u s U%E(UI ug)
n 1 1 2p0) A(ee/ (1)) A (1~ (1-3)an20)

(
Uy —uw
W2000/0=0)) ( —uy)1=9 [ur = s

where G is a non-decreasing continuous function on [0, 00).
3. Estimate for J5 : The calculation in 2. for the estimate I shows that

(2]
uq 1
< (0= w)CerCy 1B [ o BlID Xl s

uw

Then employing the estimate (29) we have

E[|l ]3]
< (ul—UQ)CCE,T07 HB||(2)
Ul 1 1
(G1(|B
@081 | o g
Ul 1 5
+Gz(\Blla)/u2 W(S‘W) ds)

= (u1 —u2)CCrCy || B3
N (e
1—2(1—y)+s L (1 =2(1 = y)T'(1 + 5))
T(1—21—7)+1+90)
= CO(e,T.78)(Gr(IBlly) (ur — up)t =217+
+G(| Bl ) (ur — ug) 20-0+9),

+Ga(([Bllo) (ur = u2)

where we used the Beta function and where 0 < 2(1—+) < 1 and G;,¢ = 1,2 are non-negative
functions on an interval [0, V(T)] with V(T') — oo for T — 0.

4. Estimate for Jg : We argue just as in 5. for the estimate I5 and get in connection with
the inequality (29) for T' < 1
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2
"IADU (s, X,)[Q"en, Duy X Me,]|| ds

/m
>/
s [
/u e~ 20n =) (DU, (5, X5)[QY?en, Dy Xs Me,))*ds

/ 6720471(t73) Z(DzUn(37 XS)[Ql/zeh’ Du2X5M€T])2dS
1Y U2 h>1

vM

E=)AD2U (5, X)[Q'%ep, Dy, XsMey], en)ds

e 20 (=D (5, X,)[Q"2en, Duy X Me, ), €,)ds

M WM |vM |

r>1n

Il
M IVM WM ‘VM 'VM

MI\/

ﬁ
\
_

e QU [DUn g 1D, Xl ds

\gl?/

\vM I

< CTZ / 20| Q| | BI || Dy X% ds
n>1
— 20 S 1
< CrF(|B|,) Bl Z/ Boun (8= )S_u2)1—5d8’

n>1

where F' is a non-decreasing continuous function on [0, 0o).
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On the other hand we see by integration by parts and Hoélder’s inequality that

“ —20u, (t—s) 1
Z/ e 7(8 — u2)1—5ds

n>1742
1 —20un (t—u1) ) “ —2« (tfs)l 0
= Z(Ee " (U1 - u2) — 2ay, € " S(S — UQ) dS)
n>1 ug
1 1 ul ul _ B
< Z(ge—mnﬁ‘uﬂ(ul —uz)6+g2an( / e~ 2an(47)(t=9) g5) 1/ (1+7)( / (s — ug) 17 D gg)l/A+m7h)
n>1 u2 u2
_ L onnt—u),, . s, L 1 —2an(1+7)(t—u1) o —2an (14+7)(t—uz)\\1/(147)
= 7;(56 (ug —ug)’ + 52an(2(1+7)an(6 e )
1 T o+ —L1
() =) )
_ } . 1-6 ,—2an (t—u1) 1 . 1)
- ;(5(2an(t ul)) € (20[n(t — Ul))l_é (ul u?) )
L V/C P P SV CR
R Trmres D ey )
1 -0, —2an(t—u 1 —2a 7)(u1—u T g -
>3 e (200 (t — uy))' e 1)(t—u1)1—5(1 — e 2N/ AFT) (g )" T
n>1 o
< C(;(ul — ’UJQ)(S + 71 (ul — uQ)é—i_(lTl*l))
- (t—up)'=0 (t —uyp)t=o
1 §
S Cm(ul — Ug)
for 7 > 0 small enough.
So we get
E||Js|%]
2 1 5
< CrF(|Bl,) Bl m(ul — ug)

Let us now consider the terms Ji, J3 and J7. But this case just corresponds to the calcu-
lations for the estimates of 11, Is and I5 and we obtain

Bl 3]+ B3] + Bl
< Kr|BIE BlIDw X, — Do il
t

C
_ 2 v
= m)Cor |BIREL| s
s
(t —s)t=90

| Dy Xs — DU2X3H2E' ds]

t
050 QI 2700 B2 / Dy Xs — Diy X, 12 ds

u1

Altogether it follows from the above estimates that
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E[HDth - DuthHJQE]

7
C(ZE[HJZ-H%D)

C(Kr ||B||2 E[|| Duy Xt — Duy Xu|[]%
+C(e,T, 7, 0)(G1(|| Bl o) (w1 — u2) 72070%0 4 Go(||B|,,) (w1 — up) ~2170)H0)

IN

IN

1
- _ 14
+C(t —up)l=0 1 = o
+C(T7 67 a7 M7 Q? 07/’[/70767 A)G(HBHQ)
1 B 1-§ 1 L . 2eASAL
(Eurst — ) et )
1 1
o @eo)An(a/ (1—a))A (L= (1-8)anza)
e =) (¢ —upyis 1 e )
1

1
+CrF(|Bl,) I BI% W(M — up)°

t
cy
+t=m)Cor BBl oy 1Du X, = Dy Xl
ul

S
Ul (t - 5)176

Since Kp — 0 for T — 0 and 1 > T > uy > uo we get

+C507 QI 27| BI3 | Duy X5 — Dy X[ ds).

E[||Duy Xt — Duy Xo|[7]

1 1 N
< V(HBHQ) (t — ul>1_5 u2€v2p(a/(1_a)) (ul - u2)
2

t

1

VAIBL) | s 1P X = DXl s
uy

where A = (1-2(1—7)+6) AuA(1=0)A(2e NSAL)A((2pa) An(a/ (1—a))A(1—(1—0)aA2a) )AS >
0 and where V' is a non-negative continuous function on [0, ﬁ] for A — 0 for T — 0.
So by a Lemma of Gronwall for weakly singular kernels (see [1, Theorem 3]) we get

E|||Dy, Xt — DngtHE | <alt / ) e (t— s)"6_1a(s)ds
Ul p>1
for uy <t <T , where

1 1 N
a(t) = V(HBHO[) (t _ ul)lfzS u2sv2p(o¢/(1foz)) (ul - u2)
2

and

9(t) = V(IIBll,)-
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Therefore we have by means of the Beta function

Bl Dy X ~ Dy Xil13)
1 1 R

< V(HBHa) (t _ ul)lfé u§5v2p(a/(1_a)) (Ul — u2)
no— 1
VUBLITOrTD 1 A
" Z +1)4) (t— ul)l—(n-i-l)é ugEVQP(a/(l_a)) (u1 — u2)
v <|rBu CEOPTG) . e 1 A
+ Z T((n+ 1)) (t—ul)( ) W(Ul ~up)
n>ng 5
1 1 R
< BB, —

(t —uy)1=9 ugav2p(o¢/(1_a

where V' is a non-negative continuous function on 0, ALT] for Ap — 0 for T'— 0 and where

npd < 1, but (ng+1)é > 1 for ng € N.
Thus it follows for all 0 < wuq,us < t that

E[|| Dy, Xt — Dy X4l[7]
1 1

_ A
(t — u1)1*5 ugav2p(o¢/(1_a)) |u1 U2|

< E([[Bll.)(

1 1

A
* (t — ug)l=? U?E\/Qp(a/(l_a)) |up — ua|”)
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Now choose in (27) 8 > 0 such that k : =1+ 25 — A < 1. Then

tort 1 1 1
/ / duydug
0 Jo (t—wup)l™0 uggvzp(a/(lfa)) lur — ug|”
tort 1 1 1
— duid
/O LQ (t —up)l—? ugeVQp(a/(l—a)) fur — usl” udusg

t u
urdu
o Jo (t—wu)t? u?””(o‘/“*a” lur — ug|” e

/t 1 /t 1 L
=duidu
0 U;E\/Zp(a/(l—a)) ws (t _ ul)lfé ‘Ul _ u2| 1aU2

t 1 u2 1 1
—_ duydus
R T e T G T L
T --r) /t 1 1 J
T O TO+1—k) Jy o 2V20@/0=0) (t — ug)r—d U2
T((1 - 2) v 2p(a/(1 — a)))D(1 — k + 0)
r'1—2ev2p(a/(1—a))+1—r+0)

IN

t 1 1 4
Sy = ug)i uga\/Zp(a/(l—a))-iﬂﬁ—)\—J u2

LIl —rk) (1 —2eV2(a/(1—a)I'(1—rK+9)
Fo+1—r)T(1—2eV2o(a/(1—a))+1—r+9))
1
't2s\/2p(a/(1—a))+2ﬁ—)\—6
I'(1—2eV2p(a/(1—a)T(1—k+9)
I'l—2eVv2p(a/(1—a))+1—k+9)
T(OI(1 = (26 V2p(a/(1—a)) +28—A—J)) 1
IF'0+1—(2eV20(a/(1—a))+28—X—0)) t2V2e(a/(1-a))+25-A-20
< oo,

since 23 — A < 0 and since € > and p > 0 can be chosen arbitrarly small.
So we get the estimate (27), which completes the proof. W
Let now B" € C([0,T); CL(H, H))NC([0,T); C&(H, H)),n > 1 be a sequence of functions
and B € C([0,T]; Cy*(H, H)) such that
B"(t,x) — B(t,x) (31)
for n — oo in H for all  and such that

1B"l, < K (32)

for a constant K independent of n. See e.g. [11].
We also need the following Lemma:
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Lemma 10 Suppose that X;*,0 < t < T,n > 1 are the unique mild solutions to (1) with
respect to the coefficients B"™ in (31) and (32). Let X;"" = (e;, X}'). Then there exists for all
it a subsequence (ni)kzl which only depends on (a sufficiently small) T and i such that for

al0<t<T th}“’i converges in L*(Q) for k — oo.

Proof. We know that

t t
X{' = ea + / e(t_S)AB”(S, Xs)ds + / e(t_S)AQI/QdWS, 0<t<T.
0 0

So
. t t
XM = (e;, ) —I—/ (e, €™AB (s, X,))ds +/ (e, eT=90AQ2 aw,) .0 <t <T.
0 0
Hence

n,t n,t
X — Xy,

to
= (et e )b [Nen (e I B X)) ds
0

t1 to
+/ (ei,e(tls)AB”(s,X;L»ds—i—/ (e5,e1=94 _ (2= A1 2 gy )
to 0
t1
+ / (e, eM=)AQV2qW,) (33)
to

fOI‘aHOStQStlﬁT.
Now let f be an element of the Hida test function space (S) C L%(Q). Denote by (S)* its
topological dual (Hida distribution space). See [10] for further information on these spaces.

Then <(thll - X[;’i),f>(s) 5 E[(Xt"ll — Xtr;’i)f], where (-, ) (s)+ (s) is the dual pairing.
So using (33) we get 7

E[(Xp" = X))

to
= (e ez —ADVE[f]+ | El(e;, (794 — 2= pn(s X)), flds
0
t1 to
+ [ Elle;, e t=94B"(s, X1)), flds + E| / (e, €174 — (2=9)AQ12q, f])
to 0

t1
+E| / (3, €B=94Q2 W, 1)

to
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Thus it follows from (21) and (22)

Bl = X))

to
< Nenal e = e [BU) + [ Ellfen B, X)) (67000 — e s
0
t1 to 2
[ Bl B s X ([ e QU a2
to ..
t1 2
+(/ e(trs)AQl/zHHS d8)1/2(E[f2])1/2
t2 .
to 1
< Cz‘,T\tl—b!\B"HE[|fH+C(/ = [t1 — ta] " ds) (B[ )
o (t2—3s)
t1 1
([ ) B
(] eyt L)
< CG,T,9,0,K, f) |ty — tao ")
So

Sume(<(X7"i,f>($)*7(5) ,0) — 0 for 6 N\, 0,

n>1

where m7 is the modulus of continuity given by

m’(g,0) == max_|g(t) - g(s)|.
[t—s|<é
0<t,s<T
So <(X.n’i, f>(3) © is relatively compact in C([0,7]) for all f € (S). Since (S)* is the dual
of a countably Hilbertian nuclear space (S), we can apply a result of I. Mitoma [14] and find
that there exists for all i a subsequence (n});>1 which only depends on (a sufficiently small)

T and i such that X" converges in C([0,77; (S)*).
On the other hand it follows from Lemma 9 that there exists (for fixed t) a C' < oo and
a0<ﬁ<%suchthat

t
E [ / HDuX?H%dU] < Li(IB"[2) < € < oo
0

and

2
p[[ [ 1kt = DXl g,
0 JoO

|U1 _ u2|1+25

< Ly(|B"[2) < C < oo

for all n > 1, provided that T is sufficiently small.
Then, if we apply Theorem 14 in connection with Remark 15 in the Appendix to the

sequence th #" we see that for all ¢ and i there exists a subsequence m; = mf’i,l > 1 of
ni,k>1and a X; € L?(Q) such that

X:m“z — X! for | — 0o (34)
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in L2(9).
We claim that . B
X" — X} for k — oo in L2(Q)
for all ¢, ¢. To see this assume that there exists for some ¢,7 a € > 0 and a subsequence ¢;,1 > 1
such that

> €.

x5
L2 ()

On the other hand we know by Theorem 14 that there exists a subsequence ¢,.,7 > 1 of such
that

”3}4) . i > : 2
X, " — Y} for r — oo in L7(Q).
But since . .
X" — X} for k — oo in (S)*
because of (34), we see that o
Y = X|.
But this leads to the contradiction

> e.

nt % ~
Py’ )
B
L2(Q)

This completes the proof. m
We are coming to the main result of this section

Theorem 11 Assume that the functions B : [0,T) x H — H and B" : [0,T] x H —
H,n > 1 satisfy the conditions (31) and (32). Then there exists a Malliavin differentiable
unique mild solution X¢,0 <t < T to the stochastic differential equation

dX; = AX,dt + B(t, X )dt + Q'/2dW,, Xy = x. (35)

Proof. Let Xi*,n > 1 be the mild solutions associated with the coefficients B" and denote
by X;"" the i—th component of X/'. Then it follows from Lemma 10 that there exists for all

i a subsequence (n})r>1 which only depends on (a sufficiently small) T and i such that for
allo<t<T

thi’i — X} in L*(Q) for k — oo

for some X} € L*(Q),0 <t <T,i > 1.
Now let us denote by (¢y,),,; the diagonal sequence of the sequences (n1)x>1, (n2)g>1, (N3)k>1, -
So -

X — X for n — 00

in L2() for all ¢, 1.
We now want to show that

X7 — X for n — oo (36)
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in L2(Q; H) for all t, where X; = >, -, XFex. For this purpose choose a € > 0. By a weak

compactness argument we also see from Lemma 8 that
E (Z ‘Xf) o 9] < 0.
E>1

This implies

2
X et

n>1
i) s —6)/2
< supE| Z ‘X“O Xt‘ (1 6)/2 ‘Xsﬂ Xf‘a,(cl )2
n>1
2
< supB[(Y [xp* - xb[ 1_5>1/2<Z\X;""”“—Xf\ o))
nzl s O‘k: k>m
2
< sup(BIY [x7t — xt| 2SS |xe - xE ol
n>1 k>m k) k>m
1
C(_ —=)""
k>m A
< €

for m > mg. Choosing a ng such that for all n > ng

mo—1

2
3 E[’Xf”’k —X{“’ ] <e

k>1
we find that )
E[HXf”’k - XtH | < 2

for all n > ng. So (36) holds.

Finally it follows from dominated convergence that (measurability/continuous modifica-

tion of (w,t) — X;(w) can be shown)
2

t
| [ et xem) - s X |
0

< 2 sup [ (B[ 1875, X0 — BY(s, X d]
0<s<T 0
Bl / |B" (5, X,) — B(s, X,)|[* ds))

<

2 sup [l ° K2 / (BIIXD — X,|2)ds
O< <T 0

B /0 1B™(s, X,) — B(s, X,)| ds])

— 0 for n — o0.

From this we see that X; is a mild solution to (35). Uniqueness was shown in Section 5.1. ®
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Remark 12 Another approach based on the so called S—transform to verify X; as a unique
solution to SDE‘s is discussed in [16], [15].

Example 13 Consider the equation

dX(t,€) = (AX(t,€) + B(t, X (t,-))(€)dt + o(=2)/2dW (¢,€)

for t > 0 and & € [0,27], with periodic boundary conditions. In this case we have H =
L2(0,27) and A= A. Welet Q@ = (=A)™ with0 <y < 3,0 = 3 in Section 1.1 and M =

(—A) for a sufficiently small X > 0, then the conditions of Section 1.1 and the conditions of
Theorem 11.

Proof. Let us show that (19) holds. We have

He(tful)AQl/Q _ e(tfug)AQ1/2H2
E

_ Z (67@71‘1)%0&;7/2 - ef(tfuz)ana;»yp)Q ai)\

n=1

I
M8

2
—(ur—uz)om \° —2(t—u1)om - 22—
(1 e (u1—u2)a ) e (t—u1)a o? v

1

n

Now, for €, v € (0,1) we can find positive constants C. and C,, such that

(1—e%) <Cea® and e 2 < CaV

for every a > 0. Thus, the above is bounded by

[o@)
2e 2e+2\—v _—2(t—u1)a
Celur — ug| E a; Ve 2t—ur)on,

n=1

oo
< C.Cyluy — ug|* |t —uy| ™" Z a2ty

n=1
Rewriting this condition in the Fourier basis on the interval [0, 27|, we get the condition

Zk4e+4)\—2’y+2y < o0.
keZ

Let v =1 — § and choose € and \ small to get (19). Inequality (18) is proved similary.
To see (20) we write

/H leC=e2y — y|PNg, (dy) = Eflle™ 4/ QW1 — QW17
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where W = (W;)>0 is a cylindrical Brownian motion, W; = Z;’ozl Wie,. We get

oo s 1/2

<e(ul—uz)A\/@_ \/@)Wl _ Z(e—(m—uz)an —1) (/ qne—Quandu> wr,
n=1 0

so that

E[|let )4 /QW; — QW1 |7 = Z ~u—u)a 1)2/ gne 24 dy
n 0

—25an)

=1
o0
1—e
oS ((un — up)ayre =)
n=1

IN

200,

IN

Celuy — up|? Z 2177,

n=1

As before we rewrite this in the Fourier basis we get the condition

Zk4e—2—2'y < 00

keZ

which is satisfied for small e.
Finally we show that we have fOT [[A¢][*T9dt < 0o when § = . We have

HAthQ HA 1+’y)/2(I o thA)fl/QetAw”Q

— t*(lJF'Y) (tan)lJr’Y(l o ethan)flethan'

WE

n=1

The mapping s — e“’glill is bounded on (0, ), so that we get

A < O (472

and thus we get that ¢ — ||A¢]|*/? is integrable on any interval [0,7]. =

Appendix

The following result which is based on Malliavin calculus and which is essentially due to
[4] provides a compactness criterion for subsets of L2(f) of square integrable functionals of
a cylindrical Wiener process W;,0 < t < 1 on the Hilbert space H. See e.g. [17], [13] or [7]
for more information about Malliavin calculus.

Theorem 14 Assume that L is a self-adjoint compact operator on H* with dense image.
Denote by DX € L?(2; L?([0,1]) ® H*) the Malliavin derivative of a square integrable X in
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the domain of D and by D1 o the space of such functionals. Then for 0 < < 1/2 and ¢ >0
the set

L 1/2
G = {G€D1,23HGHL2(Q)+(/O HLlDuGHLQ(Q)d’“>

1/2

L2 DG = DuG) 2
+ // T35 ()duldug <c
o Jo |ur — ug|

is relatively compact in L*(Q).

Remark 15 Denote by J : H* — H the standard isometric isomorphism for Hilbert spaces
H. Then an example of L which satisfies the conditions of Theorem 14 is given by

La:=(MJ(a),-),a € H",

where M = A™ for some sufficiently small 7 > 0, where A is the densely defined operator in
Section 1.
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