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Abstract

We combine Malliavin calculus with Stein’s method to derive bounds for the Variance-
Gamma approximation of functionals of isonormal Gaussian processes, in particular of
random variables living inside a fixed Wiener chaos induced by such a process. The
bounds are presented in terms of Malliavin operators and norms of contractions. We
show that a sequence of distributions of random variables in the second Wiener chaos
converges to a Variance-Gamma distribution if and only if their moments of order
two to six converge to that of a Variance-Gamma distributed random variable (six
moment theorem). Moreover, simplified versions for Laplace or symmetrized Gamma
distributions are presented. Also multivariate extensions and a universality result for
homogeneous sums are considered.
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1 Introduction

Let X = {X(h)}h∈H be an isonormal Gaussian process, defined on a probability space
(Ω,F ,P), over some real separable Hilbert space H, fix an integer q ≥ 2 and let {Fn}n∈N
be a sequence of random variables belonging to the qth Wiener chaos induced by X
(precise definitions follow in Section 2 below). Denote by H⊗q and H�q the qth tensor
power and the qth symmetric tensor power of H, respectively, and let Iq be the isometry
between H�q (equipped with the modified norm

√
q! ‖ · ‖H⊗q ) and the qth Wiener chaos

of X. If H in particular is an L2-space of some σ-finite measure space without atoms,
then a random variable Iq(h) with h ∈ H�q has the form of a multiple Wiener-Itô integral
of order q.

In recent years, many efforts have been made to characterize those sequences
{Fn}n∈N belonging to a Wiener chaos of fixed order, which verify a central limit theorem
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Malliavin-Stein method for variance-gamma approximation

in the sense that Fn converges in distribution, as n→∞, to a centred Gaussian random
variable N of unit variance (compare with the book [15] for an overview). The celebrated
fourth moment theorem of Nualart and Peccati [22] asserts that if E[F 2

n ] = 1 for all
n ≥ 1, then, as n→∞, Fn converges in distribution to N if and only if E[F 4

n ] converges
to 3, the fourth moment of the Gaussian random variable N . This can be seen as a
drastic simplification of the classical method of moments, which ensures convergence in
distribution of Fn to N , provided that all moments of Fn converge to that of N .

Only a few years later, Nourdin and Peccati [13] combined Stein’s method for normal
approximation with the Malliavin calculus on the Wiener space of variations to prove
explicit bounds on the total variation distance dTV (Fn, N) := supA∈B(R) |P (Fn ∈ A) −
P (N ∈ A)|, where the supremum runs over all Borel sets A ⊂ R (in fact, also other
notions of distances have been considered in [13], but we restrict here to the total
variation distance). They showed that for a sequence {Fn}n∈N of random variables of
the form Fn = Iq(hn) with hn ∈ H�q it holds that

dTV (Fn, N) ≤ 2

√
q − 1

3q
(E[F 4

n ]− 3) = 2

√
q − 1

3q
κ4(Fn), (1.1)

where, for integers j ≥ 1, we write κj(X) for the jth cumulant (semi-invariant) of a
random variable X. More recently, in [16], exact rates of convergence for the total
variation distance have been found. Namely, if Fn converges in distribution to N , as
n→∞, then there exist two constants 0 < c < C <∞ (possibly depending on q and on
{Fn}, but not on n), such that

cM(Fn) ≤ dTV (Fn, N) ≤ CM(Fn) with M(Fn) := max{|κ3(Fn)|, |κ4(Fn)|} (1.2)

for all n ∈ N, where, recall, κ3(Fn) = E[F 3
n ] and κ4(Fn) = E[F 4

n ]− 3(E[F 2
n ])2 = E[F 4

n ]− 3

are the third and the fourth cumulant of Fn, respectively. In other words this means
that the rate provided by (1.1) is suboptimal by a square-root factor. This, however,
seems unavoidable using the Malliavin-Stein technique for normal approximation, which
is based on the analysis of fourth moments, while the proof of (1.2) uses more refined
arguments.

The main goal of this paper is to study non-central limit theorems (i.e., limit theorems
with a non-Gaussian limiting distribution) for sequences {Fn}n∈N belonging to a fixed
Wiener chaos of order q ≥ 2, as above. A first step in this direction is the paper [12] by
Nourdin and Peccati, in which conditions on the sequence {Fn}n∈N have been derived,
under which convergence towards a centred Gamma distribution takes place. Moreover,
in [13] rates of convergences for such Gamma approximations were considered, again
by applying Stein’s method. It is an interesting fact that if q is an odd integer, there
is no sequence of chaotic random variables with bounded variances converging in
distribution to a centred Gamma distribution. This is a consequence of the fact that a
random variable Iq(h) with h ∈ H�q with q being odd has third moment equal to zero,
while the third moment of a centred Gamma distribution is strictly positive. Beyond
the normal and Gamma approximation results in [13], up to our best knowledge there
are no other quantitative limit theorems for chaotic sequences so far. Our paper is
an attempt to fill this gap in case of the broad class of so-called Variance-Gamma
distributions. This is a 3-parametric family of continuous probability distributions on
the real line defined as variance-mean mixtures of Gaussian random variables with
a Gamma mixing distribution. We emphasize that Variance-Gamma distributions are
widely used in financial mathematics, for example. Particular examples of Variance-
Gamma distributions are the Laplace distribution or more general symmetrized Gamma
distributions, but also the classical normal or Gamma distribution, which show up as
limiting cases. It is interesting to see that in our set-up, no parity condition on q is
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Malliavin-Stein method for variance-gamma approximation

necessary in general. It is also worth mentioning the recent work [10] of Kusuoka and
Tudor, where it has been shown that within the so-called Pearson-family of probability
distributions on the real line, only the normal and the Gamma distribution can appear
as limit laws for a sequence {Fn}n∈N of chaotic random variables. A comparison of
moments shows that the Laplace distribution or the symmetrized Gamma distribution
are not members of the Pearson-family and this way our study goes beyond the theory
developed in [10].

Beside the goal of identifying new limiting distributions for the sequence {Fn}n∈N as
considered above, another source of motivation for our paper comes from the area of free
probability. In [6], Deya and Nourdin studied the convergence of a sequence of multiple
stochastic integrals with respect to a free Brownian motion to what they call the tetilla
law, which can be regarded as the commutator of the well-known Marchenko-Pastur
distribution. Our aim here is to identify the non-free analogue of this distribution and
to prove a related limit theorem for multiple stochastic integrals with respect to the
classical Brownian motion. We will see that the Laplace distribution with parameter√

2, which, as already mentioned above, is contained in the class of Variance-Gamma
distributions, can be seen as such an analogue, see Remark 5.4 below.

Let us describe our results and the structure of our paper in some more detail. In Sec-
tion 2 we collect some background material related to isonormal Gaussian processes and
the Malliavin calculus of variations on the Wiener space. We will recall in particular the
definitions of the so-called Γ-operators, which are central for our further investigations.
Essential elements of Stein’s method for Variance-Gamma distributions are reviewed
in Section 3. In particular, we state bounds on the solution of the Stein equation and
introduce some particular subclasses and limiting cases of Variance-Gamma distribu-
tions, which are of special interest. An abstract bound for the Wasserstein distance
dW (F, Y ) between a (suitably regular) functional F of an isonormal Gaussian process
and a Variance-Gamma distributed random variable Y in the spirit of the Malliavin-Stein
method is derived in Section 4. We will see that the bound is expressed in terms of the
Γ-operators mentioned above. This general bound is specialized in Section 5.1 to the
case of elements living inside a fixed Wiener chaos of order q ≥ 2. We derive a sufficient
analytic criterion in terms of contractions for such a sequence to converge in distribution
to a Variance-Gamma distributed random variable. In this context, we also recover the
fourth moment theorem discussed above together with a rate of convergence for the
Wasserstein distance, which improves (1.1), but is still not optimal in view of (1.2). Our
general bound is specialized in Section 5.2 to the case q = 2, which is of particular
interest in view of the theory of quadratic forms, for example. We show that in this case
the previously derived sufficient criterion for convergence turns out to be necessary and,
moreover, equivalent to a simple moment condition involving moments of up to order
six only. For example, we show that a sequence {Fn}n∈N of elements belonging to a
second Wiener chaos converges in distribution to a random variable Y having a Laplace
distribution with parameter b > 0 if and only if

E[F 2
n ]→ 2b2, E[F 4

n ]→ 4!b4 and E[F 6
n ]→ 6!b6, (1.3)

as n→∞. In this case, we also have the bound

dW (Fn, Y ) ≤ C1

( 1

120
κ6(Fn)− 1

6
κ4(Fn)κ2(Fn) +

1

4
κ2(Fn)3 +

1

6
κ3(Fn)2

)1/2

+ C2

∣∣2b2 − κ2(Fn)
∣∣ (1.4)

on the Wasserstein distance, where, recall, κj(Fn) stands for the jth cumulant of Fn
and where C1, C2 > 0 are constants only depending on the parameter b. We like to
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emphasize the following interesting observation. Namely, although the third cumulant
κ3(Fn) shows up in the bound (1.4), it automatically vanishes in the limit, as n → ∞,
under the moment condition (1.3). Our result can be seen as a six moment theorem for
the convergence to a Laplace distribution on the second Wiener chaos. An analogue for
general Variance-Gamma distributions is one of the main achievements of this paper. We
mention that this is also closely connected to the work [18] (see also the erratum [19])
of Nourdin and Poly, who characterize convergence of a sequences of random elements
inside the second Wiener chaos associated with the ordinary (and the free) Brownian
motion in terms of conditions on a sequence of consecutive moments. However, their
results do not allow to derive rates of convergence. In the final Section 5.3 we deal with
a universality question for so-called homogeneous sums with respect to Variance-Gamma
convergence as well as with some multivariate extensions of the previously derived
results.

The results of our paper complement those obtained in the recent study of Azmoodeh,
Peccati and Poly [2], which has independently been conducted in parallel with our text.
They derive necessary and sufficient conditions under which a sequence {Fn}n∈N as
above converges to a limiting random variable, whose distribution is a finite linear com-
bination of centred χ2-distributions. However, these limit theorems are not quantitative
in the sense that they just state the convergence in distribution without giving upper
bounds on the rate of convergence. On the other hand, the results are for sequences
living inside a Wiener chaos of arbitrary order.

2 Elements of Gaussian analysis and Malliavin calculus

Isonormal Gaussian processes. Here we collect the essentials of Gaussian analysis
and Malliavin calculus that are used in the paper, see the books [15] and [21] for further
details.

For a real separable Hilbert space H and q ≥ 1, we write H⊗q and H�q to indi-
cate, respectively, the qth tensor power and the qth symmetric tensor power of H

with the convention that H⊗0 = H�0 = R. We denote by X = {X(h)}h∈H an isonor-
mal Gaussian process over H, i.e., X is a centred Gaussian family, defined on some
probability space (Ω,F ,P) and indexed by H, with a covariance structure given by
the relation E[X(h)X(g)] = 〈h, g〉H. We assume that F = σ(X). For q ≥ 1, the sym-
bol Hq denotes the qth Wiener chaos of X, defined as the closed linear subspace of
L2(Ω,F ,P) =: L2(Ω), which is generated by the family {Hq(X(h)) : h ∈ H, ‖h‖H = 1},
where Hq(x) = (−1)qex

2/2 dq

dxq (e−x
2/2) is the qth Hermite polynomial. For any q ≥ 1 the

mapping Iq(h⊗q) = Hq(X(h)) can be extended to a linear isometry between H�q and the
qth Wiener chaos Hq. For q = 0 we write I0(c) = c, c ∈ R. When H = L2(A,A, µ) =: L2(µ)

with µ being a non-atomic σ-finite measure on the measurable space (A,A), for every
f ∈ H�q = L2

s(µ
q) the random variable Iq(f) coincides with the q-fold multiple Wiener-

Itô-integral of f with respect to the centred Gaussian measure canonically generated by
X, see [21, Section 1.1.2]. Here, L2

s(µ
q) stands for the subspace of L2(µq) composed by

symmetric functions. It is well-known that L2(Ω) can be decomposed into the infinite
orthogonal sum of the spaces Hq. Hence an F ∈ L2(Ω) admits the Wiener-Itô chaotic
expansion

F =

∞∑
q=0

Iq(fq), (2.1)

with f0 = E[F ], and the fq ∈ H�q, q ≥ 1, uniquely determined by F .
Let {en}n∈N be a complete orthonormal system in H. For f ∈ H�p and g ∈ H�q, for

every r = 0, . . . , p ∧ q, the contraction of f and g of order r is the element of H⊗(p+q−2r)
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defined by

f ⊗r g =

∞∑
i1,...,ir=1

〈f, ei1 ⊗ · · · ⊗ eir 〉H⊗r ⊗ 〈g, ei1 ⊗ · · · ⊗ eir 〉H⊗r .

It is important to notice that the definition of f ⊗r g does not depend on the particular
choice of {en}n∈N, and that f ⊗r g is not necessarily symmetric. We denote its canonical
symmetrisation by f⊗̃rg ∈ H�(p+q−2r). Clearly, f ⊗0 g = f ⊗ g and f ⊗q g = 〈f, g〉H⊗q

if p = q. Moreover, when H = L2(µ) and r = 1, . . . , p ∧ q, the contraction f ⊗r g is the
element of L2(µp+q−2r) given by

f ⊗r g(x1, . . . , xp+q−2r) =∫
Ar

f(x1, . . . , xp−r, a1, . . . , ar) g(xp−r+1, . . . , xp+q−2r, a1, . . . , ar)µ
r(d(a1, . . . , ar)).

We will intensively use the isometry property and the product formula for multiple
integrals, i.e., elements of a fixed Wiener chaos. Namely, if f ∈ H�p and g ∈ H�q, and
1 ≤ q ≤ p, then

E
[
Ip(f)Iq(g)

]
= p!〈f, g〉H⊗p 1(p = q), (2.2)

and

Ip(f) Iq(g) =

p∧q∑
r=0

r!

(
p

r

)(
q

r

)
Ip+q−2r(f⊗̃rg), (2.3)

see [21, Proposition 1.1.3].

Malliavin operators. Let X be an isonormal Gaussian process and let S be the set of
random variables of the form F = g(X(φ1), . . . , X(φn)) with n ≥ 1, φ1, . . . , φn ∈ H and
g : Rn → R an infinitely differentiable function whose partial derivatives have polynomial
growth. The Malliavin derivative of F with respect to X is the element of L2(Ω,H)

defined as

DF =

n∑
i=1

∂g

∂xi
(X(φ1), . . . , X(φn))φi.

Hence DX(h) = h for h ∈ H. By iteration, the mth derivative DmF is an element of
L2(Ω,H�m) for every m ≥ 2. For m ≥ 1 and p ≥ 1, Dm,p denotes the closure of S with
respect to the norm

‖F‖pm,p = E[|F |p] +

m∑
i=1

E
[
‖DiF‖pH⊗i

]
.

We use the notation D∞ :=
⋂
m≥1

⋂
p≥1D

m,p. Every finite linear combination of multiple
Wiener-Itô integrals is an element of D∞ and its law admits a density with respect to the
Lebesgue measure on the real line. The Malliavin derivative satisfies the following chain
rule. If ϕ : Rn → R is continuously differentiable with bounded partial derivatives and if
F = (F1, . . . , Fn) is a vector of elements of D1,2, then ϕ(F ) ∈ D1,2 and

Dϕ(F ) =

n∑
i=1

∂ϕ

∂xi
(F )DFi. (2.4)

If H = L2(A,A, µ) with µ σ-finite and non-atomic, then the derivative of F as in (2.1) is
given by

DxF =

∞∑
q=1

q Iq−1(fq(·, x)), x ∈ A, (2.5)
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where fq(·, x) stands for the function fq with one of its arguments fixed to be x. The
adjoint of the operator D is denoted by δ and called the divergence operator. A random
element u ∈ L2(Ω,H) belongs to the domain of δ (Dom(δ)), if and only if it verifies
|E[〈DF, u〉H]| ≤ cu‖F‖L2(Ω) for any F ∈ D1,2, where cu is a constant depending only on u.
For u ∈ Dom(δ) the random variable δ(u) is defined by the integration-by parts formula

E[Fδ(u)] = E[〈DF, u〉H], (2.6)

which holds for every F ∈ D1,2. The infinitesimal generator of the Ornstein-Uhlenbeck
semi-group is given by L =

∑∞
q=0−q Jq, where Jq(F ) := Iq(fq) for every F as in (2.1).

The domain of L is D2,2. A random variable F belongs to D2,2 if and only if F ∈ Dom(δD)

(i.e., F ∈ D1,2 and DF ∈ Dom(δ)) and in this case,

δDF = −LF. (2.7)

For any F ∈ L2(Ω) we define L−1F =
∑∞
q=1−

1
qJq(F ). The operator L−1 is called the

pseudo-inverse of L. For any F ∈ L2(Ω) one has that L−1F ∈ DomL = D2,2, and

LL−1F = F − E[F ]. (2.8)

The following result is used frequently throughout this paper (see [3, Lemma 2.3] and
[12, Lemma 2.1]).

Lemma 2.1. (1) Suppose that H ∈ D1,2 and G ∈ L2(Ω). Then, L−1G ∈ D2,2 and

E[HG] = E[H]E[G] + E[〈DH,−DL−1G〉H].

(2) Suppose that F = Iq(f) with q ≥ 2 and f ∈ H�q. Then for every s ≥ 0, we have

E[F s‖DF‖2H] =
q

s+ 1
E[F s+2].

Proof. (1) By (2.7) and (2.8) we observe that

E[HG]− E[H]E[G] = E[H(G− E[G])] = E[H LL−1G] = E[Hδ(−DL−1G)].

The result is obtained by using the integration-by-parts formula (2.6).
(2) By chain rule (2.4), the integration-by-parts formula (2.6) and (2.7) we obtain

E[F s‖DF‖2H] =
1

s+ 1
E[〈DF,D(F s+1)〉H] =

1

s+ 1
E[δDF × F s+1] =

q

s+ 1
E[F s+2],

where we used that −LF = qF for F = Iq(f).

Cumulants and Γ-operators. Let F be a real-valued random variable satisfying the
moment condition E[|F |]m <∞ for some integer m ≥ 1 and define φF (t) = E[eitF ], t ∈ R,
to be the characteristic function of F . Then, for j = 1, . . . ,m, the jth cumulant of F ,
denoted by κj(F ), is given by

κj(F ) = (−i)j d
j

dtj
log φF (t)

∣∣∣
t=0

.

There is a well-known relation between cumulants and moments. In this paper, such
a relation is needed for cumulants and moments up to order six, and only if E[F ] = 0.
In this case, we have κ2(F ) = E[F 2], κ3(F ) = E[F 3], κ4(F ) = E[F 4] − 3E[F 2]2, κ5(F ) =

E[F 5]− 10E[F 3]E[F 2] and κ6(F ) = E[F 6]− 15E[F 4]E[F 2]− 10(E[F 3])2 + 30(E[F 2])3.
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The cumulants can be characterized in terms of Malliavin operators. For this, we
need to introduce the so-called Γ-operators Γj , j ≥ 1, following the presentation in [15].
For F ∈ D∞ we define Γ1(F ) = F and, for every j ≥ 2,

Γj(F ) = 〈DF,−DL−1Γj−1(F )〉H. (2.9)

Each Γj(F ) is well-defined and is an element of D∞, since F is assumed to be in D∞, see
[14, Lemma 4.2]. According to [15, Theorem 8.4.3], there is an explicit relation between
Γj(F ) and the jth cumulant of F . Namely, if F ∈ D∞, then F has finite moments of all
orders and for each integer j ≥ 1 it holds that

κj(F ) = (j − 1)!E[Γj(F )]. (2.10)

The relation still holds under weaker assumptions on the regularity of F , see [14,
Theorem 4.3]. For F ∈ D1,2, it follows that Γ2(F ) ∈ L1(Ω) and V[F ] = E[Γ2(F )] and for
F ∈ D1,4, it holds that Γ2(F ) ∈ L2(Ω).

If F belongs to a fixed Wiener chaos (i.e, if F has the form of a multiple integral if
H = L2(µ) as discussed above), there is a more explicit representation for Γj(F ), see
Theorem 8.4.4 in [15]. To state it, let q ≥ 2 and F = Iq(f) with f ∈ H�q. Then for any
j ≥ 1, applying the product formula (2.3), we have

Γj+1(F ) =

q∑
r1=1

· · ·
[jq−2r1−...−2rj−1]∧q∑

rj=1

cq(r1, . . . , rj)1{r1<q} . . .1{r1+...+rj−1<
jq
2 }

(2.11)

×I(j+1)q−2r1−...−2rj

(
(. . . (f⊗̃r1f)⊗̃r2f) . . . f)⊗̃rjf

)
,

where the constants cq(r1, . . . , rj) are recursively defined as follows:

cq(r) = q(r − 1)!

(
q − 1

r − 1

)2

and for a ≥ 2,

cq(r1, . . . , ra) = q(ra − 1)!

(
aq − 2r1 − . . .− 2ra−1 − 1

ra − 1

)(
q − 1

ra − 1

)
cq(r1, . . . , ra−1).

3 Elements of Stein’s method

Wasserstein distance and the standard normal distribution. Stein’s method is
a set of techniques allowing to evaluate distances between probability measures. In
the present paper, we focus on the Wasserstein distance (L1-distance). For any two
real-valued random variables X and Y it is defined as

dW (X,Y ) := sup
h∈L
{|E[h(X)]− E[h(Y )]|}

with L := {h : R→ R : |h(x)− h(y)| ≤ |x− y|} (Lipschitz functions). We will make use of
the fact that the elements in L are exactly those absolutely continuous functions whose
derivatives are a.e. bounded by 1 in absolute value. We notice that dW (Xn, Y ) → 0 as
n→∞ for a sequence of random variables {Xn}n∈N implies convergence of Xn to Y in
distribution (the converse is not necessarily true, but holds if additionally E[Xn]→ E[Y ],
as n→∞, see Theorem 7.12 in [29]).

A standard Gaussian random variable Z is characterized by the fact that for every
absolutely continuous function f : R→ R for which E

[
Zf(Z)

]
<∞ it holds that

E
[
f ′(Z)− Zf(Z)

]
= 0. (3.1)
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This together with the definition of the Wasserstein distance is the motivation to study
the Stein equation

f ′(x)− xf(x) = h(x)− E[h(Z)], x ∈ R. (3.2)

A solution of the Stein equation is a function fh, depending on h, which satisfies (3.2).
For h ∈ L, fh is bounded and twice differentiable such that ‖f ′h‖∞ ≤ 1 and ‖f ′′h ‖∞ ≤ 2,
see [5, Lemma 2.3]. If we replace x by a random variable F and take expectations in the
Stein equation (3.2), we infer that

E
[
f ′h(F )− Ffh(F )

]
= E[h(F )]− E[h(Z)]

and hence

dW (F,Z) ≤ sup{|E[f ′(F )− Ff(F )]| : ‖f ′‖∞ ≤ 1 and ‖f ′′‖∞ ≤ 2}.

With (3.1), we obtain that for every h ∈ H such that ‖h‖H = 1 we have for smooth func-
tions f that E

[
f ′(X(h))−X(h)f(X(h))

]
= 0. It is a particular case of the consequence

of Lemma 2.1(1), that for every F ∈ D1,2 with mean zero,

E[Ff(F )] = E[〈DF,−DL−1F 〉Hf ′(F )].

Hence, by Cauchy-Schwarz, we obtain

dW (F,Z) ≤ E
[
(1− 〈DF,−DL−1F 〉H)2

]1/2
,

(see [13, Theorem 3.1]).

Symmetric Gamma distributions. The main goal of our paper is to consider prob-
abilistic approximations by Variance-Gamma random variables. To motivate the right
choice of a Stein equation, first let us consider the case of Laplace distribution or,
more generally, symmetrized Gamma distribution. The Lebesgue-density of a Laplace
distribution with parameter b is given by

pb(x) =
1

2b
exp

(
−|x|
b

)
, x ∈ R, b > 0, (3.3)

while the Lebesgue-density of a symmetrized Gamma distribution with parameters λ > 0

and r > 0 equals

pλ,r(x) =
λr

2Γ(r)
|x|r−1e−λ|x|, x ∈ R. (3.4)

In what follows we shall indicate the distribution with density pλ,r by Gs(λ, r) and by
G(λ, r) we denote the non-symmetric (i.e., classical) Gamma distribution. Note that
the choice r = 1 and λ = 1/b leads to the Laplace distribution with density as at (3.3).
A first-order Stein operator for a random variable with density pb can be obtained by
the so-called density approach, see [28]. In fact, if Y has Lebesgue-density pb, then

E[f ′(Y )− p′b(Y )
pb(Y )f(Y )] = 0 for all absolutely continuous f for which the expectation exists.

However, p′b(Y )
pb(Y ) = b−1 sign(Y ) and it is in general technically highly sophisticated or

even impossible to compute E[sign(Y )f(Y )]. To overcome this difficulty, we put, if f ′ is
absolutely continuous, G(x) = sign(x)(f(x)− f(0)), to see that

E[f ′′(Y )] =
1

b
E[sign(Y )f ′(Y )] =

1

b
E[G′(Y )] =

1

b2
(E[f(Y )]− f(0)).

Summarizing, we obtain that if Y has a Laplace distribution with parameter b, f and f ′

are absolutely continuous functions and E[f(Y )] exists, that

E[f(Y )]− f(0) = b2E[f ′′(Y )], (3.5)
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see [26, Lemma 1]. A major disadvantage of this characterization is that the machinery
of Malliavin calculus usually enters via E[Ff(F )] = E[〈DF,−DL−1F 〉Hf ′(F )]. Hence, we
substitute f(Y ) by Y f(Y ) and obtain E[Y f(Y )] = b2E[Y f ′′(Y ) + 2f ′(Y )] if Y is Laplace
distributed with parameter b. It is interesting to see that this leads to the same Stein
characterization of a Laplace distribution (and similarly of a Gs(λ, r)- distribution) as
introduced recently in [8] from an entirely different perspective. We emphasize that
second-order Stein operators are not commonly used in the literature, although in [25]
the authors obtained a second-order Stein operator for the so-called Kummer-U density.

Lemma 3.1. Let Y be a real valued random variable. Then Y is distributed according to
the symmetrized Gamma distribution (3.4) with parameters r and λ if and only if, for all
f : R → R such that f is piecewise twice continuously differentiable and E[|Y f ′′(Y )|],
E[|f ′(Y )|] and E[|Y f(Y )|] are finite, we have

E
[ 1

λ2
Y f ′′(Y ) +

2r

λ2
f ′(Y )− Y f(Y )

]
= 0. (3.6)

Lemma 3.1 suggests the following Stein equation for the Gs(λ, r)-distribution:

1

λ2
xf ′′(x) +

2r

λ2
f ′(x)− xf(x) = h(x)−Gs(λ, r)(h), (3.7)

where Gs(λ, r)(h) denotes the quantity E[h(Y )] with a random variable Y distributed
according to Gs(λ, r). The following lemma collects bounds on the solution fh of (3.7)
and its first and second derivative, see [8, Theorem 3.6] for a proof. In what follows, we
denote by g(j) the jth derivative of a function g : R→ R and by C1

b (R) the collection of
all continuous bounded functions g : R→ R with bounded first derivative.

Lemma 3.2. Suppose that h ∈ C1
b (R), and r ∈ Z+ and λ > 0, then the solution fh of the

Stein equation (3.7) and its derivatives up to order two satisfy

‖f (j)
h ‖∞ ≤ cj(λ, r)‖h−Gs(λ, r)(h)‖∞, j = 0, 1,

‖f (2)
h ‖∞ ≤ c

1
2(λ, r)‖h′‖∞ + c22(λ, r)‖h−Gs(λ, r)(h)‖∞,

where c0(λ, r) = 1√
λ

(
1
r + πΓ(r/2)

2Γ(r/2+1/2)

)
, c1(λ, r) = 1

λ

(
1
r + 1

r+1

)
, c12(λ, r) = 3

λ

( √
π√

2r+3
+ 1

r

)
and c22(λ, r) = 4

λ3/2

( √
π√

2r+3
+ 1

r

)
.

The Stein-type characterization (3.6) for the Gs(λ, r)-distribution also allows a neat
computation of its moments or cumulants. We state the result here only for the moments
and cumulants of order 2, 4 and 6 as they will play a major role later in this paper.

Lemma 3.3. Let Y be distributed according to Gs(λ, r). Then all odd moments and
cumulants of Y are identically zero,

E[Y 2] =
2r

λ2
, E[Y 4] =

12r(r + 1)

λ4
, E[Y 6] =

120r(r + 1)(r + 2)

λ6

and

κ2(Y ) =
2r

λ2
, κ4(Y ) =

12r

λ4
, κ6(Y ) =

240r

λ6
.

Proof. First, note that E[Y k] = 0 whenever k ≥ 1 is an odd integer since Gs(λ, r) is a
symmetric distribution. Next, choosing f(x) = x in (3.6) we obtain E[Y 2] = 2r

λ . Choosing

f(x) = x3 in (3.6) we get 6(1+r)
λ2 E[Y 2] = E[Y 4] and with the choice f(x) = x5 we obtain

from (3.6) that 10r+20
λ2 E[Y 4] = E[Y 6]. The formulas for the cumulants follow from the

relation between moments and cumulants stated in Section 2.

EJP 20 (2015), paper 123.
Page 9/28

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-4136
http://ejp.ejpecp.org/


Malliavin-Stein method for variance-gamma approximation

Figure 1: Densities of Variance-Gamma distributions

Variance-Gamma distributions. A random variable Y is said to have a Variance-
Gamma distribution with parameters r > 0, θ ∈ R, σ > 0 and µ ∈ R if and only if its
Lebesgue-density p(x; r, θ, σ, µ), x ∈ R, equals

p(x; r, θ, σ, µ) =
1

σ
√
πΓ(r/2)

exp

(
θ

σ2
(x− µ)

)(
|x− µ|

2
√
θ2 + σ2

) r−1
2

K r−1
2

(√
θ2 + σ2

σ2
|x− µ|

)
.

Here, Kν(x) denotes a modified Bessel function of the second kind (see [8, Appendix B]
and the references there). In what follows we write V G(r, θ, σ, µ) for such a Variance-
Gamma distribution. It is known that E[Y ] = µ+rθ andV[Y ] = r(σ2+2θ2). We will mostly
consider only the centred case µ = 0 and write V Gc(r, θ, σ) for V G(r, θ, σ, 0). Note that
the symmetrized Gamma distribution considered in the previous paragraph corresponds
to V G(2r, 0, 1/λ, 0). Variance-Gamma distributions are widely used in finance modelling
and contain as special or limiting cases the normal, Gamma or Laplace distribution. In
particular, for certain parameter values, the Variance-Gamma distribution has semi-heavy
tails that decay slower than those of the normal distribution, see [7, 8].

The parameter r is known to be the scale parameter. As r increases, the distribution
becomes more rounded around its peak value. The parameter σ is called the tail
parameter. As σ decreases, the tails drop off more steeply. Finally, the parameter θ
is the asymmetry-parameter, for non-zero θ the distribution becomes skewed, that is,
asymmetric, see Figure 1. In [8] a Stein equation for the V G(r, θ, σ, µ)-distribution was
established. From this, the Stein equation for the V Gc(r, θ, σ) distribution follows:

σ2(x+ rθ)f ′′(x) + (σ2r + 2θ(x+ rθ))f ′(x)− xf(x) = h(x)− V Gc(r, θ, σ)(h), (3.8)

where V Gc(r, θ, σ)(h) stands for the integral over R of h with respect to the V Gc(r, θ, σ)

distribution. The next lemma presents bounds for the solution fh of (3.8) and its first
and second derivative. It is interesting to note that in contrast to the case θ = 0, uniform
bounds are much harder to obtain if θ 6= 0. In a first step these bounds can be expressed
in terms of expressions involving modified Bessel functions, see Lemma 3.17 in [7]. The
following lemma follows from this representation.
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Lemma 3.4. Suppose that h ∈ C1
b (R), and r > 0, θ ∈ R, σ > 0, then the solution fh of

the Stein equation (3.8) and its derivatives up to order two are bounded, that is, there
exists a constant C = C(r, θ, σ) such that

‖fh‖∞ ≤ C‖h‖∞, ‖f (k)
h ‖∞ ≤ C

k−1∑
i=1

‖h(i)‖∞, k = 1, 2. (3.9)

Remark 3.5. In contrast to the symmetric case discussed above, if θ 6= 0, it seems
rather difficult to express the constant C appearing in Lemma 3.4 explicitly in terms
of the parameters r, θ and σ. This also applies to the situation in Lemma 3.2 if r is not
integer-valued.

With the same proof as for Lemma 3.3 we can compute the first six moments or
cumulants of a centred Variance-Gamma random variable, which will be needed later.

Lemma 3.6. If Y is distributed according to V Gc(r, θ, σ), we obtain

E[Y ] = 0, E[Y 2] = r(σ2 + 2θ2), E[Y 3] = 2rθσ2 + 4θE[Y 2],

E[Y 4] =
(
3σ2(2 + r) + 6rθ2

)
E[Y 2] + 6θE[Y 3],

E[Y 5] = 12rθσ2E[Y 2] +
(
8rθ2 + 4rσ2 + 12σ2

)
E[Y 3] + 8θE[Y 4],

E[Y 6] = 20rθσ2E[Y 3] +
(
5σ2(4 + r) + 10rθ2

)
E[Y 4] + 10 θE[Y 5].

Moreover, the first six cumulants of Y are κ1(Y ) = 0 and

κ2(Y ) = r(σ2 + 2θ2), κ3(Y ) = 2rθ(3σ2 + 4θ2), κ4(Y ) = 6r(σ4 + 8σ2θ2 + 8θ4),

κ5(Y ) = 24rθ(5σ4 + 20σ2θ2 + 16θ4), κ6(Y ) = 120r(σ2 + 2θ2)(σ4 + 16σ2θ2 + 16θ4).

Let us collect some distributions, which are of particular interest and belong to the
class of Variance-Gamma distributions, see [8, Proposition 1.2]:

• A V Gc(2r, 0, 1/λ)-distributed random variable has the symmetrized Gamma distribu-
tion, in particular V Gc(2, 0, b) corresponds to a Laplace distribution with parameter
b.

• Suppose that (X,Y ) has the bivariate normal distribution with correlation % and
marginals X ∼ N (0, σ2

X) and Y ∼ N (0, σ2
Y ). Then the product X Y follows the

V Gc(1, %σXσY , σXσY
√

1− %2)-distribution.

• Suppose that (X,Y ) has the bivariate gamma distribution in the sense of [9] with
correlation % and marginals X ∼ G(λ1, r) and Y ∼ G(λ2, r). Then the random vari-
able X − Y follows the V Gc(2r, (2λ1)−1 − (2λ2)−1, (λ1λ2)−1/2

√
1− %2)-distribution.

4 A Malliavin-Stein bound for the Wasserstein distance

Our first result provides explicit bounds for the V Gc(r, θ, σ)-approximation of general
functionals of an isonormal Gaussian process X. Recall the definition of the Γ-operators
Γj(F ) given in (2.9).

Theorem 4.1. Let F ∈ D2,4 be such that E[F ] = 0 and let Y be a V Gc(r, θ, σ)-distributed
random variable. Then there exist constants C1 = C1(r, θ, σ) > 0 and C2 = C2(r, θ, σ) > 0

such that

dW (F, Y ) ≤ C1E
[∣∣σ2(F + rθ) + 2θ Γ2(F )− Γ3(F )

∣∣]+ C2

∣∣rσ2 + 2rθ2 − E[Γ2(F )]
∣∣. (4.1)

If in addition F ∈ D3,8, then Γ3(F ) is square-integrable and

E
[∣∣σ2(F + rθ) + 2θ Γ2(F )− Γ3(F )

∣∣] ≤ (E[(σ2(F + rθ) + 2θ Γ2(F )− Γ3(F )
)2])1/2

. (4.2)

EJP 20 (2015), paper 123.
Page 11/28

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-4136
http://ejp.ejpecp.org/


Malliavin-Stein method for variance-gamma approximation

Proof. Let f : R→ R be a twice differentiable function with bounded second derivative.
Let H = f(F ) and put G = F . Then by our assumptions H ∈ D1,2, using the chain rule
(2.4) and G ∈ L2(Ω). Hence, by Lemma 2.1 (1) we have that

E[Ff(F )] = E[f ′(F )Γ2(F )].

Similarly, let now H = f ′(F ) and G = F , then by our assumptions H ∈ D1,2, using the
chain rule (2.4), and G ∈ L2(Ω), which again by Lemma 2.1 (1) leads to

E[Ff ′(F )] = E[f ′′(F )Γ2(F )].

Next we will apply Lemma 2.1 (1) with H = f ′(F ) and G = Γ2(F ). Again with (2.4),
we have that f ′(F ) ∈ D1,2 and that Γ2(F ) is square-integrable using F ∈ D2,4 ⊂ D1,4

(for a detailed argument see [15, Proof of Proposition 5.1.1]). Since F ∈ D2,4, we have
Γ3(F ) ∈ L1(Ω) (see [14, Lemma 4.2]), whence

E[Ff(F )] = E[f ′(F )]E[Γ2(F )] + E[f ′′(F )Γ3(F )]. (4.3)

Summarizing, we arrive at the identity

E
[
σ2(F + rθ)f ′′(F ) + (σ2r + 2rθ2)f ′(F ) + 2θFf ′(F )− Ff(F )

]
= E

[
f ′′(F )

(
σ2(F + rθ) + 2θ Γ2(F )− Γ3(F )

)
+ f ′(F )

(
(rσ2 + 2rθ2)− E[Γ2(F )]

)]
and relation (4.1) can be deduced from the bounds in Lemma 3.2. Relation (4.2) is a
consequence of [14, Lemma 4.2(2)]. Namely, with F ∈ D3,8 one has Γ3(F ) ∈ D1,2.

Remark 4.2. For a V Gc(r, θ, σ)-distributed random variable Y we know from Lemma 3.6
that E[Y 2] = r(σ2 + 2θ2). Since E[Γ2(F )] = V[F ] = E[F 2], the second term in our bound
(4.1) measures the distance between the variances of Y and F . The interpretation of the
L2-distance of σ2(F + rθ) + 2θ Γ2(F ) and the Γ3(F )-term on the right-hand side of (4.2)
is not obvious and will be discussed for F ∈ Hq being in the qth Wiener chaos in Section
5 below.

We will now derive two consequences from Theorem 4.1. The first one deals with
two special Variance-Gamma distributions, the symmetric Gamma distribution Gs(λ, r)
and the distribution of X − Y of two random variables X and Y having a Gs(λ1, r)- and
Gs(λ2, r)-distribution, respectively.

Corollary 4.3. Let F ∈ D3,8 be such that E[F ] = 0.

(a) Let Y be a V Gc(2r, 0, 1/λ) = Gs(λ, r)-distributed random variable for some λ, r > 0.
Then

dW (F, Y ) ≤ C1

(
E
[( 1

λ2
F − Γ3(F )

)2])1/2

+ C2

∣∣∣2r
λ2
− E[Γ2(F )]

∣∣∣
with constants C1, C2 > 0 only depending on λ and r.

(b) Fix r, λ1, λ2, % > 0 and let Z denote a real-valued random variable with a

V Cc(2r, (2λ1)−1 − (2λ2)−1, (λ1λ2)−1/2
√

1− %2)-distribution.

Then

dW (F,Z) ≤C1

(
E
[(1− %2

λ1λ2

(
F + r

( 1

λ1
− 1

λ2

))
+
( 1

λ1
− 1

λ2

)
Γ2(F )− Γ3(F )

)2 ])1/2

+ C2

∣∣E[Z]− E[Γ2(F )]
∣∣

with constants C1, C2 > 0 depending only on r, λ1, λ2 and %.
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Our next result deals with two limiting cases of Variance-Gamma distributions, na-
mely the normal and the (non-symmetrized) Gamma distribution. As discussed in the
introduction, this has previously been considered in [13]. More precisely, Theorems 3.1
and 3.11 there show that if F ∈ D1,2 is a centred functional of an isonormal Gaussian
process and if Z ∼ N (0, σ2) for some σ2 > 0 and Y ∼ G(λ, r) for some λ, r > 0 then

dW (F,Z) ≤
(
E[(σ2 − Γ2(F ))2]

)1/2
and dW (F, Y ) ≤ C

(
E
[( 1

λ
F +

r

λ2
− Γ2(F )

)2 ])2

with a constant C > 0 only depending on r and λ. In our context, we can derive another
bound for dW (F,Z) and dW (F, Y ) in terms of the Gamma-operator Γ3. We will see below
that in the case of multiple stochastic integrals this is closely related to some of the
results recently derived in [1].

Corollary 4.4. Let F ∈ D2,4 be such that E[F ] = 0.

(a) Let Z denote a centred Gaussian random variable with variance σ2 > 0. Then there
exist constants C1, C2 > 0 only depending on σ such that

dW (F,Z) ≤ C1E
[∣∣Γ3(F )

∣∣]+ C2

∣∣σ2 − E[Γ2(F )]
∣∣. (4.4)

(b) Let Y be a G(λ, r)-distributed random variable with parameters λ > 0 and r > 0.
Then there exist constants C1, C2 > 0 depending only on r and λ such that

dW (F, Y ) ≤ C1E
[∣∣∣ 1
λ

Γ2(F )− Γ3(F )
∣∣∣]+ C2

∣∣∣ r
λ2
− E[Γ2(F )]

∣∣∣. (4.5)

Proof. We apply Theorem 4.1 and use the fact that (interpreted as weak limits)

lim
r→∞

V Gc(r, 0, σ/
√
r) = N (0, σ2) and lim

σ→0
V G(2r,

1

2λ
, σ, 0) = G(λ, r),

see [8, Proposition 1.2 (i) and (iv)]. Hence, with (4.1) we have to consider (σ2/r)F−Γ3(F ),
which is converging to Γ3(F ), as r → ∞. In case of a Gamma distribution we have to
consider 1

λΓ2(F )− Γ3(F ).
Finally, we recall from [29, Theorem 7.12] that dW (F,Z) = lim

r→∞
dW (F,Zr) and

dW (F, Y ) = lim
σ→∞

dW (F, Yσ) with Zr ∼ V Gc(r, 0, σ/
√
r) and Yσ ∼ V G(2r, 1

2λ , σ, 0) if and

only if Zr
d−→ Z, as r → ∞, and Yσ

d−→ Y , as σ → 0 (the additional conditions that
E[Zr] → E[Z] and E[Yσ] → E[Y ] are automatically fulfilled since Zr and Z are centred
and E[Yσ] = r/λ = E[Y ] for all σ > 0). Thus, we can take the limits one both sides of the
bound of Theorem 4.1 to conclude the result.

Remark 4.5. In case (a) of Corollary 4.4 one is able to get the same bound (with different
constants) for the Kolmogorov-distance, see [15, Theorem 5.1.3]. It is interesting to
compare our bound in (4.4) with (5.1.3) and (5.1.5) in [15]. While we have to consider
E[|Γ3(F )|], the estimate in [15] reads (V[Γ2(F )])1/2. As explained earlier, this comes from
the fact that we consider the much larger class of Variance-Gamma distributions based
on a second order-differential equation. This also implies that the stronger condition
F ∈ D2,4 is needed.

5 Explicit bounds on a fixed Wiener chaos

5.1 The general case q ≥ 2

Fix q ≥ 2 and consider Fn = Iq(fn), n ≥ 1, a sequence of random variables
belonging to the qth chaos of an isonormal Gaussian process X and assume that
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E[F 2
n ] = q!‖fn‖2H⊗q → r(σ2 + 2θ2) with r > 0, σ > 0 and θ ∈ R. The sequence {Fn}n∈N

converges in distribution to Y ∼ V Gc(r, θ, σ), if and only if for every j ≥ 3, E[F jn]→ E[Y j ],
as n→∞, or equivalently if κj(Fn)→ κj(Y ) for every j ≥ 3, as n→∞. This follows from
the classical method of moments or cumulants, since the law V Gc(r, θ, σ) is determined
by its moments (compare with Proposition 5.2.2 in [15]).

One of our main results is, that the method of moments and cumulants for V Gc(r, θ, σ)-
approximation boils down to a sixth-moment method inside the second Wiener chaos,
see Section 5.2. For general q ≥ 2 the next result provides an expression for the first
term of the bound in Theorem 4.1 in terms of contraction operators. Note that if q ≥ 3

is an odd integer and θ 6= 0, then there is no sequence {Fn}n∈N = {Iq(fn)}n∈N, such
that Fn has bounded variance and such that Fn converges in distribution to a random
variable Y with a V Gc(r, θ, σ)-distribution, as n→∞. This is a consequence of the fact
that an element of a Wiener chaos of odd order has its third moment equal zero, while
E[Y 3] = θ(2rσ2 + 4E[Y 2]) 6= 0 whenever θ 6= 0.

Theorem 5.1. Let q ≥ 2 be an even integer and let F = Iq(f), where f ∈ H�q. Then we
have

E
[(
σ2(Iq(f) + rθ) + 2θ Γ2(Iq(f))− Γ3(Iq(f))

)2]
=

(
1

2
E[Iq(f)3]− (2θE[Iq(f)2] + rθσ2)

)2

+ q!

∥∥∥∥ q−1∑
k=1

cq(k, q − k)((f⊗̃kf)⊗̃q−kf)− 2θcq(q/2)(f⊗̃q/2f)− σ2f

∥∥∥∥2

H⊗q

+

q−1∑
k=1,k 6=q/2

(2k)!
∥∥(gk(f, q)− 2θcq(q − k)(f⊗̃q−kf)

)∥∥2

H⊗2k +

3q
2 −2∑
k=q

(2k)!
∥∥gk(f, q)

∥∥2

H⊗2k ,

where cq( · ) and cq( · , · ) are the constants defined after (2.11) and where gk(f, q) is given
by (5.1) below. In case q = 2 the last two sums are empty and have to be interpreted as
0.

Proof. We start with the observation that (2.11) for s = 2 leads to

Γ3(Iq(f)) =

q−1∑
r=1

(2q−2r)∧q∑
s=1

cq(r, s) I3q−2r−2s((f⊗̃rf)⊗̃sf).

Next, we rewrite Γ3(Iq(f)). For this, let q be even and put 2k = 3q − 2r − 2s and
C2k := {r ∈ {1, . . . , q − 1} : 0 ≤ 3q

2 − k − r ≤ (2q − 2r) ∧ q}, the set of those integers r for
which the so-called double contraction (f⊗̃rf)⊗̃ 3q

2 −k−r
f is well-defined. Then,

Γ3(Iq(f)) =

3q
2 −2∑
k=0

I2k

( ∑
r∈C2k

cq(r, 3q/2− k − r)((f⊗̃rf)⊗̃ 3q
2 −k−r

f)

)

=:

3q
2 −2∑
k=0

I2k
(
gk(f, q)

)
.

(5.1)

For F = Iq(f), with f ∈ H�q, we know that Γ2(F ) = 〈DF,−DL−1F 〉H = q−1‖DF‖2H.
Combining this with [15, Equation (5.2.2)] and the notation introduced around (2.11) we
find that

Γ2(Iq(f)) = q

q∑
r=1

(r − 1)!

(
q − 1

r − 1

)2

I2q−2r(f⊗̃rf)

= q!‖f‖2H⊗q +

q−1∑
r=1

cq(r)I2q−2r(f⊗̃rf). (5.2)
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Malliavin-Stein method for variance-gamma approximation

Due to the multiplication formula (2.3) one obtains that, for even q,

E[Iq(f)3] = q!(q/2)!

(
q

q/2

)2

〈f, f⊗̃q/2f〉H⊗q . (5.3)

According to (4.2) in Theorem 4.1, we have to compute

Γ3(Iq(f))− 2θ Γ2(Iq(f))− σ2(Iq(f) + rθ) (5.4)

for θ ∈ R, r > 0 and σ > 0. At first, we collect the constant terms. In (5.1), we obtain
for k = 0 that C2·0 = {q/2} and therefore the constant term is I2·0(g0(f, q)) = g0(f, q) =

cq(q/2, q)((f⊗̃q/2f)⊗̃qf). With the definition of cq(q/2, q) in (2.11) and (5.3) we obtain
I2·0(g0(f, q)) = 1

2E[Iq(f)3]. Hence, the constant in (5.4) equals

1

2
E[Iq(f)3]−

(
2θE[Iq(f)2] + rθσ2

)
, (5.5)

using q!‖f‖2H⊗q = E[Iq(f)2]. Next, we consider the so called middle-contractions in
Γ2(Iq(f)) and Γ3(Iq(f)), i.e., contractions of order q/2. With r = q/2 in (5.2) we obtain
the term cq(q/2)Iq(f⊗̃q/2f) and with k = q/2 in (5.1) we get C2· q2 = {1, . . . , q − 1} and

hence the term
∑q−1
r=1 cq(r, q − r)((f⊗̃rf)⊗̃q−rf). Summarizing, the middle-contraction in

(5.4) contributes

Iq

(q−1∑
r=1

cq(r, q − r)((f⊗̃rf)⊗̃q−rf)− 2θcq(q/2)(f⊗̃q/2f)− σ2f

)
. (5.6)

The remaining terms in (5.4) can be represented as follows:

3q
2 −2∑

k=1,k 6=q/2

I2k
(
gk(f, q)

)
− 2θ

q−1∑
r=1,r 6=q/2

cq(r)I2q−2r(f⊗̃rf)

=

q−1∑
k=1,k 6=q/2

I2k

(
gk(f, q)− 2θcq(q − k)(f⊗̃q−kf)

)
+

3q
2 −2∑
k=q

I2k
(
gk(f, q)

)
. (5.7)

With (5.5), (5.6) and (5.7) we obtain that (5.4) is equal to

Iq

(q−1∑
k=1

cq(k, q − k)((f⊗̃kf)⊗̃q−kf)− 2θcq(q/2)(f⊗̃q/2f)− σ2f

)

+

q−1∑
k=1,k 6=q/2

I2k
(
gk(f, q)− 2θcq(q − k)(f⊗̃q−kf)

)
+

3q
2 −2∑
k=q

I2k
(
gk(f, q)

)
+

1

2
E[Iq(f)3]− (2θE[Iq(f)2] + rθσ2).

Using the isometric property (2.2) of multiple Wiener integrals we can now conclude the
result.

Let us have a closer look at the first summand 1
2E[Iq(f)3] − (2θE[Iq(f)2] + rθσ2)

appearing in the expression provided by Theorem 5.1. Using Lemma 3.6 we see that
the moment assumption that E[Iq(fn)2] and E[Iq(fn)3] converge to E[Y 2] and E[Y 3],
respectively, ensures that 1

2E[Iq(fn)3]−(2θE[Iq(fn)2]+rθσ2) converges to zero, as n→∞.
Note moreover that the other contraction operators do not depend on r. The dependence
on r is completely encoded in the moment assumption that E[Iq(fn)2] → E[Y 2] and
E[Iq(fn)3]→ E[Y 3].
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Next we consider the particularly attractive case θ = 0 corresponding to the sym-
metrized Gamma distributions separately. As explained earlier, in this case no restriction
on the parity of q is necessary.

Corollary 5.2. Let q ≥ 2 be an integer and let F = Iq(f) with f ∈ H�q. Then for q being
even we have

E
[( 1

λ2
F − Γ3(F )

)2]
= q!

∥∥∥ 1

λ2
f −

q−1∑
r=1

cq(r, q − r)((f⊗̃rf)⊗̃q−rf)
∥∥∥2

H⊗q

+

3q
2 −2∑

k=0,k 6=q/2

(2k)!
∥∥∥ ∑
r∈C2k

cq(r, 3q/2− k − r)((f⊗̃rf)⊗̃ 3q
2 −k−r

f)
∥∥∥2

H⊗2k
,

whereas for q being odd we set p = q − 1 and obtain

E
[( 1

λ2
F − Γ3(F )

)2]
= q!

∥∥∥ 1

λ2
f −

q−1∑
r=1

cq(r, q − r)((f⊗̃rf)⊗̃q−rf)
∥∥∥2

H⊗q

+

3p
2 −1∑

k=0,k 6=p/2

(2k)!
∥∥∥ ∑
r∈C2k+1

cq(r, 3p/2 + 1− k − r)((f⊗̃rf)⊗̃ 3p
2 +1−k−rf)

∥∥∥2

H⊗2k+1
.

Proof. For q being even the result follows directly form Theorem 5.1. The case when
q ≥ 3 is odd is similar. Here, we put p := q − 1 and denote by C2k+1 the set of those
integers r ∈ {1, . . . , q− 1} for which the double contraction ((f⊗̃rf)⊗̃3q/2+1−k−rf) is well
defined. We skip the details.

Remark 5.3. The symmetric Gamma distribution can be presented as a finite linear
combination of independent χ2 random variables. In [2, Theorem 3.2] the authors
investigated necessary and sufficient conditions for convergence in distribution towards
such a combination within the framework of random objects living on a fixed chaos. In
the examples in [2, Section 4], the conditions are presented in terms of contractions.

Remark 5.4. Comparing the contraction conditions implied by Theorem 4.1 and Corol-
lary 5.2 for the symmetric Gamma distribution with those of Theorem 1.1 (ii) in [6]
for the tetilla law arising in free probability we see that our condition in the case of
Gs(1,

1√
2
) coincides almost readily with that in [6]. The only difference are the coeffi-

cients cq(k, q−k), which arise as a consequence of the product formula (2.3). In contrast,
these coefficients are all equal to 1 in the free set-up (compare with Equation (2.6) in [6],
for example). This way, we may identify the Laplace distribution with parameter

√
2 as

the non-free analogue of the tetilla law.

A particularly interesting question is whether the bounds derived in Theorem 5.1
and Corollary 5.2 are tight with respect to the convergence in distribution towards a
Variance-Gamma distribution, in the sense that these bounds converge to zero if and
only if a normalised sequence {Fn}n∈N, living inside a fixed Wiener chaos, converges
in distribution to a V Gc(r, θ, σ)-distributed random variable. Fix q ≥ 2, and consider
a sequence {Fn : n ≥ 1} such that Fn = Iq(fn), n ≥ 1, where fn ∈ H�q and sup-
pose that E[F 2

n ] = q!‖fn‖2H⊗q → 2r
λ2 . Moreover, by Y denote a random variable with

Gs(λ, r)-distribution. We conjecture that for the symmetric Variance-Gamma distribu-
tions (corresponding to θ = 0) (i) the convergence in distribution of Fn to Y is equivalent
to (ii) E[F 4

n ]→ E[Y 4] and E[F 6
n ]→ E[Y 6], which in turn is equivalent to the contraction

conditions (iii) that

‖((fn⊗̃kfn)⊗̃k′fn)‖H⊗3q−2k−2k′ → 0
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and

∥∥∥ 1

λ2
fn −

q−1∑
k=1

cq(k, q − k)((fn⊗̃kfn)⊗̃q−kfn)
∥∥∥
H⊗q
→ 0,

where k = 1, . . . , q − 1 and k′ is such that k′ + 2k ≤ 2q and k + k′ 6= q. Our conjecture
for θ 6= 0 reads similar. Namely, we conjecture that a sequence {Fn}n∈N such that
Fn = Iq(fn), n ≥ 1, where fn ∈ H�q and E[F 2

n ] = q!‖fn‖2H⊗q → r(σ2 + 2θ2) (i) converges
in distribution to a V Gc(r, θ, σ)-distributed random variable if and only if (ii) the moment
condition E[F jn]→ E[Y j ] is satisfied for j = 3, 4, 5, 6 or if and only if (iii) the contraction
conditions ‖((fn⊗̃lfn)⊗̃3q/2−k−lfn)‖H⊗3q−2k−2l → 0 for every k = q, . . . , 3q/2 − 2 and
l = 1, . . . , 3q/2− k − 1,

∥∥∥∥ q−1∑
k=1

cq(k, q − k)((f⊗̃kf)⊗̃q−kf)− 2θcq(q/2)(f⊗̃q/2f)− σ2f

∥∥∥∥
H⊗q

→ 0

and
∥∥(gk(f, q)− 2θcq(q − k)(f⊗̃q−kf)

)∥∥
H⊗2k → 0 for every k ∈ {1, . . . , q − 1} \ {q/2} hold.

The technically sophisticated step in both situations is to show that (ii) implies (iii).
The main difficulty is to deal with the involved combinatorial structure transmitted from
the product formula to the collection of double contractions. In Section 5.2 below, we
will obtain a positive answer to both of the above stated conjectures in the particular
case q = 2, while the general case remains open, because for general q we were not able
to express (or to estimate from above) the bounds of Theorem 5.1 or Corollary 5.2 in
terms of the first six moments of the involved chaotic random variables.

The following discussion concerns the symmetric Gamma approximation of a finite
sum of Wiener chaoses. Without loss of generality we discuss a sum of two Wiener
chaoses. Consider two integers 2 ≤ q1 < q2 and a sequence of the form

Zn = Iq1(f1
n) + Iq2(f2

n), n ≥ 1,

where f in ∈ H�qi . In order to bound the second summand on the right hand side of (4.1)
we have to compute E[Γ2(Zn)]. By the product formula (2.3) or (2.10) we obtain

E[Γ2(Zn)] = q1!‖f1
n‖2H⊗q1 + q2!‖f2

n‖2H⊗q2 .

Next, we have to bound E
[
( 1
λ2Zn − Γ3(Zn))2

]
. Without loss of generality, we can assume

that X is an isonormal process over a Hilbert space of the type L2(A,A, µ). For every
b ∈ A, it is immediately checked that

−DbL
−1Γ2(Zn) =

2∑
i,j=1

qi

qi∧qj∑
r=1

(r − 1)!

(
qi − 1

r − 1

)(
qj − 1

r − 1

)
Iqi+qj−2r−1(f in⊗̃rf jn(·, b))
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and DbZn = q1Iq1−1(f1
n(·, b)) + q2Iq2−1(f2

n(·, b)). Therefore, by the product formula,

Γ3(Zn) =

2∑
i,j,k=1

qi∧qj∑
r=1

qiqj(r − 1)!

(
qi − 1

r − 1

)(
qj − 1

r − 1

)
×
∫
A

Iqi−1(f in(·, b)) Iqk+qj−2r−1

(
(f jn⊗̃rfkn)(·, b)

)
µ(db)

=

2∑
i,j,k=1

qi∧qj∑
r=1

qi∧(qj+qk−2r)∑
s=1

qiqj(r − 1)!

(
qi − 1

r − 1

)(
qj − 1

r − 1

)
(s− 1)!

×
(
qi − 1

s− 1

)(
qj + qk − 2r − 1

s− 1

)
Iqi+qj+qk−2r−2s

(
f in⊗̃s(f jn⊗̃rfkn)

)
=:

2∑
i,j,k=1

qi∧qj∑
r=1

qi∧(qj+qk−2r)∑
s=1

T (qi, qj , qk, r, s, f
1
n, f

2
n).

Now, we consider the two summands i = j = k = 1 and i = j = k = 2 and choose
s = qi − r. We observe that these summands can be represented as

∑ql−1
r=1 cql(r, ql −

r) Iql
(
f ln⊗̃q−r(f ln⊗̃rf ln)

)
for l = 1, 2. Summarizing, we have

1

λ2
Zn − Γ3(Zn) =

∑
l=1,2

Iql

(
1

λ2
f ln −

ql−1∑
r=1

cql(r, ql − r)
(
f ln⊗̃q−r(f ln⊗̃rf ln)

))
+

∑
(i,j,k,r,s)∈S

T (qi, qj , qk, r, s, f
1
n, f

2
n)

with

S :=
{

(i, j, k, r, s) ∈ {1, 2}3 ×N2 : 1 ≤ r ≤ qi ∧ qj , 1 ≤ s ≤ qi ∧ qj + qk − 2r and,

whenever i = j = k, r 6= qi and s 6= qi − r
}
.

By using the inequality (a1 +a2)2 ≤ 2(a2
1 +a2

2) and the isometric property (2.2) we obtain:

Proposition 5.5. Consider two integers 2 ≤ q1 < q2 and a sequence of the form

Zn = Iq1(f1
n) + Iq2(f2

n), n ≥ 1,

where f in ∈ H�qi . Then for every λ > 0 we have

E
[
(

1

λ2
Zn − Γ3(Zn))2

]
≤ 8

∑
l=1,2

∥∥∥∥ 1

λ2
f ln −

ql−1∑
r=1

cql(r, ql − r)
(
f ln⊗̃q−r(f ln⊗̃rf ln)

)∥∥∥∥2

H⊗ql

+
∑

(i,j,k,r,s)∈S

qiqj(r − 1)!

(
qi − 1

r − 1

)(
qj − 1

r − 1

)
(s− 1)!

×
(
qi − 1

s− 1

)(
qj + qk − 2r − 1

s− 1

)∥∥f in⊗̃s(f jn⊗̃rfkn)
∥∥2
.

We finally turn in this section to the case of normal approximation and recover the
celebrated fourth moment theorem. Moreover, our more general framework implies
the following result, which leads to a better rate of convergence (namely exponent 3/2
instead of 1) compared with [15, Theorem 5.2.7], for example. However, our rate is still
not optimal as shown by the main result in [16].
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Proposition 5.6. Fix q ≥ 2, and consider a sequence {Fn}n∈N such that Fn = Iq(fn),
n ≥ 1, where fn ∈ H�q. Assume that E[F 2

n ] = σ2 > 0 and E[Γ3(Fn)2] → 0, as n → ∞.
Then the sequence {Fn}n∈N satisfies a central limit theorem and we have the following
bound for the Wasserstein distance:

dW (Fn, Z) ≤ C max
r=1,...,q−1
r′+2r≤2q

{‖((fn⊗̃rfn)⊗̃r′fn)‖H⊗3q−2r−2r′}

≤ C max
1≤l≤q−1

{‖fn ⊗l fn‖3/2H⊗2q−2l},

where C > 0 is a constant only depending on σ and where Z ∼ N (0, σ2).

Proof. That the sequence {Fn}n∈N satisfies a central limit theorem under our assump-
tions is ensured by Corollary 4.4 (a). Moreover, using the multiplication formula (2.3)
we have

E[Γ2
3(Iq(f))] =

3q
2 −2∑
k=0

(2k)!
∥∥gk(f, q)

∥∥2

H⊗2k . (5.8)

Hence a sufficient condition for a central limit theorem to hold is that for every r =

1, . . . , q − 1 and r′ such that r′ + 2r ≤ 2q it holds that

‖((fn⊗̃rfn)⊗̃r′fn)‖H⊗3q−2r−2r′ → 0,

as n→∞. Now, the double-contractions are dominated by the usual (single) contractions
in the following way:

‖((fn⊗̃rfn)⊗̃r′fn)‖H⊗3q−2r−2r′ ≤ max
1≤l≤q−1

‖fn ⊗l fn‖3/2H⊗2q−2l ,

see [3, Equation (4.10)]. This proves the result.

5.2 The case of the second Wiener chaos

The goal of this subsection is to confirm the two conjectures spelled out in the
previous subsection for elements of the second Wiener chaos (i.e., for double stochastic
integrals). That is, we consider a sequence of elements of the second Wiener chaos of
an isonormal process X, that is, a sequence of random variables of the type Fn = I2(fn)

with fn ∈ H�2 for each n ∈ N. For symmetric Variance-Gamma distributions (θ = 0) our
result reads as follows.

Theorem 5.7. Let Y be a Gs(λ, r)-distributed random variable with r, λ > 0 and suppose
that E[F 2

n ] = 2r/λ2. Then, as n→∞, the following assertions are equivalent:

(a) Fn = I2(fn) converges in distribution to Y ,

(b) E[F 4
n ]→ E[Y 4] and E[F 6

n ]→ E[Y 6],

(c) ‖4((fn⊗̃1fn)⊗̃1fn)− 1
λ2 fn‖H⊗2 → 0 and ((fn⊗̃1fn)⊗̃2fn)→ 0.

In the general asymmetric case θ 6= 0, stronger moment or contraction conditions are
necessary in order to ensure convergence in distribution of Fn to a Variance-Gamma
distributed random variable.

Theorem 5.8. Let Y be a V Gc(r, θ, σ)-distributed random variable with r, σ > 0 and
θ ∈ R, and suppose that E[F 2

n ] = r(σ2 + 2θ2). Then, as n→∞, the following assertions
are equivalent:

(a) Fn = I2(fn) converges in distribution to Y ,

(b) E[F jn]→ E[Y j ] for all j = 3, 4, 5, 6,
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(c) ‖4((fn⊗̃1fn)⊗̃1fn)−2θ (fn⊗̃1fn) −σ2fn‖H⊗2 → 0 and ((fn⊗̃1fn)⊗̃2fn)→ 3
4rθσ

2+rθ3.

Before entering the proofs of Theorems 5.7 and 5.8, we collect some general facts
about random variables of the type F = I2(f), f ∈ H�2, belonging to the second Wiener
chaos H2 and introduce some notation. First recall that the law of F is determined by its
moments or, equivalently, by its cumulants. The latter are given by

κp(F ) = 2p−1(p− 1)!〈f ⊗(p−1)
1 f, f〉H⊗2 , p ≥ 2, (5.9)

thanks to relation (2.10). Here, {f ⊗(p)
1 f : p ≥ 1} ⊂ H�2 is the sequence defined by

f ⊗(1)
1 f = f and for p ≥ 2 by f ⊗(p)

1 f =
(
f ⊗(p−1)

1 f
)
⊗1 f . In particular f ⊗(2)

1 f = f ⊗1 f .

Proof of Theorem 5.8. The implication (a)⇒ (b) is trivial and (c)⇒ (a) follows by com-
bining Theorem 4.1 with Theorem 5.1. Thus, it remains to show that (b) implies (c).

Let Fn = I2(fn) with fn ∈ H�2, n ≥ 1. Theorem 5.1 for q = 2 leads to

E[(Γ3(Fn)− 2θΓ2(Fn)− σ2(Fn + rθ))2]

= 2‖4((fn⊗̃1fn)⊗̃1fn)− 4θ(fn⊗̃1fn)− σ2 f‖2H⊗2

+
(1

2
E[F 3

n ]− (2θE[F 2
n ] + rθσ2)

)2

.

(5.10)

For θ = 0, σ = 1/λ, with (5.3) we obtain

E[(Γ3(Fn)− 1

λ2
Fn)2] = 2‖ 1

λ2
f − 4(fn⊗̃1fn)⊗̃1fn‖2H⊗2 + 16〈fn ⊗1 fn, fn〉2H⊗2 . (5.11)

We represent the left hand side of (5.10) in terms of moments and cumulants of Fn to
be able to check that if the six moment conditions on Fn (condition (b) in Theorem 5.8)
are satisfied, then condition (c) for the contractions follows. The left-hand side of (5.10)
consists of six terms. Identity (5.8) gives

E[Γ2
3(Fn)] = 25‖(fn⊗̃1fn)⊗̃1fn)‖2H⊗2 + 16〈fn ⊗1 fn, fn〉2H⊗2 .

By (5.9) we obtain κ6(Fn) = 255!〈f⊗(5)
1 f, f〉H⊗2 = 255!‖(fn⊗̃1fn)⊗̃1fn)‖2H⊗2 , implying that

E[Γ2
3(Fn)] =

1

120
κ6(Fn) + 16〈fn ⊗1 fn, fn〉2H⊗2 =

1

120
κ6(Fn) +

1

4
(κ3(Fn))2.

Next, with (5.2) we get

4θ2E[Γ2
2(Fn)] = 32θ2‖fn⊗̃1fn‖2 + 4θ2κ2(Fn)2

= 32θ2〈fn ⊗(3)
1 fn, fn〉+ 4θ2κ2(Fn)2 =

2

3
θ2κ4(Fn) + 4θ2κ2(Fn)2,

using that κ4(Fn) = 48〈fn ⊗(3)
1 fn, fn〉, see (5.9). For the third term we have E[σ4(Fn +

rθ)2] = σ4E[F 2
n ] + r2θ2σ4. Applying part (1) of Lemma 2.1 with s = 1 we obtain for the

fourth term

4θσ2E[FnΓ2(Fn)] + 4rθ2σ2E[Γ2(Fn)] = 2θσ2E[F 3
n ] + 4rθ2σ2E[F 2

n ].

With E[Γ3(Fn)] = 1
2κ3(Fn), the fifth term reads −2σ2E[FnΓ3(Fn)] − rθσ2E[F 3

n ]. Part (1)
of Lemma 2.1 implies E[Iq(f)2Γ2(Iq(f))] = E[Iq(f)2]E[Γ2(Iq(f))] + 2E[Iq(f)Γ3(Iq(f))] and
part (2) says that

E[Iq(f)2Γ2(Iq(f))] = qE[Iq(f)2‖D(Iq(f)‖2H] =
1

3
E[Iq(f)4],
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since Γ2(F ) = q‖DF‖2H for every F ∈ L2(Ω). Hence

1

3
E[Iq(f)4] = E[Iq(f)2]2 + 2E[Iq(f)Γ3(Iq(f))],

and it follows that E[Iq(f)Γ3(Iq(f))] = 1
6κ4(Iq(f)). Hence the fifth term can be presented

as

−1

3
σ2κ4(Fn)− rθσ2E[F 3

n ].

Finally, we have to compute −4θE[Γ2(Fn) Γ3(Fn)]. With (5.1), (5.2) and (5.9) we obtain

−4θE[Γ2(Fn) Γ3(Fn)] = −64θ〈fn⊗̃1fn, (fn⊗̃1fn)⊗̃1fn〉 − 2θκ2(Fn)κ3(Fn)

= −64θ〈fn ⊗(4)
1 fn, fn〉 − 2θκ2(Fn)κ3(Fn)

= −θ
6
κ5(Fn)− 2θκ2(Fn)κ3(Fn).

Summarizing, the left hand side of (5.10) is equal to

1

120
κ6(Fn)− θ

6
κ5(Fn) +

1

3
(2θ2 − σ2)κ4(Fn) + (2− r)θσ2κ3(Fn) +

1

4
(κ3(Fn))2

− 2θκ2(Fn)κ3(Fn) + (σ4 + 4rθ2σ2)κ2(Fn) + 4θ2(κ2(Fn))2 + r2θ2σ4.
(5.12)

Using now the moment assumption (b) together with Lemma 3.6, we see that the term
in (5.12) converges to zero as n → ∞ and hence the contraction condition (c) follows,
see (5.10). This completes the proof.

Proof of Theorem 5.7. As in the asymmetric case, it suffices to show that (b) implies (c).
In our case, θ = 0 and we put σ = 1

λ and obtain that

E[(Γ3(Fn)− 1

λ2
Fn)2] =

1

120
κ6(Fn)− 1

3λ2
κ4(Fn) +

1

4
(κ3(Fn))2 +

1

λ4
κ2(Fn) (5.13)

from (5.10) and (5.12). Hence with (5.11) and (5.13) we get

2‖ 1

λ2
f − 4(fn⊗̃1fn)⊗̃1fn‖2H⊗2 =

1

120
κ6(Fn)− 1

3λ2
κ4(Fn) +

1

λ4
κ2(Fn).

Into the last identity we plug the well known relationships between moments and
cumulants stated in Section 2. Then, a simple calculation leads to

2‖ 1

λ2
f − 4(fn⊗̃1fn)⊗̃1fn)‖2H⊗2

=
1

120
E[F 6

n ]−
(

1

8
+

1

6r

)
E[F 2

n ]E[F 4
n ] +

(
1

4
+

1

2r
+

1

(2r)2

)
E[F 2

n ]3 − 1

12
E[F 3

n ]2.

Now, we assume that E[F 2
n ]→ 2r

λ2 , E[F 4
n ]→ 12r(r+1)

λ4 and E[F 6
n ]→ 120r(r+1)(r+2)

λ6 . Then,

1

120
E[F 6

n ]−
(

1

8
+

1

6r

)
E[F 2

n ]E[F 4
n ] +

(
1

4
+

1

2r
+

1

(2r)2

)
E[F 2

n ]3 → 0,

as n→∞. Since E[F 3
n ]2 = 64 (fn⊗̃1fn)⊗̃2fn, the contraction conditions in (c) follow.

Remark 5.9. Let Fn = I2(fn) with fn ∈ H�2, n ≥ 1. Assume that E[F 2
n ] = q!‖fn‖2H⊗q →

r(σ2 + 2θ2). Here we list the different forms of conditions on contraction-operators which
are equivalent to the convergence in distribution to a member of V Gc(r, θ, σ).

(a) Fn converges to N (0, σ2) if and only if ‖fn ⊗1 fn‖H⊗2 → 0, as n→∞.

(b) Fn converges to G(λ, r) if and only if ‖fn⊗̃1fn − 1
2λfn‖H⊗2 → 0, as n→∞.
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(c) Fn converges to Gs(λ, r) if and only if ‖4((fn⊗̃1fn)⊗̃1fn) − 1
λ2 fn‖H⊗2 → 0 and

((fn⊗̃1fn)⊗̃2fn)→ 0, as n→∞.

(d) Fn converges to V Gc(r, θ, σ) if and only if

‖4((fn⊗̃1fn)⊗̃1fn)− 2θ (fn⊗̃1fn) − σ2fn‖H⊗2 → 0

and ((fn⊗̃1fn)⊗̃2fn)→ 3
4rθσ

2 + rθ3, as n→∞.

(e) An example of case (d) is the convergence to V Gc(1, %,
√

1− %2), which can be
interpreted as the distribution of the product of two correlated standard normal
distributed random variables X and Y with correlation %. We obtain that Fn
converges to V Gc(1, %,

√
1− %2) if and only if ‖4((fn⊗̃1fn)⊗̃1fn) − 2% (fn⊗̃1fn) −

(1− %2)fn‖H⊗2 → 0 and ((fn⊗̃1fn)⊗̃2fn)→ 3
4%(1− %2) + %3, as n→∞. When %→ 0,

case (c) appears with λ = r = 1.

After having characterized convergence in distribution of an element belonging to
the second Wiener chaos H2, we turn now to quantitative bounds for the Wasserstein
distance. In contrast to the bounds that follow from the results presented in Section
4 and Section 5.1, we are seeking for upper bounds in terms of moments. In view of
Theorems 5.7 and 5.8 we can expect that these bounds only involve moments up to order
six. Our next theorem presents bounds in terms of the first six cumulants, as they have a
more compact form.

Corollary 5.10. Let Fn = I2(fn) with fn ∈ H�2, n ≥ 1.

(a) Let Y denote a V Gc(r, θ, σ)-distributed random variable and assume that E[F 2
n ] =

2‖fn‖2H⊗2 → r(σ2 + 2θ2). Then there exist constants C1 = C1(r, θ, σ) > 0 and
C2 = C2(r, θ, σ) > 0 such that

dW (Fn, Y ) ≤ C1

( 1

120
κ6(Fn)− θ

6
κ5(Fn) +

1

3
(2θ2 − σ2)κ4(Fn) + (2− r)θσ2κ3(Fn)

+
1

4
(κ3(Fn))2 − 2θκ2(Fn)κ3(Fn) + (σ4 + 4rθ2σ2)κ2(Fn)

+4θ2(κ2(Fn))2 + r2θ2σ4
)1/2

+ C2

∣∣r(σ2 + 2θ2)− κ2(Fn)
∣∣.

(b) Let Y be Gs(λ, r)-distributed random variable and assume that E[F 2
n ] = 2‖fn‖2H⊗2 →

2r
λ2 . Then there are constants C1 = C1(λ, r) > 0 and C2 = C2(λ, r) > 0 such that

dW (Fn, Y ) ≤ C1

( 1

120
κ6(Fn)− 1

6r
κ4(Fn)κ2(Fn) +

1

4r2
κ2(Fn)3 +

1

6
κ3(Fn)2

)1/2

+C2

∣∣∣2r
λ2
− κ2(Fn)

∣∣∣.
Remark 5.11. The bound in Corollary 5.10 (b) suggests that we have – in addition to
the convergence of the second, fourth and sixth moment or cumulant – to assume that
also the third moment or cumulant of Fn converges to zero, as n → ∞, to conclude
convergence in distribution to the limiting random variable. However, we know already
from the proof of Theorem 5.7 that convergence of the second, fourth and sixth moments
or cumulants implies that the third moment of Fn converges to zero automatically under
these conditions. A similar phenomenon holds true for the fifth moment of cumulant of
Fn.

We turn now to the case of normal approximation, which appears as a limiting case
of a Variance-Gamma distribution, see Proposition 5.6. Our next result provides a bound
for the Wasserstein distance between a second chaos element and a Gaussian random
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variable in terms of the second, third and sixth cumulant. It implies that sequence
Fn = I2(fn) converges in distribution to a N (0, σ2)-distributed random variable (σ2 > 0)
if E[F 2

n ]→ σ2 and if κ3(Fn)→ 0 and κ6(Fn)→ 0, as n→∞. Clearly, this is weaker than
the usual forth moment theorem for which we refer to [15], but is related to the recent
developments in [1].

Proposition 5.12. Let Fn = I2(fn) with fn ∈ H�2, n ≥ 1. There exist constants
C1(σ), C2(σ) > 0 such that

dW (F,N (0, σ2)) ≤ C1(σ)

(
1

120
κ6(Fn) +

1

4
κ3(Fn)2

)
+ C2(σ)

∣∣σ2 − E[F 2
n ]
∣∣.

The same bound holds for the Kolmogorov-distance with different constants.

Proof. This is a direct consequence of Corollary 4.4 and the identity (5.2) for E[Γ3(Fn)2].

The next statement provides a further characterization of the convergence of the
elements of the second chaos, i.e., for F = I2(f) with f ∈ H�2. To avoid technical
complications, we restrict for the rest of this section to a symmetrized Gamma distri-
bution Gs(λ, r). To state the result, consider the Hilbert-Schmidt operator Af : H→ H,
g 7→ f ⊗1 g associated with f and write {λf,j : j ≥ 1} and {ef,j : j ≥ 1}, respectively, for
the eigenvalues of Af and the corresponding eigenvectors. It is well known (see [15,
Section 2.7.4]) that, the series

∑
j≥1 λ

p
f,j converges for all p ≥ 2, and that f admits the

expansion (in H�2)
f =

∑
j≥1

λf,j
(
ef,j ⊗ ef,j

)
. (5.14)

We notice that for the trace of the pth power of Af one has the relation Tr(Apf ) =

〈f ⊗(p−1)
1 f, f〉H⊗2 =

∑
j≥1 λ

p
f,j .

Theorem 5.13. Let Fn = I2(fn) with fn ∈ H�2, n ≥ 1. Let Y denote a random variable
with Gs(λ, r)-distribution assume that E[F 2

n ] = 2‖fn‖2H⊗q → 2r
λ2 . Then the following two

conditions are equivalent to the conditions stated in Theorem 5.7:

(a) As n → ∞,
∑
j≥1

(
1
λ2λfn,j − 4λ3

fn,j

)2→ 0 and
∑
j≥1 λ

3
fn,j

→ 0, where, for each
n ≥ 1, {λfn,j }j≥1 stands for the sequence of the eigenvalues of the Hilbert-Schmidt
operator Afn .

(b) As n→∞,
∑
j≥1 λ

3
fn,j
→ 0 and for every q ≥ 2,∑

j≥1

λ2q
fn,j
→ 2r

λ2

( 1

4λ2

)q−1

. (5.15)

Proof. To prove the equivalence of (a) to (c) in Theorem 5.7, we use (5.14) to deduce
that

(fn ⊗1 fn)⊗1 fn =
∑
j≥1

λ3
fn,j

(
ef,j ⊗ ef,j

)
and (fn ⊗1 fn)⊗̃2fn =

∑
j≥1

λ3
fn,j .

It follows that

‖ 1

λ2
fn − 4(fn⊗̃1fn)⊗̃1fn‖2H⊗2 =

∑
j≥1

( 1

λ2
λfn,j − 4λ3

fn,j

)2
.

Next we show that (a) is equivalent to (b). The proof of the implication (a) =⇒ (b) is
based on a recursive argument. By assumption we have

∑
j≥1 λ

2
fn,j
→ 2r

λ2 . Moreover,∣∣∣∣∑
j≥1

λfn,j
( 1

λ2
λfn,j − 4λ3

fn,j

)∣∣∣∣ ≤ (∑
j≥1

λ2
fn,j

)1/2(∑
j≥1

( 1

λ2
λfn,j − 4λ3

fn,j

)2)1/2

→ 0,
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thus yielding that limn→∞
∑
j≥1 λ

4
fn,j

= 1
4λ2 lim

n→∞

∑
j≥1 λ

2
fn,j

= 1
4λ2

2r
λ2 . Now, if (5.15)

holds for q ≥ 2, then∣∣∣∣∑
j≥1

λ2q−1
fn,j

( 1

λ2
λfn,j − 4λ3

fn,j

)∣∣∣∣ ≤ (∑
j≥1

λ4q−2
fn,j

)1/2(∑
j≥1

( 1

λ2
λfn,j − 4λ3

fn,j

)2)1/2

→ 0,

and (5.15) with q replaced by q + 1 follows. To see the implication (b) =⇒ (a), just write∑
j≥1

( 1

λ2
λfn,j − 4λ3

fn,j

)2
=

1

λ4

∑
j≥1

λ2
fn,j −

8

λ2

∑
j≥1

λ4
fn,j + 16

∑
j≥1

λ6
fn,j

and apply (5.15) with q = 2, 3 and
∑
j≥1 λ

2
fn,j
→ 2r/λ2.

As a consequence of Theorem 5.13 we deduce the following characterization of a
symmetrized Gamma random variable in the second Wiener chaos.

Corollary 5.14. Fix an integer n ∈ N. Let I2(f) with f ∈ H�2 be such that E[I2(f)2] = 4n.
Then the following conditions are equivalent:

(a) I2(f) has the same distribution as Y (n) ∼ Gs( 1
2 ,

n
2 ).

(b) E[I2(f)4] = E[Y (n)4] and E[I2(f)6] = E[Y (n)6].

(c) f = f ⊗ f ⊗ f and 〈f ⊗ f, f〉H⊗2 = 0.

(d) There exists hi ∈ H for i = 1, . . . , 2n, such that ‖hi‖H = 1, 〈hi, hj〉H = 0 for i 6= j and

I2(f) =

n∑
i=1

I2(hi ⊗ hi)−
2n∑

i=n+1

I2(hi ⊗ hi) =

n∑
i=1

(I1(hi)2 − 1)−
2n∑

i=n+1

(I1(hi)2 − 1).

Proof. It remains to prove the implication (c) =⇒ (d). If (c) is verified, then for every
j ≥ 1 we obtain λf,j = λ3

f,j and hence λf,j ∈ {−1,+1}. Since
∑
j≥1 λ

2
f,j = 4n and∑

j≥1 λ
3
f,j = 0, we deduce that there are 2n indices j with λf,j = 1 and 2n indices with

λf,j = −1. The conclusion follows from (5.14).

Remark 5.15. The statement of Corollary 5.14 remains true for arbitrary parameters
λ > 0, not only for λ = 1/2. The choice λ = 1/2 just leads to the simple values
λf,j ∈ {−1,+1}. In general we would obtain λf,j ∈ {− 1

2λ ,
1

2λ}.
On the other hand, suppose that I2(f) with f ∈ H�2 is such that E[I2(f)2] = 8r for some
r > 0. If I2(f) is distributed according to Gs(λ, r), then necessarily 2r is an integer and
I2(f) has a Gs(λ, r)-distribution. This follows immediately as in the proof of Corollary
5.14.

5.3 Homogeneous sums and multivariate extensions

Let X = {Xn}n∈N be a sequence of independent and identically distributed centred
random variables with unit variance. Fix an integer q ≥ 2 and let, for each n ∈ N,
hn : {1, . . . , n}q → R be a symmetric function, which vanishes on diagonals in the sense
that hn(i1, . . . , iq) = 0 whenever there are at least two indices j 6= k ∈ {1, . . . , q} such
that ij = ik. Based on this data we define the sequence {Hn(X, q)}n∈N of homogeneous
sum of order q as

Hn(X, q) :=
∑

1≤i1,...,iq≤n

hn(i1, . . . , iq)Xi1 · · ·Xiq

= q!
∑

1≤i1<...<iq≤n

hn(i1, . . . , iq)Xi1 · · ·Xiq .
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Universality for the family {Hn(X, q)}n∈N is a probabilistic phenomenon which asserts
thatHn(X, q) converges, as n→∞, to a limiting random variable Y if and only ifHn(G, q)

converges in distribution to Y , where G = {Gn}n∈N is some particular sequence of
independent and identically distribution random variables with mean zero and variance
one. In our case, we take for Gn a standard Gaussian random variable for each n ∈ N
(whence the notation G). Usually, it is much easier to show convergence in distribution
of Hn(G, q) than of Hn(X, q). One reason for that being the interpretation of Hn(G, q) as
a multiple stochastic integral of order q, i.e., Hn(G, q) = Iq(fn) with fn ∈ H�q given by

fn = q!
∑

1≤i1<...<iq≤n

hn(i1, . . . , iq) ei1 ⊗ · · · ⊗ ei1 .

Moreover, a number of combinatorial tools are available to control the moments of such
integrals, see [23] for details. In what follows we assume that ‖hn‖H⊗q <∞ for all n ∈ N,
implying that Hn(G, q) has moments of all orders thanks to [15, Theorem 2.7.2].

The universality phenomenon for homogeneous sums has been addressed by Ro-
tar [27] and later also by Nourdin, Peccati and Reinert [17], who consider especially
multivariate extensions in case of normal and Gamma limiting distributions by means
of Stein’s method and Malliavin calculus. Using the results obtained in the previous
sections, we can reduce a corresponding limit theorem to a simple moment condition in
case q = 2 and if the limiting distribution belongs to the broad class of Variance-Gamma
distributions.

Proposition 5.16. Let the sequence X be such that max
n∈N

E[X6
n] < ∞. Suppose that

E[Hn(G, q)2] → r(σ2 + 2θ2), as n → ∞, and let Y be a random variable having a
V Gc(r, θ, σ)-distribution with parameters r, σ > 0 and θ ∈ R. Then, as n → ∞, the
following assertions are equivalent:

(a) Hn(X, q) converges in distribution to Y , ,

(b) Hn(G, q) converges in distribution to Y .

If q = 2 then (a) and (b) are equivalent to E[Hn(G, 2)j ] → E[Y j ] for j = 3, 4, 5, 6. If
q = 2 and θ = 0 then (a) and (b) are even equivalent to E[Hn(G, 2)4] → E[Y 4] and
E[Hn(G, 2)6]→ E[Y 6].

Proof. The first part of the claim is a reformulation of a special case of Proposition 1 in
[27]. The second part is a direct consequence of Theorems 5.7 and 5.8.

We now turn to a multivariate version of the results presented in Section 4. For
this, fix d ≥ 2 and let for each n ∈ N and j = 1, . . . , d, Fn,j ∈ D2,4 be such that
E[Fn,j ] = 0. Let further Yj be independent V Gc(rj , θj , σj)-distributed with parameters
rj , σj > 0 and θj ∈ R for all j = 1, . . . , d, form the sequence {Fn}n∈N of random vectors
Fn := (Fn,1, . . . , Fn,d) and put Y := (Y1, . . . , Yd). Next, define the sequence {An(j)}n∈N
by

An(j) := E
[∣∣σ2

j (Fn,j+rjθj)−2θjΓ2(Fn,j)−Γ3(Fn,j)
∣∣]+∣∣rjσ2

j +2rjθ
2
j−E[Γ2(Fn,j)]

∣∣, (5.16)

and for j 6= i = 1, . . . , d define {Bn(i, j)}n∈N by

Bn(i, j) := E
[∣∣〈DFn,i,−DL−1Fn,j〉H

∣∣].
A distance d(Fn,Y) between the random vectors Fn and Y is measured by

d(Fn,Y) := sup
∣∣E[φ(F)]− E[φ(Y)]

∣∣,
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where the supremum is taken over all functions φ : Rd → R possessing partial derivatives
of order one and two, which are uniformly bounded in absolute value by 1. The distance
d( · , · ) is our multivariate version of the Wasserstein distance used in the one-dimensional
situation. The proof of the next result closely follows the lines of the proof of Lemma 4.4.
in [24], which in turn was inspired by the methods in [4]. To keep the paper reasonably
self-contained, we decided yet to present the basic idea.

Proposition 5.17. There are constants C1 > 0 and C2 > 0 only depending on d and the
parameters rj , θj and σj , j = 1, . . . , d, such that

d(Fn,Y) ≤ C1

d∑
j=1

An(j) + C2

d∑
i,j=1
i6=j

Bn(i, j). (5.17)

Proof. To simplify the notation and to keep the argument more transparent, we restrict
to the bivariate case d = 2. Thus, what we have to show is that

d(Fn,Y) ≤ C1

(
An(1) +An(2)

)
+ C2

(
Bn(1, 2) +Bn(2, 1)

)
, n ∈ N, (5.18)

with constants C1, C2 > 0 only depending on the parameters r1, r2, θ1, θ2 and σ1, σ2. We
start by writing for an admissible test function φ : R2 → R,∣∣E[φ(Fn,1, Fn,2)]− E[φ(Y1, Y2)]

∣∣ ≤ ∣∣E[φ(Fn,1, Fn,2)]− E[φ(Y1, Fn,2)]
∣∣

+
∣∣E[φ(Y1, Fn,2)]− E[φ(Y1, Y2)]

∣∣ =: |T1|+ |T2|.

Conditioning on the first component Y1 of Y in T2 leads to a one-dimensional situation,
which has already been considered in the proof of Theorem 4.1, see the proof of Theorem
3.6 in [4] for details. This contributes the term An(2) to the bound (5.18). Let us turn to
T1. Writing LX for the distribution of an arbitrary random element X, we re-write T1 as

T1 =

∫ (
φ(x, y)−

∫
φ(z, y)LY1

(dz)
)
L(Fn,1,Fn,2)(d(x, y)).

The term in brackets is now interpreted as the left-hand side of a Stein equation for Y1,
i.e.,

T1 =

∫
σ2

1(x+ r1θ1)h′′y(x) + (σ2
1r1 + 2(x+ r1θ1)h′y(x)− xhy(x)L(Fn,1,Fn,2)(d(x, y)). (5.19)

Here, for fixed y, hy(x) stands for a solution of this equation for the text function
x 7→ φ(x, y). Also put h(x, y) := hy(x), understood as a bivariate function. Using the
smoothness properties of the test function φ together with the smoothness properties of
hy(x) (again taken from Lemma 3.17 in [7]), we see that

(i) the mappings x 7→ h(x, y) and y 7→ h(x, y) are twice differentiable on R,

(ii) there is a constant C > 0 only depending on r1, θ1, σ1 such that all partial derivatives
up to order two of the mappings in (i) are bounded by C

(compare with the proof of Lemma 4.4 in [24] for a similar argument). In terms of h(x, y),
the representation (5.19) of T1 can be re-written as

T1 = E
[
σ2

1(Fn,1 + r1θ1)∂xxh(Fn,1, Fn,2) + (σ2
1r1 + 2θ1(Fn,1 + r1θ1))∂xh(Fn,1, Fn,2)

− Fn,1h(Fn,1, Fn,2)
]
,

(5.20)

where ∂x and ∂xx indicate the first and second partial derivative in the first coordi-
nate (similarly, we write ∂y and ∂yy for those in the second coordinate). Applying the
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integration-by-parts-formula (2.6) together with the chain rule (2.4) we see that

E[Fn,1h(Fn,1, Fn,2)]

= E[〈Dh(Fn,1, Fn,2),−DL−1Fn,1〉H]

= E[∂xh(Fn,1, Fn,2)〈DFn,1,−DL−1Fn,1〉H + ∂yh(Fn,1, Fn,2)〈DFn,2,−DL−1Fn,1〉H].

Combining this with (5.20) and arguing as in the proof of Theorem 4.1, we see that this
contributes the terms An(1) and Bn(2, 1) to (5.18). Interchanging the role of Fn,1 and
Fn,2 leads to a term Bn(1, 2) and completes the argument.

We now apply Proposition 5.17 to sequences of vectors belonging to a fixed Wiener
chaos, i.e., we assume from now on that Fn,j = Iqj (fn,j) with fn,j ∈ H�qj , where
q1, . . . , qd ≥ 2. The next result ensures that convergence in distribution of the components
of Fn towards the components of Y already implies convergence in distribution of the
involved random vector. This can be regarded as a quantitative version for Variance-
Gamma distributions of the strong asymptotic independence properties on the Wiener
chaos (see Remark 5.19 below for further discussion).

Proposition 5.18. Suppose that for each j = 1, . . . , d, Fn,j converges in distribution to
Yj and that for all i 6= j = 1, . . . , d, Cov(F 2

n,i, F
2
n,j)→ 0, as n→∞. Then Fn converges in

distribution to Y and

d(Fn,Y) ≤ C1

d∑
j=1

An(j) + C2

d∑
i,j=1
i6=j

Cov(F 2
n,i, F

2
n,j)

with An(j) given by (5.16) and constants C1, C2 > 0 as in Proposition 5.17.

Proof. In view of Proposition 5.17 and Theorem 4.1 it only remains to show that Bn(i, j)

is dominated by Cov(F 2
n,i, F

2
n,j) up to a constant factor. However, this is known from step

2 in the proof of [20, Theorem 4.3], see also Identity (6.2.3) in [15].

Remark 5.19. Without a rate of convergence, Proposition 5.18 is also a consequence of
the strong asymptotic independence properties inside the Wiener chaos. In particular,
the result is a consequence of Theorem 1.4 in [11] and the fact that the distribution of
each Yj , j = 1, . . . , d, is determined by its moments (alternatively, one can apply Theorem
3.1 in [20]).
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