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Maltotriose-based probes for fluorescence and
photoacoustic imaging of bacterial infections
Aimen Zlitni 1,2, Gayatri Gowrishankar1,2, Idan Steinberg 1,2, Tom Haywood1,2 & Sanjiv Sam Gambhir 1,2,3✉

Currently, there are no non-invasive tools to accurately diagnose wound and surgical site

infections before they become systemic or cause significant anatomical damage. Fluores-

cence and photoacoustic imaging are cost-effective imaging modalities that can be used to

noninvasively diagnose bacterial infections when paired with a molecularly targeted infection

imaging agent. Here, we develop a fluorescent derivative of maltotriose (Cy7-1-maltotriose),

which is shown to be taken up in a variety of gram-positive and gram-negative bacterial

strains in vitro. In vivo fluorescence and photoacoustic imaging studies highlight the ability of

this probe to detect infection, assess infection burden, and visualize the effectiveness of

antibiotic treatment in E. coli-induced myositis and a clinically relevant S. aureus wound

infection murine model. In addition, we show that maltotriose is an ideal scaffold for infection

imaging agents encompassing better pharmacokinetic properties and in vivo stability than

other maltodextrins (e.g. maltohexose).
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B
acterial infections are of mounting medical and public
concern worldwide. One primary reason for this epidemic
is the overuse of antimicrobials, which enhanced the

number of drug-resistant bacteria1,2. Furthermore, there is an
increase in human life expectancy, which contributes to the high
number of individuals at risk for infection and the proliferation of
necessary medical procedures (i.e. surgery, arthroplasty, fracture
fixations, biomedical implantations)3. Such procedures and
associated implants are susceptible to infection4–7.

Wound and surgical infections create a substantial burden on
patients’ quality of life and result in delayed healing and can even
lead to death7. For example, surgical site infections (SSIs) are one
of the most common types of healthcare-associated infections and
occur in 2–5% of patients undergoing surgery in the United
States. This translates to around 400,000 SSIs for an average of 15
million procedures performed annually in the United States. In
addition to increasing the duration of hospitalization, SSIs
increase treatment cost as well as mortality risk by 2–11-fold8.
Unfortunately, many of these infections are only diagnosed after
becoming systemic or having caused significant damage to key
organs, making it harder and more costly to treat due to the high
bacterial burden. It is therefore important to develop tools to
noninvasively detect bacterial infections at an early stage with
high sensitivity and specificity. Such tools will aid clinicians in
deciding the optimal route of treatment after surgeries and can be
used to monitor the effectiveness of the treatment regimen to
ensure proper management of wound and surgical infections. In
the clinic, bacterial infections are diagnosed through a combi-
nation of clinical, laboratory (detecting signs of inflammation,
microbiology, and histopathology), and imaging assessments
which are invasive, time-consuming, and/or costly6,7,9. Currently,
imaging modalities such as X-ray, ultrasound, magnetic reso-
nance imaging (MRI), and computed tomography (CT) provide
valuable anatomical information but are only useful in diagnosing
delayed and late-stage infections9. In order to improve sensitivity,
specificity, and earlier detection, a molecular imaging strategy,
which necessitates the development of imaging probes that can
specifically target sites of bacterial infections, will be required. A
variety of radio-imaging agents or positron emission tomography
(PET) tracers for whole-body bacterial imaging have been
developed and several of these are currently under evaluation in
clinical trials10. These approaches are however dependent on
proximity to cyclotrons and generators (for isotope production or
collection, respectively) and experienced radiochemists for tracer
production, thus limiting their availability on demand. Their use
will therefore likely be restricted to major hospitals for the
management of in-patients. In addition, such approaches are not
recommended for use with infants, children, and pregnant
women, who represent a population at high risk for infections,
due to radiation exposure. To date, there are no rapid and reliable
diagnostic techniques that can detect implant, wound, and sur-
gical infections at an early stage in outpatient clinics. More spe-
cifically, an imaging tool that can aid doctors in emergency rooms
(ERs) and field hospitals to quickly diagnose bacterial wound
infections and determine the extent of infection can potentially
change clinical management.

Fluorescence imaging (FLI) relies on the detection of emission
signals from fluorescent probes upon excitation at their appro-
priate absorbance wavelengths11,12. FLI of bacterial infections
gained attention due to its many advantages such as high resolu-
tion, real-time imaging capabilities, ease of use, and low cost11.
Constricted by its limited depth and penetration (~1 cm), we
believe that FLI can only be implemented in superficial infection
imaging (during surgery, superficial implants, or endoscopy) as
well as intra-operative applications11,12. On the other hand, pho-
toacoustic imaging (PAI) is an emerging imaging technique that

relies on detecting ultrasound signals produced upon thermal
expansion of tissue when exciting the fluorescent probe at an
appropriate wavelength with an external laser13. PAI has been
shown to be a standalone, portable tool capable of imaging
endogenous signals such as melanin, and exogenous chromophores
from contrast agents, with deeper imaging capabilities (up to 4 cm)
than FLI and comparable resolution to MRI (~250 μm)13–16. In
addition, PAI has been used to monitor tissue healing by imaging
blood vessels as well as utilizing its ultrasound component to
provide anatomical information15–18. Hence, PAI can be an opti-
mal cost-effective and non-invasive tool to quickly detect bacterial
infections and monitor the effectiveness of treatment at local sites
(i.e. surgery and injury sites).

A number of FLI and/or PAI probes targeted to bacteria have
been developed by using antibiotics (vancomycin19,20 or teico-
planin21, specific to Gram-positive bacteria), Concanavalin
(targeting bacterial cell-surface mannose)22, antibodies (targeting
the immunodominant staphylococcal antigen A, specific to S.
aureus)23, boronic-acid (targeting bacterial cell-surface glyco-
proteins, specific to Gram-positive bacteria)24, enzyme-activated
nanoparticles (targeting gelatinase-expressing Gram-positive
bacteria)20 or through electrostatic and hydrophobic interactions
(specific to Gram-positive bacteria)25. Preclinical evaluation of
these probes showed promising results in FLI19,22–24 or PAI20,21

of some bacterial infections. Unfortunately, targeting the bac-
terial cell wall potentially limits the amount of signaling agent
taken up leading to lower sensitivity. In addition, strain-specific
probes will have minimal clinical impact in imaging surgery and
injury-related bacterial infections since they usually occur from
the presence of a variety of pathogenic bacteria. A few other
examples rely on genetically encoding bacteria with reporters,
such as photo-switchable chromoproteins26,27 and violacein28,
have been reported. While these strategies allow non-invasive
imaging of bacteria in vivo using PAI, the application of such
platform would be limited to visualizing biochemistry, patho-
physiological processes, and gene expression profiles in living
subjects as well as imaging tumor homing bacteria29 and cannot
be used for diagnosing bacterial infections.

A more promising bacterial-imaging strategy relies on the
utility of large sugar molecules to deliver the signaling moiety into
bacteria. These complex sugars (e.g. maltose, maltotriose, and
maltohexose) are major sources of glucose for bacteria and are
taken up in millimolar quantities30. A considerable advantage of
such probes is their specific uptake by bacteria through the
maltodextrin transporter which is not present in mammalian
cells, thus allowing differentiation of bacterial infections from
other diseases such as cancer and inflammation. Murthy and co-
workers30 developed a fluorescent and an 18F-labeled31 derivative
of maltohexose at the anomeric carbon and showed its effec-
tiveness in fluorescence and PET imaging of bacterial infections
in rats, respectively32. Recently, Pang and co-workers33 developed
theranostic nanoparticles loaded with purpurin 18 and targeted to
bacteria by surface functionalization to maltohexose. These par-
ticles showed great potential in treating bacteria using sonody-
namic therapy and assessed the specificity of their particles to the
infection site using FLI imaging and showed an example of PAI
using their particles. In parallel, our lab has developed an 18F-6”-
labeled maltose and maltotriose derivatives and showed their
effectiveness in imaging bacterial infections through PET ima-
ging34–36. While both imaging agents were specifically taken up
in bacterial infections, the maltotriose derivative showed superior
clearance from organs and better pharmacokinetic properties.
Hence, we decided to utilize maltotriose as a scaffold for a pho-
toacoustic and FLI agent of bacterial infections.

In this work, we report the development and evaluation of a
derivative of maltotriose for photoacoustic and fluorescent
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imaging of bacterial infections. The fluorescent dye is attached to
the anomeric carbon (reducing end) of maltotriose, which is
shown to have a smaller effect on the internalization of the sugar
than functionalization at the 6″-position (non-reducing end). In
addition, we conduct a face to face comparison study between
maltotriose and maltohexose to determine the optimum scaffold
for an imaging agent targeting the maltodextrin transporter.

Results
Synthesis of the fluorescent probes. Detailed synthesis of the
fluorescent probes is provided in Supplementary Methods.
Briefly, azide-functionalized maltotriose intermediate at the
anomeric carbon (compound 2a) was synthesized to allow ease of
functionalization with a variety of signaling agents using copper-
free click chemistry. Compound 1a was synthesized utilizing an
adapted procedure30,37 and collected as a colorless precipitate in
94% yield. Compound 2a was then produced from 1a using an
adapted procedure37 resulting in a mixture of compound 2a as
well as partially deacetylated 2a (Fig. 1, Supplementary Figs. 1 and
2) which was also previously reported37. Since the glycosylation
was successful and the final product was going to be fully dea-
cetylated, the reaction was carried on the mixture. The mixture
was then functionalized with a commercially available fluorescent
dye coupled to dibenzoyl cyclooctyne (Cy7-DBCO), through
strain-promoted azide–alkyne [3+2] cycloaddition reaction.
Sodium methoxide was then added to the crude mixture to
deprotect the acetate groups before purification by reverse phase
high-performance liquid chromatography (HPLC) to afford
compound 3a in 65% yield (Supplementary Fig. 3). In addition,
the Cy7 derivative of maltohexose was prepared following the
same synthetic route producing compound 3b in 60% yield
(Fig. 1, Supplementary Fig. 4).

In vitro evaluation. A competition binding assay between the
synthesized derivatives and 3H-maltose, which is taken up in
bacteria through the maltodextrin transporter, was conducted. A
significant reduction in 3H-maltose uptake in E. coli was observed
when pre-incubated with azide- or Cy7-functionalized mal-
totriose or maltohexose (Fig. 2a, P= 0.0002, n= 3 per study).
Furthermore, addition of the azide moiety and Cy7 functional
groups on the anomeric carbon of maltotriose or maltohexose did
not show any effect on its ability to block the uptake of 3H-
maltose.

A direct assessment of the ability of Cy7-1-maltotriose (3a) and
Cy7-1-maltohexose (3b) to be specifically taken up by a variety
of bacterial strains containing the maltodextrin transporter was
also conducted. Figure 2b showcased the ability of this probe to be
taken up by E. coli, Staphylococcus aureus, Bacillus subtilis, and
Pseudomonas aeruginosa. Control studies, where azide-inactivated
E. coli or E. coli mutations lacking components of the maltodextrin
transporter were also evaluated and showed minimal uptake (Fig. 2b
maroon, P < 0.0001, n= 3 per study).

In vivo evaluation in E. coli-induced myositis murine model.
Cy7-1-maltotriose was evaluated in vivo in an E. coli-induced
myositis murine model. Fluorescence images of the mice over time
showed rapid accumulation of Cy7-1-maltotriose in the right thigh
of the mice that was infected with E. coli. Such accumulation was
not observed in the left thigh of the mice that was injected with
heat-inactivated E. coli (Fig. 3a). In addition, significantly higher
signal intensity in the right thigh compared to the left thigh starting
at the 1h imaging time point was observed (P < 0.0310, n= 3), and
the signal difference increased over time (Fig. 3b).

The same animal model was then used to monitor the infection
site with PAI. As a control, photoacoustic images of both infected
and control thigh muscle were collected before and after probe
injection. Qualitatively, a higher photoacoustic signal in the
infected thigh was observed when imaged after probe injection
compared to that of the control muscle (Fig. 3c, Supplementary
Fig. 11). In addition, quantitative analysis of the photoacoustic
signal showed ~3-fold higher PA signal in the post-probe
injection images of the infected thigh muscle compared to that
before injection or to control thigh muscle (P= 0.0004 and P=
0.0002, respectively) (Fig. 3d).

In the same animal model, a comparison study between the
maltotriose and maltohexose derivatives (compound 3a and 3b,
respectively) was conducted. A higher fluorescence signal in the
infected thigh (right) was observed in the mice injected with
compound 3a (Fig. 4a, top). In addition, fluorescence signal in the
infected muscle was quantified and normalized to control muscle
(Fig. 4b) and showed ~1.5 times higher fluorescence signal in the
infected thigh of mice injected with Cy7-1-maltotriose compared
to those injected with Cy7-1-maltohexose. In PAI, significantly
higher PA intensity in the infected thigh compared to control
thigh was observed using either probes (P < 0.0013) (Fig. 4c, d,
Supplementary Fig. 12). Slightly higher PA intensity in the
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infected thigh of mice injected with Cy7-1-maltotriose (n= 6)
was observed compared to ones injected with Cy7-1-maltohexose
(n= 3), but this difference was not significant (Fig. 4d, left, P=
0.7571). However, the PA signal ratio between infected and
control muscle was significantly higher for Cy7-1-maltotriose
compared to Cy7-1-maltohexose (Fig. 4d, right, P= 0.0353).

To further assess the specificity of Cy7-1-maltotriose to
bacteria containing the maltodextrin transporter, a similar study
where a MalG + LamB mutant of E. coli was injected instead in
the left thigh. In vivo FLI at 3 and 20 h post-injection also shows a
rapid and significantly higher accumulation of Cy7-1-maltotriose
in the E. coli-infected thigh (right thigh muscle) compared to the
left thigh infected with E. coli mutation (n= 5, Supplementary
Fig. 13, P < 0.0001).

In vitro imaging of biomaterial infection. To examine the
ability of our probe to detect bacteria on biomaterials, sterilized
catheters were incubated in a solution of 106 CFU of S. aureus
before incubation in a solution of Cy7-1-maltotriose. Evident FLI
and BLI signals were observed on the catheters which were

incubated with S. aureus solution followed by Cy7-1-maltotriose
(Fig. 5a, left). In addition, minimal fluorescence signal in the
control catheters which were not incubated with S. aureus was
observed highlighting the low levels of nonspecific binding of
Cy7-1-maltotriose to the catheter (Fig. 5a, b; P < 0.0001).

In addition, the catheters which were only incubated with S.
aureus solution, only showed the BLI signal and no fluorescence
signal (Fig. 5a, right). The axial photoacoustic images showed
noticeable photoacoustic signals on the surface of catheters
incubated with both the bacteria and Cy7-1-maltotriose (Fig. 5c,
left). While significantly lower photoacoustic signal was quanti-
fied on sterile catheters incubated only with Cy7-1-maltotriose
(Fig. 5d; P < 0.0248).

In vivo evaluation in S. aureus-infected wound murine model.
In order to mimic a clinically relevant wound infection model, a
bioluminescent strain of S. aureus (Xen 36) was inoculated into a
superficial wound made on the back of the mouse. After con-
firmation of the presence of bacteria through BLI imaging, FLI
and PAI were conducted (Fig. 6, before treatment). Mice were
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then divided into two groups where one was administered sub-
cutaneously a therapeutic dose of vancomycin twice daily
(Treated group, n= 5), while the other group was not treated
with vancomycin (untreated group, n = 4). After 7 days of
antibiotic treatment, Cy7-1-maltotriose was administered and
imaging completed 20 h post-injection. No BLI nor FLI signal and
minimal PAI signal in the wound were observed in the treated
group post-treatment (Fig. 6a, b, Treated group—After). While
the untreated group showed evident BLI, FLI, and PAI signal in
the wound. In addition, a significant decrease in the fluorescence
and photoacoustic signal (4.33 ± 0.96 × 108 vs 1.48 ± 0.15 × 108

radiance efficiency and 0.99 ± 0.09 vs 0.37 ± 0.06 a.u. respectively,
P < 0.0001, n= 4) was observed in the images collected post-
treatment compared to before treatment (Fig. 6c, d).

In a similar animal model, different amounts of the biolumines-
cent Xen 36 strain Staphylococcus aureus (104, 106, or 108 CFU;
n= 3, 3, and 5 respectively) were inoculated subcutaneously in a
small wound formed on the back of the mice. FLI images 18 h post-
injection showed accumulation of Cy7-1-maltotriose in the wound
in all three mice groups where the location of the FLI signal directly
correlated to that of the BLI signal (Fig. 7a). In addition, a
significant increase in the quantified fluorescence signal was
observed with an increase in quantified BLI signal (i.e. increase in
CFU in the wound) (Fig. 7b).

Discussion
After evaluating 18F-labeled analogs of maltose and maltotriose,
our group demonstrated that an 18F-6″-labeled maltotriose
showed the most optimal pharmacokinetic and pharmacody-
namic properties to specifically image bacterial infections36. The
radio-label, in this case, was at the non-reducing end of the
molecule and the addition of 18F did not interfere with its
internalization through the maltodextrin transporter36. While the
PET tracer would have extensive applications in a hospital setting,
an optical imaging approach would have advantages in an out-
patient setting or in the ER for the local evaluation of suspected
sites of infection. PAI has the added advantage of increased depth
penetration, translation into ultrasound-based settings and the
ability to provide valuable real-time anatomical information. We
therefore set out to develop a photoacoustic version of the pre-
viously reported maltotriose imaging agent. Unfortunately, the
ability of the azide-functionalized maltotriose to block 3H-
maltose uptake in E. coli dropped when the azide was functio-
nalized at the 6″ position (Azide-6″-Maltotriose) compared to the
1 position (Azide-1-Maltotriose) (Supplementary Fig. 5). These
results confirm previous reports stating the adverse effects of
functionalization of the non-reducing end of the maltodextrin on
its binding affinity to maltose-binding protein (MBP) which can
severely compromise internalization through the maltodextrin
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transporter38. Ning and co-workers30 previously reported the
development of a fluorescent derivative of maltohexose which was
functionalized at the reducing end and showed promising results
in optical imaging of bacterial infections. However, Axer et al.38

reported that maltotriose could potentially provide a more opti-
mal scaffold in bacterial infection imaging agents compared to
other maltodextrins (e.g. maltohexose). This led us to believe that
a fluorescent derivative of maltotriose can potentially be a
superior bacterial infection imaging agent when functionalized at
the reducing end. Accordingly, we sought to functionalize the dye
at the anomeric side (reducing end) of maltotriose and decided to
also synthesize the maltohexose derivative to properly identify the
optimal scaffold for our bacterial infection imaging agent.

We have established a modified synthetic route that produces
an azide-1-functionalized maltotriose or maltohexose using an
adapted glycosylation procedure37 in two high yielding steps

(Fig. 1). Developing such an intermediate simplifies the functio-
nalization of the maltotriose and maltohexose scaffold to a variety
of signaling agents using copper-free click chemistry or copper
catalyzed azide–alkyne reaction. In this work, Cy7 dye was chosen
due to its great photo and chemical stability and linked to mal-
totriose (n= 1) or maltohexose (n= 4) through azide-DBCO
copper-free click chemistry (Fig. 1).

Following synthesis of the probes, it was essential to assess the
effects of the azide and Cy7 motifs on the ability of maltotriose
and maltohexose to internalize into bacteria. This was assessed
by running a competition assay between the tested derivatives
and 3H-maltose as well as uptake studies (Fig. 2a and b,
respectively). Both probes were taken up in a wide variety of
Gram-positive and Gram-negative bacterial strains (Fig. 2b). The
specificity of the probes for imaging live bacteria that contain the
maltodextrin transporter was demonstrated in uptake studies
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with azide-inactivated E. coli and E. coli mutants that lack
components of the maltodextrin transporter (P < 0.0001, n= 3)
(Fig. 2b, maroon).

Preclinical evaluation of Cy7-1-maltotriose in E. coli-induced
myositis murine model using FLI and PAI was conducted. FLI was
used as the primary tool to assess the specificity and uptake kinetics
of the probe in bacterial infections because it allows whole-mouse
imaging and provides information that can be compared to pre-
vious optical imaging agents for infection. The kinetics of accu-
mulation of the probe were examined and illustrate rapid clearance
of Cy7-1-maltotriose through the kidneys. Notably, specific signal
accumulation at the site of the infected muscle occurred very
rapidly (as early as 1 h), again illustrating the potential utility in
field hospitals where quick decisions need to be made (Fig. 3a, b).
In addition, photoacoustic images were also able to show a sig-
nificant difference between the infected and control muscle
(Fig. 3c, d, Supplementary Fig. 11). We believe PAI will have
several advantages over FLI, as we have discussed in the intro-
duction particularly the enhanced imaging penetration depth.
Another potential advantage lies with the instrumentation rapidly
being developed39,40, and the ease with which these handheld
scanners can be integrated into existing ultrasound systems41.

It was then important to identify the optimum maltodextrin
scaffold to utilize in our bacterial infection imaging agent. A
copious amount of work was conducted to assess the difference
in internalization kinetics, stability, and retention between

maltodextrins in a variety of bacterial strains38,42–48. We con-
ducted a comparison between the maltotriose and maltohexose
analogs of our imaging agent. Fluorescent maltohexose was pre-
viously used by Ning and co-workers30,32 as a fluorescent imaging
agent for bacterial infection and showed specificity to bacterial
infections in rat models. In vitro competitive and uptake studies
looked similar to that of Cy7-1-malotriose (Fig. 2a, b, respec-
tively). A comparison study was then conducted in the E. coli-
induced myositis murine model. These studies demonstrated the
pharmacokinetic advantages of maltotriose over maltohexose
in vivo. As shown in Fig. 4, both Cy7-1-maltotriose and Cy7-1-
maltohexose showed specific uptake in the infected muscle (right
thigh) which is distinguishable from the control muscle (left
thigh) (Fig. 4a, b). Eighteen hours post-injection, Cy7-1-
maltotriose had 2.6-fold higher fluorescence compared to that
of Cy7-1-maltohexose (15.5 ± 5.0 × 109 and 6.02 ± 0.5 × 109

radiance efficiency, respectively; P < 0.0275, n= 6 and 4, respec-
tively). This can be attributed to the faster clearance of the Cy7-1-
maltohexose as compared to Cy7-1-maltotriose from circulation
due to higher hydrophilicity (CLogP=−5.8 vs −12.3 for mal-
totriose and maltohexose, respectively). The in vivo studies match
the observations made in our in vitro influx studies where a much
faster uptake was observed for the maltotriose derivative (Fig. 2c,
P < 0.0001).

Stability studies on both compounds in murine, rat, and
human plasma as well as phosphate-buffered saline (PBS) over
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Statistical analysis was performed using two-way ANOVA. The source data underlying Fig. 5b and d are provided in a Source Data file.
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time showed substantial differences in stability between the
maltotriose and maltohexose derivatives. Specifically, Cy7-1-
maltohexose is shown to rapidly break down into what we
hypothesize to be smaller sugar forms in mere minutes in plasma
(<2% intact by 2 h in rat and murine and around 10% in humans,
Supplementary Fig. 6a, right, Supplementary Fig. 7b). While
around 70% of Cy7-1-maltotriose was intact in murine and rat
after 2 h and no degradation of maltotriose in human plasma was
observed (Supplementary Fig. 6a, left, Supplementary Fig. 7a). In
addition, both maltotriose and maltohexose were stable in PBS
for up to 24 h (Supplementary Figs. 6a and 7, right). These results
directly correlate with previous reports by Axer et al.38. In the PA
imaging study, slightly higher PA intensity in the infected thigh
using Cy7-1-maltotriose (n= 6) was observed compared to Cy7-
1-maltohexose (n= 3) (288.2 vs 264.6 a.u., respectively) yet this
difference was not significant (P= 0.139). But when looking at
the PA intensity ratio of infected over control muscle, a sig-
nificantly higher ratio using the maltotriose derivative vs mal-
tohexose was observed (2.5 vs 2, respectively, P= 0.0353). This
further resembles the data shown in the FLI study and is most
likely due to the lower sensitivity of PA in detecting Cy7 which is
more geared for FLI rather than photoacoustic detection (Sup-
plementary Figs. 8–10).

Evidently, the slower bacterial uptake of the maltohexose
derivative, its faster clearance due to its hydrophilicity, and its

lower plasma stability provide proof that Cy7-1-maltotriose is the
superior bacterial-imaging probe. Further investigation into the
exact mechanism of uptake of the two compounds, their meta-
bolism and their ability to be taken up by metabolically inactive
bacteria is necessary. In addition, there is some evidence in
Enterococcus that maltotriose and maltohexose could be taken up
by different transporters at different rates46. More experiments
are underway such as using CRISPR-based knockouts of indivi-
dual subunits of the two different transport systems to address
this question.

We believe one potential application of Cy7-1-maltotriose is to
detect and monitor the treatment of bacterial infections in sus-
ceptible sites (i.e. wounds, surgical sites, and medical implants). It is
shown that device associated infections account for around 25.6% of
all healthcare-associated infections in the United States6. For
example, it is projected that the total number of knee arthroplasties
(TKA) performed per year in the United States will be around three
million by 2030 (refs. 49,50). One of the leading reasons for TKA
failure is due to periprosthetic joint infection (PJI) which can occur
in 1–2% of the cases. Unfortunately, current PJI diagnostic tools
necessitate sample collection from the prosthetic site and are divi-
ded into culture-based tools (ex. peri-implant tissue culture, syno-
vial culture, and histology)51 and culture-independent tools (ex. Ibis
PLEX-ID technology52, MALDI-TOF mass spectroscopy53, next-
generation sequencing54). The latter tools have not yet been
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Fig. 6 In vivo evaluation of Cy7-1-maltotriose in a S. aureus wound infection murine model. a BLI and FLI images of mice with a wound infected with 106

CFUs of bioluminescent S. aureus 19 h post-injection of Cy7-1-maltotriose without (Untreated Group) and with (Treated Group) treatment with vancomycin

for 7 days and before and after treatment. FLI (bottom-Before) shows accumulation of the probe in the S. aureus located by BLI (top—Before). In the

untreated group (left panel) both BLI and FLI showcases presence of S. aureus infection in the wound after 7 days (Untreated Group—After). While in the

treated group (right panel), complete disappearance of S. aureus infection was observed in the FLI image and confirmed by BLI (Treated Group—After).

b 3D rendered PA image overlaid on US image of a mouse from Untreated (Top row) and Treated (Bottom row) groups before and after treatment. Images

were acquired 20 h post-injection of Cy7-1-maltotriose. Similar to observations in FLI, the Treated group showed lower PA signal post-treatment (bottom

right) than that before treatment (bottom left). c Total in vivo fluorescence signal in wound infected with 106 CFUs of bioluminescent S. aureus 19 h after

tail vein injection of Cy7-1-maltotriose. Significant reduction of FLI signal after treating the mice with vancomycin for 7 days in the treated group (n= 5, P <

0.0001) was observed, while no difference was observed in the untreated group before and after 7 days (n= 4). d Bar plot representation of the quantified

average PA signal intensity in the PA images acquired 20 h after injection of Cy7-1-maltotriose before and after antibiotic treatment. PA quantification data

showed a similar trend to that obtained from FLI images. Bar graphs show mean and S.E.M. Statistical analysis was performed using two-way ANOVA. ns

no statistically significant difference (P > 0.05). The source data underlying Fig. 6c and d are provided in a Source Data file.
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adopted in the clinic due to high cost and lack of sufficient
validation55,56. Thus, a non-invasive tool for PJI diagnostic which
does not rely on sampling from the site will be very valuable and
allow differentiation from inflammation which is often confused
with infections in these situations as they present with similar
symptoms. Since S. aureus is the most prevalent pathogen in
medical device infections and accounts for ~32% of medical device
infections6, we decided to assess S. aureus infections of biomaterials
using PAI and FLI upon incubation with Cy7-1-maltotriose. As
shown in Fig. 5, Cy7-1-maltotriose is able to differentiate infected
from uninfected catheters both using FLI and PAI. This provides
the possibility of using PAI to image implants particularly in the
joints as well as fracture fixtures to screen for infections.

We then evaluated the ability of our imaging platform in
assessing wound infections as well as determining the effective-
ness of antibiotic treatment in vivo. S. aureus is used in this study
since it is the most common cause of SSIs and results in a 5%
increase in mortality8. Antibiotic treatment reduced the bacterial
burden and the probe uptake reflected this decrease and showed
significant differences in signal between treated and untreated
groups in both FLI and PAI (Fig. 6). In addition, both FLI and
PAI were able to distinguish between the treated and untreated
groups (Fig. 6c, d, P= 0.0003 and 0.0134, respectively) illustrating
the utility of this platform in assessing the effectiveness of
treatment.

Further FLI evaluation showed an increase in FLI signal (i.e.
Cy7-1-maltotriose accumulation) with an increase in CFU of S.
aureus in the wound (i.e. increase in BLI signal). Wounds infected
with as low as 104 CFU were detectable by FLI of Cy7-1-
maltotriose and showed a strong correlation with the location of
the BLI signal (Fig. 7a, b). In addition, similar imaging done with
the S. aureus wound model showed that once injected, the probe
remains at the infected wound for up to 144 h post-injection,

which allows serial imaging without having to administer the
probe repeatedly (Supplementary Fig. 14).

In summary, a maltotriose-based infection imaging agent
functionalized with an optical dye at the anomeric carbon using
copper-free click chemistry was developed. In vitro evaluation
showcases the efficacy and specificity of the probe to be taken up
by a variety of metabolically active Gram-positive and Gram-
negative bacteria. In vivo assessments and in vitro stability studies
showed superior performance of the maltotriose-based probe
compared to its maltohexose analog. Molecular fluorescence and
PAI of bacterial infection was demonstrated and showed the
ability to specifically detect bacterial infections in myositis and
wound infection models and on biomaterial. Evaluations in S.
aureus-infected wound model showcased the ability of the probe
to detect and differentiate between wounds infected with different
amounts of CFUs as well as determine the effectiveness of van-
comycin treatment. While the Cy7 dye used in this imaging agent
possesses many great characteristics such as in vivo stability and
optimum pharmacokinetics when bound to maltotriose, this dye
is not approved for clinical use and is more suitable for FLI than
PAI. This could explain the higher sensitivity in detecting this
probe using fluorescence imaging compared to PAI (Supple-
mentary Figs. 8–10). Hence, we are investigating attachment of a
variety of clinically approved dyes as well as dyes more geared for
PAI to further enhance its performance. More specifically, the dye
needs to have great plasma stability, high photostability, low
toxicity and ease of synthesis in a GMP facility. Furthermore,
possessing more red-shifted as well as distinctive absorbance
characteristics from intrinsic signals (such as hemoglobin and
melanin) will further improve imaging depth and signal quanti-
fication, respectively. The substitution of the dye may affect the
distribution of the imaging agent and a thorough in vivo eva-
luation of the new probes will be necessary. In addition, while
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Fig. 7 In vivo evaluation of Cy7-1-maltotriose in a S. aureus wound infection murine model. a FLI and BLI of mice with a wound infected with different

amounts of bioluminescent S. aureus 22 h post-injection of Cy7-1-maltotriose. FLI images (bottom) show accumulation of the probe in the S. aureus in the

same area as indicated by BLI (top). b Total in vivo FLI and BLI signals in wound infected with 104, 106, and 108 CFUs of bioluminescent S. aureus (n= 3, 3,

and 5, respectively) and 22 h after tail vein injection of Cy7-1-maltotriose. Fluorescence quantification was plotted to the left y-axes (red) while BLI signal

plotted to the right y-axes (blue) and showed increase in FLI signal with increase in BLI signal (r= 0.928; r2= 0.8612). Bar graphs show mean and S.E.M.

Statistical analysis was performed using two-way ANOVA. The source data underlying Fig. 7b are provided in a Source Data file.
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whole-body PAI systems in humans do not exist, small-animal
imaging systems have been reported and could provide better
means to evaluate the novel agents in a preclinical setting57,58.
We believe that we have identified the ideal scaffold for an
infection imaging agent and with our established synthetic
scheme, we can quickly synthesize and clinically translate these
new probes.

While PAI is growing to be a promising diagnostic tool, it
still possesses several limitations that are being addressed.
Namely, the limited field of view and imaging depth constricts
its utility in humans to localized imaging (no whole-body
imaging). Similar to ultrasound imaging, this tool is highly
dependent on the operator’s experience and means to automate
this technique will help overcome this issue and allow better
and more accurate reproducibility of the images (e.g. Robotic
handles and software tools to precisely delineate imaging plane
for accurate reproducibility)16. Alternatively, three-dimensional
(3D) volume scanning should also assist in reducing the
dependence of the operator’s experience. Furthermore, several
hurdles related to accurate signal quantification (such as dif-
ferentiating intrinsic signals from imaging agent, reduced
accuracy with increased depth and effects of disease progression
or tissue healing on PA signal intensity) need to be addressed to
conduct molecular PAI of disease16. Such limitations can be
somewhat mitigated by proper choice of the photoacoustic dye
(as mentioned above), choosing the best excitation wavelengths
that can assist in differentiating the signal (e.g. background
subtraction), the use of models for fluence correction16 and
other AI tools which can take into account any PA signal
intensity changes occurring during structural changes caused
by disease progression, inflammation, and healing.

Nevertheless, ultrasound imaging has been widely used to diag-
nose late-stage infections by visualizing the anatomical changes
caused by the spread of infection9. Compact and easily transportable
PAI systems are being produced with state of the art technologies by
many research groups including our own16,41,59–61. This makes us
believe that the translation of PA for infection imaging can be
readily adapted with the pairing of the proper system and imaging
agent16,41,59,60. The development of a maltotriose-based PA agent
accompanied by rapid advances in PAI provides a readily available,
non-invasive, cost-effective, real-time imaging tool that can enable
early detection of bacterial infections during surgery and injury with
high resolution.

Methods
Plasma stability studies. Compound 3a or 3b (100 μM) was incubated in either
PBS (1×), murine, human, or rat plasma at 37 ˚C for up to 24 h. At each time point
(0, 2, 4, 10, and 24 h), a 100 μL aliquot of the mixture was taken and added to an
ice-cold acetonitrile solution (200 μL) and vortexed for 10 s. Samples were then
centrifuged at max speed and the supernatant analyzed on the analytical HPLC
column (HPLC method). Compounds 3a and 3b had a retention time of 15.25 and
14.65 min, respectively. Monitoring was at 750 nm and the area of any observed
peak was assessed in each HPLC chromatogram. Bar plot representation of the
compound stability is shown as %intact (Eq. (1)), where

% intact ¼
peak area of compound 3
P

Areas of all observed peaks
´ 100: ð1Þ

In vitro fluorescence and photoacoustic characterization. Mouse whole blood
was collected through cardiac puncture and stored in 1.5 mL heparin–lithium-
coated tubes (Eppendorf, cat no.: 022379208) on ice and used within 2 h of col-
lection. A serial dilution of Cy7-1-maltotriose was prepared in either PBS (fluor-
escence and PAI) or murine whole blood (PAI). In the IVIS spectrum instrument,
fluorescence images of 50, 25, 10, 1, 0.5, 0 μM solution of Cy7-1-maltotriose in PBS
were collected in a Corning® black clear bottom 96-well plate. While in PAI, the
samples were measured in a Vevo PHANTOM imaging chamber, where the
samples were injected inside the tubes and imaging conducted using the Vevo3100
LAZR imaging system. Similarly, photoacoustic measurements of 100, 50, 25, 10, 1,
and 0 μM solution of Cy7-1-maltotriose in whole blood were collected after the

tubes were flushed with heparin sodium solution (1000 USP/mL, NDC 63739-931-
14) to avoid coagulation of blood inside the tube.

Bacterial cultures. E. coli was obtained from American Type Culture Collections
(ATCC 33456). E. coli mutants JW3992-1 (LamB and MalG deficient), JW3995
(LamB and Mal K deficient), and JW1613 (LamB and Mal X-PTS permease
deficient) were obtained from E. coli Genetic Resources at Yale (Yale University,
New Haven, USA). Bioluminescent strain of Pseudomonas aeruginosa (Xen 5),
Bacillus subtilis, and Staphylococcus aureus (Xen 36) were obtained from
Perkin Elmer.

Overnight culture conditions. E. coli overnight (O/N) culture was prepared by
inoculating a colony in Luria-Bertani (LB) broth (3mL) in an incubator shaker at
37 ˚C. The mutant E. coli strains and Xen 36, the bioluminescent strain of S. aureus,
were grown in LB with 50 μg/mL of Kanamycin. After 16 h, 600 μL of the O/N
culture was added to 30mL of LB in a 200mL flask and placed in an incubator
shaker at 37 ˚C until the bacterial culture reached the log phase (OD600= 0.5).
Metabolically inactive E. coli was prepared by either treating O/N culture (OD600=

0.5) with sodium azide (10mM) and incubating for 1 h in an incubator shaker at
37 °C or by heating the culture to 90 °C for 30min. All cultures were harvested by
centrifugation and pellets washed three times with HBSS (1×) before suspending at
the concentration of interest.

Bacteria competition assay. Aliquots of 108 CFU of E. coli were first incubated
with test compounds (1 mM) for 1 h at 37 °C. After the first incubation, the bac-
teria culture was centrifuged at 9400 × g for 5 min, and the pellet washed with
HBSS (1×) three times. Pellets were then resuspended in a solution of 3H-maltose
(1 μCi in 200 μL HBSS (1×); American Radiolabeled Chemicals, Inc., St. Louis, MO,
USA) and incubated for 30 min at 37 °C. Aliquots were then centrifuged and
washed with HBSS (1×) three times before lysing in a bacterial lysis buffer
(BugBuster, EMD, Billerica MA USA). Activity in bacteria lysates was then counted
in a gamma-counter and protein concentration determined using a bicinchoninic
acid (BCA) assay (Pierce, Thermo Fisher Scientific). Test compounds included
maltose as a positive control, azide-1-maltotriose and Cy7-1-maltotriose. In
addition, aliquots incubated with only 3H-maltose were also included to assess
normal uptake. Results are shown as counts per minute (CPM) normalized to
protein content (μg of protein) per sample (n= 3 per study).

Bacteria uptake studies. Aliquots of 108 CFU of E. coli, E. coli mutants, azide-
inactivated E. coli, Pseudomonas aeruginosa, Bacillus subtilis, and Staphylococcus
aureus (Xen 36) were incubated with the same amount of compound 3a or 3b for
1 h at 37 °C. Aliquots were then centrifuged (9400 × g for 5 min) and washed with
HBSS (1×) three times before lysing in a bacteria lysis buffer (BugBuster for E. coli
and mutants, EMD; B-PER™ Complete Bacterial Protein Extraction Reagent for the
rest of strains, Thermo Scientific™). The fluorescence intensity in bacteria lysates
was measured in a SpectraMax GEMINI EM fluorescent plate reader (Molecular
Devices, San Jose, CA, USA).

In vitro influx studies. Aliquots of 108 CFU of E. coli were incubated with the
same amount of compound 3a or 3b (50 μM) at 37 °C. After each time point (30,
60, 240, and 1080 min), aliquots were then centrifuged (9400 × g for 5 min) and
washed with HBSS (1×) three times before lysing in a bacteria lysis buffer
(BugBuster for E. coli and mutants, EMD; B-PER™ Complete Bacterial Protein
Extraction Reagent for the rest of strains, Thermo Scientific™). The fluorescence
intensity in bacteria lysates was measured in a SpectraMax GEMINI EM fluor-
escent plate reader (Molecular Devices, San Jose, CA, USA).

Animals and infection models. All animal models and in vivo experiments were
approved by the Stanford University Institutional Animal Care and Use
Committee.

E. coli-induced myositis murine model. Female nu/nu mice 6–7 weeks old were
anesthetized by isoflurane inhalation (2–3%). 108 CFU of E. coli in 50 μL of HBSS
was injected intramuscularly into the right thigh muscle of the mice. As a control,
108 CFU of heat-inactivated E. coli or E. coli MalG+LamB mutant in 50 μL of
HBSS (1×) was injected intramuscularly in the left thigh.

Staphylococcus aureus wound infection murine model. Female CD1 or SKH1-
elite mice, 6–8 weeks old were anesthetized by isoflurane inhalation (2–3%). A
small wound on the upper back or lower back for the CD1 or SKH1 mice,
respectively, was formed using a sharp pair of scissors. Staphylococcus aureus in
20 μL saline was inoculated into a small pocket subcutaneously before sealing the
wound with Vetbond adhesive (1469SB; 3M, St. Paul, MN, USA).

Fluorescence imaging in E. coli-induced myositis model. Immediately after
E. coli-induced murine myositis (n= 3), Cy7-1-maltotriose (5 nmol in 2% DMSO/
saline, 100 μL) was injected via the tail vein. Fluorescence images were captured at
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1, 3, 5, and 20 h post-injection of Cy7-1-maltotriose. The fluorescence intensity in
the right thigh muscle (E. coli) and left thigh muscle (heat-inactivated E. coli) were
then quantified and analyzed.

PAI in E. coli-induced myositis model. Upon inducing myositis by intramuscular
injection of 108 CFU of E. coli in the right thigh muscle of nu/nu mice, mice were
anesthetized and fixed in the prone position for PAI. PA and US images were then
collected using a Vevo2100 LAZR imaging system (Vevo®LAZR, VisualSonics, Inc.,
Canada) with PA-mode and Ultrasound B-mode, respectively. The PA system was
connected to an LZ-250 transducer that delivered the nanosecond laser pulses with
a wavelength of 700 nm. A cross-sectional two-dimensional (2D) and 3D images of
the right and left thigh muscle were acquired, and 3D rendered images presented as
colored photoacoustic layer overlaid on top of the ultrasound images were pro-
duced using VevoLAB software (VisualSonics, Inc., Canada). Using MATLAB, the
total PA signal intensity of the 3D volume was produced and quantified using Fiji
software and presented as a.u. PA and US images were collected before (n= 5) and
24 h after (n= 4) tail vein injection of Cy7-1-maltotriose (5 nmol in 2% DMSO/
saline, 100 μL injection).

Fluorescence imaging comparison between compounds 3a and 3b. Immedi-
ately after E. coli-induced murine myositis, Cy7-1-maltotriose (compound 3a, n=
6) or Cy7-1-maltohexose (compound 3b, n= 4) (5 nmol in 2% DMSO/saline,
100 μL injection) were injected via the tail vein. Fluorescence images were captured
at 2, 4, and 18 h post-injection of the probes. The fluorescence intensity in the right
thigh muscle (E. coli) and left thigh muscle (control) were quantified and data
analyzed. The data are presented as the ratio of fluorescence intensity in the right
thigh muscle (infected) vs left thigh muscle (control).

PAI comparison between compounds 3a and 3b. After FLI, PA, and US images
were collected post-injection of either 3a (n= 6) or 3b (n= 3) using a Vevo2100
LAZR imaging system (Vevo®LAZR, VisualSonics, Inc., Canada) with PA-mode
and Ultrasound B-mode, respectively. The PA system was connected to an LZ-
250 transducer that delivered the nanosecond laser pulses with a wavelength of
700 nm. A cross-sectional 2D and 3D images of the right and left thigh muscle
were acquired, and 3D rendered images presented as colored photoacoustic layer
overlaid on top of the ultrasound images were produced using VevoLAB soft-
ware (VisualSonics, Inc., Canada). Using MATLAB, the total PA signal intensity
of the 3D volume was produced and quantified using Fiji software and presented
as a.u.

In vivo specificity study to maltodextrin transporter. Myositis in mouse was
induced by injecting 108 CFU of E. coli and 108 CFU of E. coli MalG+LamB
mutant in the right and left thigh, respectively (n= 5). Cy7-1-maltotriose (10 nmol
in 2% DMSO/Saline, 200 μL injection) was then injected via the tail vein. Fluor-
escence images were acquired 3 and 20 h post-injection. After imaging, mice were
sacrificed, both right and left thigh muscle collected, and ex vivo fluorescence
images acquired.

In vitro imaging of S. aureus-infected biomaterial. Sterile catheters were col-
lected from a BD Insyte™ Autoguard™ BC Shielded IV Catheter (ref: 382544, BD,
Franklin Lakes, NJ, USA) and placed in a 106 CFU of S. aureus per mL solution in
an incubator shaker at 37 °C for 2 h. Catheters were then placed in a Cy7-1-
maltotriose solution (50 nmol/mL) and incubated for 37 °C for 1 h before washing
by gently dipping in PBS (1×) solution. As a control, sterile catheters that were not
exposed to infection or infected catheters that were not incubated with the probe
were assessed. BLI and fluorescence images of the catheters were then collected and
analyzed. In addition, the catheters were placed inside a 4% agarose phantom and
axial ultrasound and photoacoustic images collected using a Vevo2100 LAZR
imaging system (Vevo®LAZR, VisualSonics, Inc., Toronto, Canada) and irradiation
at 700 nm. PA and US images were analyzed using VevoLAB software (Visual-
Sonics, Inc., Toronto, Canada).

Fluorescence and bioluminescence imaging of treatment study. 106 CFU (n=
9) of kanamycin-resistant S. aureus were inoculated subcutaneously in the wound
in SKH1-elite mice. Mice were then administered kanamycin (800 mg/kg) intra-
muscularly once daily to ensure no other bacterial infections occur. Two days post-
surgery, Cy7-1-maltotriose (10 nmol in 2% DMSO/saline, 200 μL injection) was
injected via the tail vein and bioluminescence and fluorescence imaging were
performed at 19, 45, 69, 93, and 144 h post-injection. Following imaging at 19 h,
the mice were divided into untreated (n= 4) and treated (n= 5) groups where the
first group only received kanamycin and the latter was administered vancomycin
(110 mg/kg) subcutaneously twice daily in addition to kanamycin. After 7 days of
antibiotic treatment, mice were injected again with Cy7-1-maltotriose (10 nmol in
2% DMSO/saline, 200 μL injection) and bioluminescence and fluorescence imaging
performed 24 h post-injection.

PAI of treatment study. Twenty and 25 h post-injection of Cy7-1-maltotriose
(before and after treatment respectively), mice were anesthetized and fixed in the

prone position for PAI. PA and US images were then collected using a Vevo3100
LAZR imaging system (Vevo®LAZR, VisualSonics, Inc., Canada) with PA-mode
and B-mode, respectively. The PA system connected to an MX-250 transducer
that delivered the nanosecond laser pulses with a wavelength of 700 nm. A cross-
sectional 2D and 3D images of the right and left thigh muscle were acquired, and
3D rendered images presented as colored photoacoustic layer overlaid on top of
the ultrasound images were produced using VevoLAB software (VisualSonics,
Inc., Canada). The whole region of the wound was highlighted using VevoLAB
software and average PA signal intensity quantified and presented as a.u.

Bacterial burden differentiation. 108 CFU (n= 5), 106 CFU (n= 3), and 104 CFU
(n= 3) of S. aureus were inoculated subcutaneously in the wound in CD1 mice.
Cy7-1-maltotriose (5 nmol in 2% DMSO/saline, 100 μL injection) was then injected
via the tail vein. To ensure no other infections occur, a daily dose of kanamycin
(800 mg/kg) was given to the mice intramuscularly. Fluorescence and biolumi-
nescence images were then captured at 5 and 20 h post-injection of the probe.
Image analysis was conducted using Living Image® software.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Data supporting the findings of this work are available within the paper and its
Supplementary Information files. A reporting summary for this article is available as a
Supplementary Information file. The datasets generated and analyzed in the current
study are available from the corresponding author on request. The source data
underlying Figs. 2a–c, 3b, d, 4b, d, 5b, d, 6c, d, and 7b are provided as a Source Data file.

Code availability
The codes that support the findings of this study are available from https://github.com/
idanstei/Maltotriose-based-probes-for-fluorescence-and-photoacoustic-imaging-of-
bacterial-infections.
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