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Abstract

We consider simple models of financial markets with regular traders and in-
siders possessing some extra information hidden in a random variable which is
accessible to the regular trader only at the end of the trading interval. The
problems we focus on are the calculation of the additional utility of the insider
and a study of his free lunch possibilities. The information drift, i.e. the drift to
eliminate in order to preserve the martingale property in the insider’s filtration,
turns out to be the crucial quantity needed to answer these questions. It is most
elegantly described by the logarithmic Malliavin trace of the conditional laws of
the insider information with respect to the filtration of the regular trader. Sev-
eral examples are given to illustrate additional utility and free lunch possibilities.
In particular, if the insider has advance knowledge of the maximal stock price
process, given by a regular diffusion, arbitrage opportunities exist.

1991 AMS subject classifications: primary 60 G 48, 90 A 09; secondary 60 H
07,94 A 17.

Key words and phrases: insider trading; enlargement of filtrations; Malliavin’s
calculus; free lunch; arbitrage; equivalent martingale measure; Bessel process.

Introduction

The mathematical study of financial markets with economic agents possessing different
information levels proceeds via essentially two approaches.

Mostly discrete models originating in economics oriented papers (see O’Hara [34],
Kyle [31]) investigate auction trading with three agents: a market maker, a noise trader,
and a risk neutral insider, to whom the final value of one stock is known in advance.



Back [4], [5] extends these models in which the insider’s actions may have a backlash
on the pricing rules to the time continuous setting. For more information on this and
related classes of models see for example the thesis by Wu [38].

The approach from the point of view of martingale theory, which we shall follow in
this paper was first taken in Karatzas, Pikovsky [28], and Pikovsky [35]. They study a
continuous time model on a Wiener space with two agents: a reqular agent whose infor-
mation coincides with the natural filtration of the price processes, and an insider who
possesses some extra information hidden in a random variable G' from the beginning
of the trading interval. Discussing questions like the insider’s additional utility with
respect to special utility functions, and martingale representation properties in the in-
sider’s filtration, they introduce the powerful technique of grossissement de filtrations
(see Yor [39], [40], [41], [42], [43], Jeulin [27], Jacod [25]) to this economic context.
Subsequent work along this punch line studies admissible strategies for insiders, their
additional profits, and possibilities to detect them on stochastic bases of increasing
complexity. See Grorud, Pontier [17], Denis, Grorud, Pontier [13], [19].

The discussion of models of this kind in the present paper focuses on two questions:

e how can one calculate the additional utility of an insider?
e does the insider possess opportunities of riskless free lunches or arbitrage?

Work mainly concentrating on the first question performed in Amendinger [1],
Amendinger, Imkeller and Schweizer [3], Amendinger, Becherer and Schweizer [2] and
[23] underlines that the domain of techniques of enlargement of filtrations is general
semimartingale theory. Investigations of the second question in Imkeller, Pontier and
Weisz [22] for special interesting insider informations, however, showed that the usual
framework of Jacod [25] in which the conditional laws of G are supposed to be ab-
solutely continuous with respect to its law is insufficient. Much more flexibility and
transparence is obtained if the techniques of Malliavin’s calculus become available. See
[20], [21]-

The most important observation in this context is based on a measure valued version
of the formula of Clark-Ocone presented in [22], applied to the conditional laws of G
with respect to the regular trader’s filtration. It allows in the first place to interpret
the information drift, i.e. the drift to eliminate in passing to the insider model in
order to keep the Brownian motion a martingale, as a logarithmic Malliavin trace of
the conditional law. Secondly, it allows to extend Jacod’s framework of enlargement of
filtrations to cover quite general additional informations G'. The explicit description of
the information drift allows to derive verifiable criteria for non-existence of equivalent
martingale measures from the perspective of the regular trader, i.e. measures under
which the insider does not see Brownian motion as a martingale any more. This
provides tools to access the existence of free lunches and arbitrage in simple interesting
examples.

This paper which aims at stressing the natural role played by Malliavin’s calculus in
insider models, and which partially reviews main results of [3] and [22], is organized as
follows. In section 1 we explain our insider model in the simplest possible framework,
and provide several both illustrative and analytically accessible examples of insider



information G. In section 2 the additional expected logarithmic utility of an insider is
computed in terms of the information drift (Theorem 2.1), and linked to the entropy of
G. In the framework of Jacod’s approach of enlargement of filtrations the information
drift is expressed in terms of conditional densities of G (Theorem 2.2). Motivated by the
example G = sup,¢( 1] Wi, section 3 is devoted to the extension of Jacod’s framework
by means of Malliavin’s calculus for measure valued martingales on Wiener space. It
culminates in a measure valued Clark-Ocone formula (Theorem 3.1) that allows to
reinterpret the information drift as the Radon-Nikodym density of the Malliavin trace
of the conditional laws of G with respect to themselves (Theorem 3.2). In section 4 the
important example G' = sup,¢(y,;) Xt, where the insider knows in advance the maximal
price of a risky asset, modeled by a regular diffusion X, is considered. Properties of
the information drift are derived which imply that there exist free lunches with no risk
(Theorem 4.1 and Theorem 4.2).

1 A simple model of a market with an insider

Our basic probability space is the 1-dimensional canonical Wiener space (€2, F, P),
equipped with the canonical Wiener process W = (W;);>o. More precisely, 2 =
C(R4;R) is the set of continuous functions on R, starting at 0, F the o-algebra
of Borel sets with respect to uniform convergence on compact subsets of R, P Wiener
measure and W the coordinate process. The natural filtration (F;)¢>o of W is assumed
to be completed by the sets of P-measure 0.

To simplify the exposition of the main aspects of the additional utility a better
informed trader may have, or even his opportunities to exercise arbitrage, we stick to
the simplest possible setting. So we suppose that the trading interval is given by [0, 1].
We let our financial market model (a, o) consist of a progressively measurable mean
rate of return process o which satisfies fol |oy|dt < oo P—a.s. and of a progressively

measurable volatility process o satisfying fol o?dt < 00,02 > 0 P—a.s. They determine
a (stock) price process given by

% = Oétdt + Utth-
For convenience, we let Xq = 1. Two traders may act on this simple market. The
reqular trader’s information level corresponds to the natural information flow of the
market. So at time ¢ the trader’s knowledge is given by F;. The insider’s additional
information is supposed to be available from the very beginning of the trading interval,
and consists in the knowledge of a random variable G which is F; — or F;,.—measurable
for some (small) € > 0. Hence the insider’s filtration is given by G = (Gy)+c[o,1), Where

gt = f't Vv G(G)a

t € [0,1]. Important, analytically tractable examples of additional information are as
follows.



Examples:
1. Let a,b € R, a < b. Then

G =1y(X1), or G=1py(Xite)

represents the binary advance knowledge whether the price of the asset X at time 1 or
1 + € is inside or outside of the interval [a, b].

2. Knowing
G = X1 or G = X1+€

means to have advance knowledge of the exact price of the asset X at time 1 or 1 +e.

3. Advance knowledge of the maximal stock price in the trading interval is assumed
if
G = sup X;.
t€[0,1]
4. The insider might also be in possession of the advance knowledge of the random
time of the last crossing of some level a by the stock price process

G =sup{t:te€0,1], X; = a}.

While for the regular trader a portfolio process will be an F— progressively measur-
able process 7 such that

1
/ |y ou| dt < o0 P-a.s.
0

and )
/|7Ttat|2dt<oo P-a.s.,
0

the insider’s portfolio processes, analogously defined by replacing F with G, will be
allowed to base cleverer portfolio decisions on his additional information.

The value process V' of a portfolio 7 is given by the formula

% =m % (1)
t t

Here, of course, we suppose that X is a semimartingale in both filtrations, a key
property to be discussed at length below. Again for convenience, let us suppose Vy = 1.
To motivate the notion of information drift which will be of central importance, we
shall just consider the logarithmic utility function

U(x)=Inz, x>0,

to measure the utility a trader draws from his wealth V; at the end of the trading
interval. Hence the expected maximal logarithmic utility of the regular trader is given
by

Nr= max E(Inl}), (2)

wF—portfolio



while the expected maximal logarithmic utility of the insider is expressed by

Ng = max E(Inl}). (3)

7G—portfolio

The additional expected logarithmic utility of the insider due to his information advan-
tage is therefore described by the formula

AN = Ng — Np.

2 Additional utility and information drift

Since the regular trader’s filtration is the natural filtration of the Wiener process, his
expected logarithmic utility is easy to calculate. First of all, for a given F—portfolio
7 the stochastic differential equation determining V' is a simple linear equation solved
by the formula

¢ 1t ¢
V, = exp[/ Ty 0 AWy — —/ 72 o? ds—i—/ s s ds].
0 2Jo 0

Due to the local martingale property of fot s 05 AWy, t € [0, 1], the expected logarithmic
utility of the regular trader is deduced from the maximization problem

1 1 !
Nr = max E[/ 7rsozsds—§/ m2 o2 ds). (4)
0 0

wlF—portfolio

1 1
1
T | mea,ds—= [ wiolds
0 2 Jo

for given processes o and o is just a more complex version of the one-dimensional
maximization problem for the function

The maximization of

1
7r|—>7roz—§a27r2

with a, 0 € R. Its solution is obtained by the critical value 7 = % and thus

1 L a?
Np =-F —2ds].
o= gl S Q

To compute the insider’s expected utility, let 7 be a G—portfolio. Now since W is
not a martingale for the filtration G, fot s 05 AW, t € [0, 1], is not a martingale any
more, and we are led directly into the basic problem of the sophisticated technique
of grossissement de filtrations. Suppose that G is small enough so that W is still a
semimartingale with respect to this filtration. Below we shall discuss conditions under
which this is guaranteed. More precisely, suppose that there is a G—progressively
measurable process u such that



and such that _
W=W+ / uS ds (6)
0

with a G— Brownian motion W. We call u€ the information drift corresponding to the
insider information G. Using (6), we may describe the value process of the portfolio
from the insider’s perspective by

t N 1 t t
%:exp[/ WSGSdWS—i/W30§d5+/Ws[as+o-8:u’sG]d8'
0 0 0

The essential difference between the two descriptions of the value process from the
two traders’ perspectives consists in the fact that for the insider the information drift,
modulated by the price volatility, adds to the regular drift o. Repeating the arguments
for maximizing the resulting expected logarithmic utility of the insider will therefore

lead to the formula ) oo

1 S S 8

Ng = —E[/ wds]- (7)
2 0 Oy

The calculation of the additional expected logarithmic utility from (5) and (7) is now

rather easy and results in a remarkable formula. Just observe that o and o are both

F— and G—adapted. Hence we have

1 G 1 B
E(/ L gs) =E(/ % (W, — dw,)) =0,
0o Os 0 Os
which implies that the mixed term in the integral expression for AN has to vanish.
Therefore we have proved

Theorem 2.1 Assume that there is a G—progressively measurable process ¢ such that

1
/\,uf\ds<oo P-a.s.,
0

and such that _
W=W+ / uS ds
0

with a G— Brownian motion W. Then the additional expected logarithmic utility of the
instder is given by

1
AN = 31 [ ()7 as) ®

Stated differently, Theorem 2.1 says that the additional expected logarithmic utility
of the insider knowing GG in advance is given by some type of energy of the infor-
mation drift. For more details on the subject of calculating an insider’s additional
logarithmic utility in a more general semimartingale framework see Amendinger [1]
and Amendinger, Imkeller and Schweizer [3]. In this paper it is also shown that the
result of Theorem 2.1 allows an intriguing and very simple representation in terms of
the entropy of the additional information G.
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Example 1:
Let a,b € R, a < b, and
G == ]-[a,b](Xl)-

Let p; = P(G € [a, b]). Then the additional expected logarithmic utility of the insider
is given by
AN =p; In(p1) + (1 = p1) In(1 — py).

Example 2:
Let the law of G be absolutely continuous. Then

AN = oo.

This is the case for example for G = X;.,, € >0, if X is a regular diffusion.

It remains to clarify the relationship between the additional information G and the
information drift u“. Actually the discussion of this problem will keep us occupied for
a while. It will clearly show how Malliavin’s calculus enters the scene in a very natural,
powerful and efficient way.

In a first attempt, we shall work under a condition concerning the laws of the
additional information G which has been used as a standing assumption in many papers
dealing with grossissement de filtrations. See Yor [39], [40], [43], Jeulin [27]. The
condition was essentially used in particular in the seminal paper by Jacod [25], and in
several equivalent forms in Féllmer and Imkeller [16]. To state and exploit it, let us
first mention that all stochastic quantities appearing in the sequel, often depending on
several parameters, can always be shown to possess measurable versions in all variables,
and progressively measurable versions in the time parameter (see Jacod [25], Stricker
and Yor [37]).

Denote by P¢ the law of G, and for ¢t € [0,1],w € Q, by P%(w,dl) the regular
conditional law of G given F; at w € (). Then the condition, which we will call Jacod’s
condition, states that

Pf(w,dl) is absolutely continuous with respect to P%(dl) for P— a.e.w € Q.

(9)

Also its reinforcement
PC(w,dl) is equivalent to P%(dl) for P— a.e.w € , (10)

will be of relevance. We denote the Radon-Nikodym density process of the conditional
laws with respect to the law by

dP%(w, -
pi(w,l) = %(1), leR,we Q.

By the very definition, ¢ — P;(-,dl) is a local martingale with values in the space of
probability measures on the Borel sets of R. This is inherited to ¢ — p(-, 1) for (almost)
all [ € R. Let the representations of these martingales with respect to the F—Wiener
process W be given by

t
P+ 1) = po(-, 1) + / K dw,, teo,1]
0

7



with measurable kernels k. To calculate the information drift in terms of these kernels,
take s,t € [0,1],s <t, and let A € F, and a Borel set B on the real line determine the
typical set AN G ![B] in a generator of G,. Then we may write

B(W, =W, 1415(G)) = B( / 14 [W, — W] PS(-, dl))
E(La [W, — W,) [pi — po](- 1)) PE(dl)

t
E(1, [ Kk du) PC(dl)

5

/St
B [ (0 du) PP
J

gy du, ) PO

~—

ku  pay
_ E(/BlApu(.’l)Pt (-, dI))
k!

The bottom line of this chain of arguments shows that

B Y
W=W — / Y g du
0 pu('al)|l ¢

is a G—martingale, hence a G—Brownian motion provided that fol |I%|l:(;| du < oo
P—a.s.. This completes the deduction of an explicit formula for the information drift
of G in terms of quantities related to the law of G in which we use the common oblique

bracket notation to denote the covariation of two martingales (for more details see
Jacod [25]).

|l:G du) .

Theorem 2.2 Suppose that Jacod’s condition (9) is satisfied, and furthermore that

k| l(P(' l) ”)t
G _ LA R A S ACA ALY M . telo,1], 11
My pt(‘,l)|l G pt(',l) ‘l G [ ] ( )

satisfies
1
/ \uCldu < oo P—a.s.. (12)
0
Then .
W = W—i—/ us ds
0

is a G—semimartingale with a G—Brownian motion W .



3 Extension of Jacod’s framework: the information
drift in Malliavin’s calculus

To see how restrictive condition (9) may be, let us illustrate it by looking at two of the
examples of additional information given in section 1.

Example 1:

Let € > 0 and suppose that the stock price process is a regular diffusion given by a
stochastic differential equation with bounded ¢ and «, oy = o(X),t € [0, 1], where
o is a smooth function without zeroes. Let G = Xj .. Then in particular X is a
time homogeneous Markov process with transition probabilities Py(z,dy),z € Ry,t €
[0, 1], which are equivalent with Lebesgue measure on R,. For ¢ € [0,1], the regular
conditional law of G given F; is then given by P;.._4+(X}, dy), which is equivalent with
the law of G. Hence in this case, even the reinforcement of Jacod’s hypothesis (10) is
verified.

Example 2:
Let o =1, = %, so that X; = exp(W;),t > 0. Further, let G = sup;c[o 1) X;- Then by
strict monotonicity of exp, we might and do quite as well assume that

G = sup W;.

t€[0,1]
To abbreviate, denote for ¢ € [0, 1]

Gy = sup Wi, él—t = sup (W, — Wy).

0<s<t t<s<1

Finally, let p;_; denote the density function of G;_,. Then we may write for every
t€0,1] .
G = Gt \% [Wt + Glft]. (13)

Now G, is F;—measurable, independent of G_;, and therefore for Borel sets A on the
real line we have

PE(-, A) = / W)y - 6,(4) + / Py, (14)

fore) Aﬂ[Gt—Wt,OO[

Note now that the family of Dirac measures in the first term of (14) is supported on
the random points Gy, and that the law of G, is absolutely continuous with respect
to Lebesgue measure on R,. Hence there cannot be any common reference measure
equivalent with dg, P—a.s.. Therefore in this example Jacod’s condition is violated.

We see that the framework of Jacod’s hypothesis (9) is insufficient to cover inter-
esting examples such as the one just discussed. On the other hand, Amendinger [1]
shows that the stronger condition (10) implies the existence of an equivalent martingale
measure under which W is a G—martingale. As a consequence, (10) implies according
to the fundamental theorem of asset pricing by Delbaen, Schachermayer [9] that there
can be no free lunch with vanishing risk (NFLVR). This finally means that under (10)
the insider has no possibilities of exercising arbitrage.

9



So in the situation of Example 1 the informed trader has infinite additional loga-
rithmic utility, without, however, any arbitrage opportunities. What can be said in
situations like Example 2?7 Can the insider exercise arbitrage or not? To answer this
question, obviously the technical framework of Jacod’s hypothesis is not sufficient. In
order to find a natural extension of this framework, we are therefore motivated to re-
consider the approach which finally led to the identification of the information drift in
terms of the conditional densities of the additional information in Theorem 2.2. The
link to Malliavin’s calculus is provided by the well known formula of Clark-Ocone.
We shall start explaining the identification of the information drift in terms of this
stochastic calculus of variations with an emphasis on the concepts, and with less de-
tails concerning the formalities. For these the reader is referred to [22], or Nualart
(32].

It is still imperative to briefly recall some of the basic concepts of Malliavin’s calculus.

Let S be the set of smooth random variables on (2, F, P), i.e. of random variables
of the form

F:f(Vth,...,th),f € CSO(RH), tla---atn € [O, ].]
For F' € § we may define the Malliavin derivative

"\ 0
(DF%:[LF=§:aﬁﬂW%qu@ﬂWM@,semﬂy
i=1 !

We may regard DF as a random element with values in L2([0, 1]), and then define
the Malliavin derivative of order k£ by k fold iteration of the above derivation. It will
be denoted by D®F, and is a random element, with values in L?([0, 1]¥). Its value at
(s1,.-,5%) € [0,1]% is written DZ _ F.

If p>1and k € N, we denote by D, the Banach space given by the completion
of § with respect to the norm

ya
2

p¢=nFm+-E:z%[lupgw%pywhd%])%,Fes.

1<j<k

£

More generally, if H is a Hilbert space and Sy the set of linear combinations of
tensor products of elements of S with elements of H,D, x(H) will denote the closure
of Sy w.r. to the norm

P

1 p 1
1Pl = 1P laly+ 3 B([ [ 1050, Fladssds)] )" . Fe s

1<j<k

where the Malliavin derivatives of smooth functions are given in an obvious way, and
|.|m denotes the norm on H induced by the scalar product. These definitions are
consistent. For example,

1Ellp + ([ DF[lp -1 = | F]

p’k ? F E Dp,k’

if H = L2([0,1]) .

10



The classical Clark-Ocone formula states that for F' € Do one has
1
F=E(F)+ / E(D.F|F,) dW;.
0

The objects we are interested in representing are conditional densities. As stated earlier,
they are martingales in the time parameter. For this reason, the conditional expectation
in the stochastic integrand in the formula of Clark-Ocone can be interchanged with the
Malliavin derivative, and one can show under suitable regularity conditions on G (see
for example [20] for somewhat too restrictive ones) that the following particular version
of the representation formula holds

¢
pl) =m0+ [ DupulD W, te1LIER (15)
0
where the appearing Malliavin trace type object has to be understood as

Comparing (15) with our earlier representation using the kernel k, we therefore find
the following formula for the information drift

pud = M| _ Dy pi(+, 1)
' pt(': l) =¢ pu('al)

In this intriguing representation, the information drift is identified with a logarithmic
Malliavin trace of the conditional density.

li=¢ = Dy Inpy(+, 1) |i=¢, t€][0,1]. (16)

Now at this point, after a moment’s thought it becomes clear that the nature of
the logarithmic variational trace makes it pointless to take reference to a measure
like the law of G and operate on densities of the conditional law with respect to the
law. Intuitively, our expression for the information drift is overdetermined due to the
intervention of a reference measure. Granted some regularity, it should in fact be
possible to interchange the Malliavin derivative D; and the Radon-Nikodym derivation
= to formally obtain for ¢ € [0,1],/ € R

G
Dipi(1)  Dy¥(-1)  d D, PE(-,dl)

P, 452 (1) ~d PSG(-,dl)

(). (17)

To identify the last two expressions, we need not ask for the absolute continuity or
equivalence of conditional laws and law of G. Instead, we have to make sense of
D, PE(-,dl) as a measure valued random variable in the first place, and in the second
place to ask for absolute continuity or equivalence of this measure with respect to
the regular conditional laws of G given F; directly. To tackle the first problem just
means to extend the formula of Clark-Ocone to measure valued martingales such as
our conditional laws. The basic measure valued Malliavin’s calculus needed for this
purpose has been established in [22]. Let us just state its main consequences needed
here, and refer the reader to [22] for further details.

11



Let M be the space of signed measures on the real line equipped with its Borel sets.
The variation norm is denoted by |u| for p € M. M is endowed with the Banach space
topology induced by this norm. It is convenient to use a weaker topology: the weak*
topology which is induced by the space Cy(R) of continuous bounded functions with
the supremum norm ||.||. Endowed with the latter topology, M is a locally convex
space which, due to the separability of Cy(R), is separable. For u € M, f € Cy(R), we
denote (u, f) = [g f dp. We may choose a dense sequence (f;)ien C Cy(R), to use the
standard embedding of M into an infinite dimensional metrizable space

®:M — RN (18)
o= ({1, fi))ien-

Note that p is actually mapped into the compact cube [[..n[—|u||lfill, ||| fi]l]- We
shall use ® to define Malliavin derivatives of M—valued objects. For h € L?([0,1]), let
W(h) = fol h(s) dW,. We first define the smooth cylinder functions. Let

SM) = {F:F=gW(hy), - ,W(h),r)dz,g € C®°(RF?),
hi,--+ , hy € L*([0,1]),k € N}.

For g € C°(RF) denote by 0;g the partial derivative of ¢ in direction i,1 < 7 < k. So
we may define the Malliavin derivative for smooth cylinder functions by

D,F = iaig(W(hl), -, W(hg),z) dz hi(s), s €][0,1].

We consider DF as an element of L?(Q x [0, 1], M) with respect to the Banach space
topology. We obviously have in terms of the Malliavin derivative of real valued functions

<DFaf>:D<F7f>7 fECb(R)a (19)

and hence also
DF = @ ((D(F, f;))ien)- (20)

We next introduce a norm on S(M). For F' € S(M) let

|F]l12 = [E(|F%)? + E(|||[DF||13)7]. (21)

Note that by definition, we have indeed || F||12 < oo for F' € §(M). Hence the closure
D, 1 (M) of S(M) with respect to ||.||1,2 is well defined and nontrivial.

In a similar way, we may define ||.||1,,p > 1, and D,,;(M) by replacing the 2—norm
by the p—norm, as well as for higher derivatives the norms ||.||, and spaces D, x(M),
ke N,p>1.

In this setting, a measure valued version of the Clark-Ocone formula holds and is
crucial for our extension of Jacod’s framework.

12



Theorem 3.1 Let F' € Dy (M). Then we have
1
F = E(F) +/ E(D,F|F,) dW..
0

As in the scalar case, we have to specialize this formula to measure valued martin-
gales, given by the conditional laws of our random variable G. In order to minimize
regularity conditions for G, we start with smoothing the variable by some Gaussian
unit variable N independent of I, and set for € > 0

G.=G++eN.

Let Pf, be the family of conditional laws of G, given F;,t € [0, 1], and suppose that
G € Dy;. Then it is easy to see ([22], section 1) by an explicit calculation that
t — D, P¢(.,dl) € L*([0,1]; M) and

t
P;(-,dl):Pg(-,dl)Jr/ D, P<(.,dl)dW,, te[o,1]. (22)
0

Taking the smoothing parameter to 0, we get the following minimal version of an
extension of the Clark-Ocone formula to the conditional laws.

Theorem 3.2 Suppose that there exists an M—wvalued process ky(.,dz),t € [0,1], de-

noted by
Dy PE(-,dl) = ki(.,dl), te€][0,1],

such that for any t € [0,1], f € C4(R) we have

¢
E([ (D P dn) — D, PE(, o)l 1) ds =0 (23)
0
as € = 0, and
¢
sup E(/ (D, PE(.,dz), f)?ds) < oo, (24)
fFECHR),[|flI<1 0

then for any t € [0, 1]
¢
PP (.,dz) = PE(.,dz) + / D, PE(.,dx) dW,. (25)
0

Suppose now that we are in the situation of Theorem 3.2. We may then finally
extend Jacod’s framework of the preceding section by replacing condition (9) by the
condition

D; PE(-,dl) is absolutely continuous with respect to P (-,dl) P—a.s. for t € [0, 1].
(26)
If (24) is satisfied, let

_ d D, PE(.,dl)

gt(',l) = W(l), t e [0, ]_],l € R,

as usual taken to be measurable in all variables. Then the obvious extension of Theorem
2.2 gives the following formula for the information drift u©.
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Theorem 3.3 Suppose that (24) is satisfied, and furthermore that

satisfies
1
/ \uCldu < oo P—a.s.. (28)
0
Then :
W=W+ / us ds
0
is a G—semimartingale with a G—Brownian motion W.

How much more general is the situation described by Theorem 3.37 It is proved in
[22] that

1
E( / g°(-,G)ds) < oo implies PC(-,dl) is absolutely continuous for P¢,
0

P —a.s.,t € [0,1], and moreover

1 1
E(exp(i/ ¢2(-,G) ds)) < co implies PE(-,dl) is equivalent with P,
0

P —a.s.,t €[0,1].

4 Arbitrage possibilities for the insider

Let us now return to the question raised in the context of Example 2 in the preceding
section. We will show that for quite general regular diffusion processes describing the
evolution of the stock price X there are riskless free lunches, and even arbitrage.

Example 1:
Let the stock price process be a regular diffusion given by a stochastic differential
equation with o, = 0(Xy), o = a(X;), t € [0,1], where o, are bounded, smooth
functions on R, o in addition without zeroes. Denote by P, the law of the diffusion
starting at = € R, by v, the first time to reach y € R, and by s the strictly increasing
scale function. Moreover, let G = sup;cjo,) Xt- For € > 0 and a standard Gaussian
variable N independent of I let

G. =G + +/eN.
Fix ¢ € [0, 1]. Then the conditional law of G, given F, possesses a density given by
y = E(p(y — G)|F),

where p. is the Gaussian density of \/eN. Now fix also z € R and abbreviate ¢ =
pe(z — -). Set Gy = supy<,<; X, note that the process ((Gy, Xt))icpo,1) is a Markov
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process, and let ¢;(z,y),z,y € R be the probability density of G; given that X, = x,
which exists due to regularity. Then we have

E(¢(G)|F) (29)
= E(¢(Gt) 1{Gt>Supt§s§1 Xs}|f-t) + E(¢( sup XS) 1{Gt§SUPt5351 Xs}|‘7:t)

t<s<1

¢(Gr) Px,(vy > 1 = t)|y=c, + ; oY) q1—4(Xt, y) dy.

Let us next compute the Malliavin trace of the conditional density. For this purpose,
note that by our assumptions X has a P—a.s. unique maximum at some random
time 7; on any fixed interval [0,%],¢ € [0, 1], the law of which is absolutely continuous
with respect to Lebesgue measure there (see [7]). To denote the time of the maximum
on the whole interval [0, 1], we also write 7 instead of 7. We first remark that by
smoothness of o and «, X; € Dy1,t € [0,1]. Also, by Nualart and Vives [33], we know
that G, € Do and that its Malliavin derivative is supported on the random interval
[0, 7). Since 7; < t for t > 0 P—a.s., we deduce that D; Gy = 0. This in turn implies

By E(¢(G)|F) (30)
0
= 0(Gy) 5 Px,(vy 21 = 1)|y—, DeXe dy
* ! a ! !
+ gb(y )a—lh—t(Xt; Y ) dy D X; dy.
Gy Y

This crucial observation indeed means that as ¢ — 0 the Malliavin trace remains a
measure which is comparable to the conditional density. So the criterion derived in
the preceding section applies, and shows that this type of important example becomes
tractable in this framework. By integrability properties of %ql_t(:ﬂ, y) the convergence
of (30) to

Dt Pt(,dﬂj) (31)
0
Oc,(dz) 5-Px,(vy 21 = t)|y=c, DXy
0
+ 1[Gt,oo[($)£QI—t(Xt:x) dx DXy,
is dominated, so that
t
B([ (1D, Pi(sds) = Dy Pyl 1) ds 0 (32)
0

for any f € Cy(R). By similar arguments, we obtain

5Gt(dx) PXt(Vy >1- t)'y:Gt
+  1ier00(%) g1t (X1, 7) d.
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The explicit representation of the density in [7] also proves that

t

sup B / (D, Py(., dz), f)2ds) < oo, (34)
FEC,(R),||fII<1 0

for 0 <t<1.

(31) and (33) immediately show that (26) is satisfied and that the information drift
corresponding to G is given by

0
pi = 16,(G) g 0 Pxi(vy 2 1 = t)ly=c DXy (35)

%(hft(Xt, G) Dy X,
a1—+(Xy, G)

0
= ) ox In Px,(vy 2 1 —1)|y=c DiX

(%Q1—t(Xta G) Dy X,
Q1-+(Xt, G) ’

0<t<1.

Let us now investigate the integrability properties of the information drift on [0, 1].
Note that D;X; = o(X;) Xy, t € [0,1]. The essential contribution comes from the first
term in the last line of (35) in a small neighborhood of 7.

To estimate this contribution, let x < y, and denote by n% the Levy measure of
the diffusion on level z (see It6-McKean [24], p. 214). Then as z 1 y, to first order
Py(vy > 1 —t) behaves like

[s(y) — s(x)]

n® (1 —1t) 902 ,

alternatively
nZ(1—1)[y —z].

Hence, to first order, the largest term in u¢ behaves like

a(Xy)
G- X,

as t | 7. An eventual change of time scale therefore teaches us that p¢ has the same

integrability properties as
1

S — Wt
on [p, 1], where S = sup;c(o ;) W; and p the random time at which W' reaches its max-
imum. This takes our investigation into basic excursion theory for Brownian motion.
If we denote by pg the first zero of W after p, Revuz, Yor [36], Proposition VI.3.13, p.
238, prove that between p and py, W behaves like a three dimensional Bessel process.
The trajectorial properties of Bessel processes, also described in Revuz, Yor [36], then
imply (see [22], section 2)
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Theorem 4.1 Let X be a reqular diffusion given by a stochastic differential equation
with oy = 0(Xy), o = a(Xy), t€[0,1], where o,a are bounded, smooth functions
on R, o in addition without zeroes. Moreover, let G = SUPyeo,1] Xt- Then the informa-
tion drift u© possesses the following properties

1
/0\uf|ds<oo P—a.s., (36)

t
/ (u€)?ds = oo with positive probability for each 0 <t < 1. (37)
0

Theorem 1 on the one hand shows that for the additional knowledge of the supremum
of a regular diffusion the information drift is tame enough to keep W a semimartingale
in the big filtration G. But to allow for an equivalent martingale measure under which
W is a martingale in the big filtration G p“ is obviously too irregular. In order to
obtain such a measure, we would have to eliminate the whole effective drift given by
(see section 1) 0 = £ + p©. But this is excluded by Theorem 4.1.

Theorem 4.2 Let 0 = 2 + uS with G according to Theorem 4.1. Then we have
t
/ 02 ds = oo with positive probability for each 0 < t < 1. (38)
0

In particular, in the model of the insider the condition (NFLVR) is violated. Conse-
quently, the insider possesses arbitrage opportunities.

Proof:
Write ¢; = %Z and suppose for simplicity t = 1. Let us assume that
1
/ 07 dt < oo (39)
0
P—a.s.. Note that ¢ is F—adapted. Hence, by conditioning on F; we get for ¢ € [0, 1]
lei| < E(10:]|F:) + E(|f’||F2)- (40)
If we can show .
| 17 de < o, (a1
0

(40) and Jensen’s inequality imply fol 2 dt < oo, and therefore the contradiction

1 1 1
/ (uE)?2 dt < 4[/ c dt+/ 02dt] < oo P—as..
0 0 0

Now note that by the very definition of 4 we have for ¢ € [0, 1]
E(|pi'l|F) = |D PE(,dD)],

so that we obtain the estimate

/0 (B F)? e < [ 1D POCaar

0
But this is clearly finite P—a.s. due to (31). This proves (39) and thus the proof is
complete. O
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