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Abstract 
One of the major and serious threats on the Internet today is malicious software, often referred to 
as a malware. The malwares being designed by attackers are polymorphic and metamorphic 
which have the ability to change their code as they propagate. Moreover, the diversity and volume 
of their variants severely undermine the effectiveness of traditional defenses which typically use 
signature based techniques and are unable to detect the previously unknown malicious execu-
tables. The variants of malware families share typical behavioral patterns reflecting their origin 
and purpose. The behavioral patterns obtained either statically or dynamically can be exploited to 
detect and classify unknown malwares into their known families using machine learning tech-
niques. This survey paper provides an overview of techniques for analyzing and classifying the 
malwares. 
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1. Introduction 
Software that “deliberately fulfills the harmful intent of an attacker” is referred to as malicious software or mal-
ware [1]. These are intended to gain access to computer systems and network resources, disturb computer opera-
tions, and gather personal information without taking the consent of system’s owner, thus creating a menace to 
the availability of the internet, integrity of its hosts, and the privacy of its users. Malwares come in wide range of 
variations like Virus, Worm, Trojan-horse, Rootkit, Backdoor, Botnet, Spyware, Adware etc. These classes of 
malwares are not mutually exclusive meaning thereby that a particular malware may reveal the characteristics of 
multiple classes at the same time. 

Malware is one of the most terrible and major security threats facing the Internet today. According to a survey, 
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[2] conducted by FireEye in June 2013, 47% of the organizations experienced malware security incidents/net- 
work breaches in the past one year. The malwares are continuously growing in volume (growing threat land-
scape), variety (innovative malicious methods) and velocity (fluidity of threats) [3]. These are evolving, becom-
ing more sophisticated and using new ways to target computers and mobile devices. McAfee [4] catalogs over 
100,000 new malware samples every day means about 69 new threats every minute or about one threat per sec-
ond. With the increase in readily available and sophisticated tools, the new generation cyber threats/attacks are 
becoming more targeted, persistent and unknown. Figure 1 depicts the comparison of traditional and advanced 
malwares. The advanced malwares are targeted, unknown, stealthy, personalized and zero day as compared to 
the traditional malwares which were broad, known, open and one time. Once inside, they hide, replicate and 
disable host protections. After getting installed, they call their command and control servers for further instruc-
tions, which could be to steal data, infect other machines, and allow reconnaissance [5]. 

Attackers exploit vulnerabilities in web services, browsers and operating systems, or use social engineering 
techniques to make users run the malicious code in order to spread malwares. Malware authors use obfuscation 
techniques [6] like dead code insertion, register reassignment, subroutine reordering, instruction substitution, 
code transposition, and code integration to evade detection by traditional defenses like firewalls, antivirus and 
gateways which typically use signature based techniques and are unable to detect the previously unseen mali-
cious executables. Commercial antivirus vendors are not able to offer immediate protection for zero day mal- 
wares as they need to analyze these to create their signatures. 

To overcome the limitation of signature based methods, malware analysis techniques are being followed, 
which can be either static or dynamic. The malware analysis techniques help the analysts to understand the risks 
and intensions associated with a malicious code sample. The insight so obtained can be used to react to new 
trends in malware development or take preventive measures to cope with the threats coming in future. Features 
derived from analysis of malware can be used to group unknown malwares and classify them into their existing 
families. This paper presents a review of techniques/approaches for analyzing and classifying the malware ex-
ecutables. 

2. Malware Analysis 
Before creating the signatures for newly arrived malwares, these are required to be analyzed so as to understand 
the associated risks and intensions. The malicious program and its capabilities can be observed either by examin-
ing its code or by executing it in a safe environment.  

2.1. Static Analysis 
Analyzing malicious software without executing it is called static analysis. The detection patterns used in 
static analysis include string signature, byte-sequence n-grams, syntactic library call, control flow graph and 
opcode (operational code) frequency distribution etc. The executable has to be unpacked and decrypted be- 
fore doing static analysis. The disassembler/debugger and memory dumper tools can be used to reverse com- 
 

 
                           Figure 1. Traditional vs. advanced malwares.          
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pile windows executables. Disassemble/Debugger tools like IDA Pro [7] and OllyDbg [8] displays the mal-
ware’s code as Intel ×86 assembly instructions, which provide a lot of insight into what the malware is doing 
and provide patterns to identify the attackers. Memory dumper tools like LordPE [9] and OllyDump [10] are 
used to obtain protected code located in the system’s memory and dump it to a file. This is a useful tech-
nique to analyze packed executables which are difficult to disassemble. 

Binary obfuscation techniques, which transform the malware binaries into self compressed and uniquely 
structured binary files, are designed to resist reverse engineering and thus make the static analysis very ex-
pensive and unreliable. Moreover, when utilizing binary executables (obtained by compiling source code) 
for static analysis, the information like size of data structures or variables gets lost thereby complicating the 
malware code analysis [11]. The evolving evasion techniques being used by malware writers to thwart static 
analysis led to the development of dynamic analysis. Moser et al. [12], explored the drawbacks of static 
analysis methodology. In their work, they introduced a scheme based on code obfuscation revealing the fact 
that the static analysis alone is not enough to detect or classify malwares. Further, they proposed that dy-
namic analysis is a necessary complement to static analysis as it is less vulnerable to code obfuscation con-
version. 

2.2. Dynamic Analysis 
Analyzing the behavior of a malicious code (interaction with the system) while it is being executed in a con-
trolled environment (virtual machine, simulator, emulator, sandbox etc.) is called dynamic analysis. Before ex-
ecuting the malware sample, the appropriate monitoring tools like Process Monitor [13] and Capture BAT [14] 
(for file system and registry monitoring), Process Explorer [15] and Process Hackerreplace [16] (for process 
monitoring), Wireshark [17] (for network monitoring) and Regshot [18] (for system change detection) are in-
stalled and activated.  

Various techniques that can be applied to perform dynamic analysis include function call monitoring, function 
parameter analysis, information flow tracking, instruction traces and autostart extensibility points etc. [11]. Dy-
namic analysis is more effective as compared to static analysis and does not require the executable to be disas-
sembled. It discloses the malwares’ natural behavior which is more resilient to static analysis. However, it is 
time intensive and resource consuming, thus elevating the scalability issues. The virtual environment in which 
malwares are executed is different from the real one and the malwares may perform in different ways resulting 
in artificial behavior rather than the exact one. In addition to this, sometimes the malware behavior is triggered 
only under certain conditions (on specific system date or via a specific command) and can’t be detected in vir-
tual environment. Several online automated tools exist for dynamic analysis of malwares, e.g. Norman Sandbox 
[19], CWSandbox [20], Anubis [21] and TTAnalyzer [22], Ether [23] and ThreatExpert [24]. The analysis re-
ports generated by these tools give in-depth understanding of the malware behavior and valuable insight into the 
actions performed by them. The analysis system is required to have an appropriate representation for malwares, 
which are then used for classification either based on similarity measure or feature vectors.  

However a large number of new malware samples arriving at anti-virus vendors every day requires an auto-
mated approach so as to limit the number of samples that require close human analysis. Several Artificial Intel-
ligence techniques, particularly machine-learning based techniques have been used in the literature for auto-
mated malware analysis and classification.  

3. Machine Learning for Detecting and Classifying Malwares 
Various machine learning approaches like Association Rule, Support Vector Machine, Decision Tree, Random 
Forest, Naive Bayes and Clustering have been proposed for detecting and classifying unknown samples into ei-
ther known malware families or underline those samples that exhibit unseen behavior, for detailed analysis. A 
few of these used in the literature are discussed in this section. 

Schultz et al. [25] were the first to introduce the concept of data mining for detecting malwares. They used 
three different static features for malware classification: Portable Executable (PE), strings and byte sequences. 
In the PE approach, the features (like list of DLLs used by the binary, the list of DLL function calls, and number 
of different system calls used within each DLL) are extracted from DLL information inside PE files. Strings are 
extracted from the executables based on the text strings that are encoded in program files. The byte sequence 
approach uses sequences of n bytes extracted from an executable file. They used a data set consisted of 4266 
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files including 3265 malicious and 1001 benign programs. A rule induction algorithm called Ripper [26] was 
applied to find patterns in the DLL data. A learning algorithm Naive Bayes was used to find patterns in the 
string data and n-grams of byte sequences were used as input data for the Multinomial Naive Bayes algorithm. 
The Naive Bayes algorithm, taking strings as input data, gives the highest classification accuracy of 97.11%. 
The authors claimed that the rate of detection of malwares using data mining method is twice as compared to 
signature based method. 

Later on their results were improved by Kolter et al. [27]. They used n-gram (instead of non-overlapping byte 
sequence) and data mining method to detect malicious executables. They used different classifiers including 
Naive-Bayes, Support Vector Machine, Decision Tree and their boosted versions. They concluded that boosted 
decision tree gives the best classification results. 

Nataraj et al. [28] proposed a method for visualizing and classifying malwares using image processing tech-
niques, which visualize malware binaries as gray-scale images. A K-nearest neighbor technique with Euclidean 
distance method is used for malware classification. Though it is very fast method as compared to other malware 
analysis methods, the limitation is that an attacker can adopt countermeasures to beat the system because this 
method uses global image based features. For example, an attacker could relocate sections in a binary or add 
vast amount of redundant data. In [29], the authors compared binary texture based analysis (based on image 
processing technique) with that of dynamic analysis. They found that classification using this method is faster, 
scalable and is comparable to dynamic analysis in terms of accuracy. They also found that this approach can ro-
bustly classify large number of malwares with both packed and unpacked samples. The limitation is that this 
method is vulnerable to knowledgeable adversaries who can obfuscate their malicious code to defeat texture 
analysis.  

Kong et al. [30] presented a framework for automated malware classification based on structural information 
(function call graph) of malwares. After extracting the fine grained features based on function call graph for 
each malware sample, the similarity is evaluated for two malware programs by applying discriminate distance 
metric learning which clusters the malware samples belonging to same family while keeping the different clus-
ters separate by a marginal distance. The authors then used an ensemble of classifiers that learn from pair wise 
malware distances to classify malwares into their respective families. 

Tian et al. [31] used function length frequency to classify Trojans. Function length is measured by the number 
of bytes in the code. Their results indicate that the function length along with its frequency is significant in iden-
tifying malware family and can be combined with other features for fast and scalable malware classification. 
Further they noted that usually an obfuscated file does not have any string consisting of words or sentences and 
thus used printable string information contained within the executables [32]. They used machine learning algo-
rithms available in WEKA [33] library for classifying malwares. 

Santos et al. [34] pointed out that supervised learning requires a significant amount of labeled executables for 
both classes (malicious as well as benign datasets) and proposed a semi-supervised learning approach for de-
tecting unknown malwares. It is designed to build a machine learning classifier using a lot of labeled and unla-
belled instances. A semi-supervised algorithm LLGC (Learning with Local and Global Consistency) is used, 
which is able to learn from labeled and unlabelled data and provides a solution with respect to the intrinsic 
structure displayed by both labeled and unlabelled instances. Executables are represented by using n-gram dis-
tribution technique. They also determine and evaluate the optimal number of labeled instances and effect of this 
parameter on the accuracy of the model. The main contribution of this research is to reduce the number of re-
quired labeled instances while maintaining high precision. The limitation is that the previous supervised learning 
approaches presented in [27] and [35] obtain better results (above 90% of accuracy) than the presented semi- 
supervised approach. Further in [36], the authors proposed a collective learning approach to detect unknown 
malwares. It is a type of semi-supervised learning that presents the method for optimizing the classification of 
partially-labeled data. Collective classification algorithms are used to build different machine learning classifiers 
using a set of labeled and unlabelled instances. It is validated that the labeling efforts are lower than when su-
pervised learning is used while maintaining the high accuracy rate. 

Siddiqui et al. [37] used variable length instruction sequence along with machine learning for detecting 
worms in the wild. Before disassembling the files, they detect compilers, packers. Sequence reduction was done 
and decision tree and random forest machine learning models were used for classification. They tested their me-
thod on a data set of 2774 including 1444 worms and 1330 benign files. 

Many researchers now prefer to work on dynamic techniques so as to improve the accuracy and effectiveness 
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of malware classification.  
Zolkipli et al. [38] presented an approach for malware behavior analysis. They used HoneyClients and Amun 

as security tools to collect malwares. Behaviors of these malwares are identified by executing every sample on 
both CWSandbox [20] and Anubis [21] on virtual machine platform. The results generated by both of these 
analyzers are customized using human based behavior analysis. Then the malwares are grouped into malware 
families Worms and Trojans. The limitation of this work is that customization using human analysis is not poss-
ible for today’s real time traffic which is voluminous and having a variety of threats. 

Rieck et al. [39] proposed a framework for automatic analysis of malware behavior using machine learning. 
This framework collected large number of malware samples and monitored their behavior using a sandbox en-
vironment. By embedding the observed behavior in a vector space, they apply the learning algorithms. Cluster-
ing is used to identify the novel classes of malware with similar behavior. Assigning unknown malware to these 
discovered classes is done by classification. Based on both, clustering and classification, an incremental ap-
proach is used for behavior-based analysis, capable of processing the behavior of thousands of malware binaries 
on daily basis. 

Anderson et al. [40] presented a malware detection algorithm based on the analysis of graphs constructed 
from dynamically collected instruction traces. A modified version of Ether malware analysis framework [23] is 
used to collect data. The method uses 2-grams to condition the transition probabilities of a markov chain (treated 
as a graph). Machinery of graph kernels is used to construct a similarity matrix between instances in the training 
set. Kernel matrix is constructed by using two distinct measures of similarity: a Gaussian kernel, which meas-
ures local similarity between the graph edges and a spectral kernel which measures global similarity between the 
graphs. From the kernel matrix, a support vector machine is trained to classify the test data. The performance of 
multiple kernel learning method used in this work is demonstrated by discriminating different instances of mal-
ware and benign software. Limitation of this approach is that the computation complexity is very high, thus li-
miting its use in real world setting. 

Bayer et al. [41] proposed a system that clusters large sets of malicious binaries based on their behavior effec-
tively and automatically. The proposed technique relies on Anubis [21] to generate execution traces of all the 
samples. Anubis was extended in this work with taint-propagation capabilities, to make use of additional infor-
mation sources. After creating the extraction traces along with taint information, a behavioral profile is extracted 
for each trace, which serves as input to the clustering algorithm. The clustering algorithm used is based on Lo-
cality Sensitive Hashing (LSH), [42] which is a sub linear (efficient) approach to the approximate nearest 
neighbor problem. LSH can be used to perform an approximate clustering while computing only a small fraction 
of the n2/2 distances between pairs of points. The authors demonstrate the scalability of their approach by clus-
tering a set of 75,000 malware samples in three hours. 

In [43], Tian et al. used an automated tool for extracting API call sequences from executables while these are 
running in a virtual environment. They used the classifiers available in WEKA library [33] to discriminate mal-
ware files from clean files as well as for classifying malwares into their families. They used a data set of 1368 
malwares and 456 cleawares to demonstrate their work and achieved an accuracy of over 97%. 

Biley et al. [44] pointed out that the antivirus (AV) products characterize the malwares in ways that are not 
consistent across various AV products, not complete across malwares and are not concise in their semantics. 
They developed a classification technique that describes malwares’ behavior in terms of system state changes. 
Binaries are executed in virtualized environment with windows XP installed. The virtual machine is partially 
firewalled to limit the impact of any immediate attack behavior during the execution period. A behavioral fin-
gerprint of malware’s activity is created which includes files written, processes created and network connection 
etc. A pair wise single linkage hierarchical clustering of the fingerprints using normalized compression distance 
(NCD) as a distance metric is used to cluster the malwares. The technique is applied to the automated classifica-
tion and analysis of 3700 malware samples collected over a period of six months. They also measure and com-
pare the consistency, completeness and conciseness of the clusters with that of AV products. The limitation of 
this work is that the capability and environment of the virtualized system is static throughout the experiments for 
consistency. 

Park et al. [45] proposed a malware classification method which is based on maximal component subgraph 
detection. After executing the malware samples in sandboxed environment, system calls along with parameter 
values of these calls are captured and a directed graph is generated from these system call traces. The maximal 
common subgraph is computed to compare two programs. The drawback of this method is that there are some 
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known malware samples that manage to gain kernel-mode privileges without making use of system call interface 
and can evade the analysis method. 

Firdausi et al. [46] presented a proof of concept of a malware detection method. Firstly the behavior of mal-
ware samples is analyzed in sandbox environment using Anubis [21]. The reports generated are preprocessed 
into sparse vector models for classification using machine learning. The performance comparison of 5 different 
classifiers i.e. k-Nearest Neighbors (kNN), Naive Bayes, J48 Decision Tree, Support Vector Machine (SVM), 
and Multilayer Perceptron Neural Network (MLP) is done on a small data set of 220 malicious samples and 250 
benign samples with and without feature selection. The obtained results depicted that overall best performance is 
achieved by J48 decision tree with a recall of 95.9%, a false positive rate of 2.4%, a precision of 97.3%, and an 
accuracy of 96.8%. 

Nari et al. [47] presented a framework for automated malware classification into their respective families 
based on network behavior. Network traces are taken as input to the framework in the form of pcap files, from 
which the network flows are extracted. Then a behavior graph is created to represent the network activities of 
malwares and dependencies between network flows. From these behavior graphs, the features like graph size, 
root out-degree, average out-degree, maximum out-degree, number of specific nodes are extracted. These fea-
tures are then used to classify malwares using classification algorithms available in WEKA library [33] and it is 
concluded that J48 decision tree performs better than other classifiers.  

Lee et al. [48] proposed a method that clusters the malicious programs by using machine learning method. All 
the samples of data set are executed in a virtual environment and system calls along with their arguments are 
monitored. A behavioral profile is created on the basis of information recorded regarding sample’s interaction 
with system resources like registry keys, writing files and network activities. The similarity between two profiles 
is calculated and then by applying k-medoids, different samples are grouped into different clusters. After com-
pleting the training process, the new and unknown samples are assigned to the cluster having medoid closer to 
the sample i.e. nearest neighbor. 

It is clear that a single view either static or dynamic is not sufficient for efficiently and accurately classifying 
malicious programs because of the obfuscation and execution-stalling techniques. So, researches have adapted a 
hybrid technique which incorporates both static and dynamic features simultaneously for better malware detec-
tion and classification.  

Santos et al. [49] proposed a hybrid unknown malware detector called OPEM, which utilizes a set of features 
obtained from both static and dynamic analysis of malicious code. The static features are obtained by modeling 
an executable as a sequence of operational codes and dynamic features are obtained by monitoring system calls, 
operations and raised exceptions. The approach is then validated over two different data sets by considering dif-
ferent learning algorithms for classifiers Decision Tree, K-nearest neighbor, Bayesian network, and Support 
Vector Machine and it has been found that this hybrid approach enhances the performance of both approaches 
when run separately. 

A similar work is done by Islam et al. [50] to classify the executables into malicious and benign files using 
both static and dynamic features. The static features used in this work include function length frequency and 
printable sting information and dynamic features used are API function names and API parameters. The experi-
ment was conducted using 2939 executable files including 541 clean files separately for every feature i.e. func-
tion length frequency, printable string information and API function calls and then for integrated method for 
meta classifiers SVM, IB1, DT and RF. The obtained results showed that all meta-classifiers achieve highest 
accuracy for integrated features and meta-RF is the best performer for all cases. The authors also compared their 
integrated method accuracy with those of the existing ones and found that their approach is showing the best re-
sults. 

Anderson et al. [51] proposed a method, in which multiple data sources (the static binary, the disassembled 
binary file, its control flow graph, a dynamic instruction trace & system call trace, and a file information feature 
vector) are used. For the binary file, disassembled file, and two dynamic traces, kernels based on the Markov 
chain graphs are used. For the control flow graph, a graphlet kernel is used and for the file information feature 
vector, a standard Gaussian kernel is used. Then multiple kernel learning is employed to find a weighted com- 
bination of the data sources and support vector machine classifier is used to classify the dataset into malicious 
and benign. It is tested on a dataset of 780 malware and 776 benign instances giving an accuracy of 98.07%. 

Data mining and machine learning techniques are being used since long for detecting and classifying mal-
wares. Today internet traffic generates a huge data sets (ranging to peta-scales) for daily monitoring and pattern 
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Table 1. A summary of publications pertaining to malware analysis and classification.                                 

Malware analysis technique References 

Static [25] [27] [28] [30] [31] [32] [34] [35] [37] 

Dynamic [38] [39] [40] [41] [43] [44] [45] [46] [47] [48] 

Hybrid [49] [50] [51] 

 
profiling in cyber security models and requires scalable, fast and flexible machine learning techniques. A huge 
amount of network data is streaming continuously and dynamically in cyber infrastructure which challenges 
machine learning modeling and requires new principles, methodologies and algorithms for transforming raw da-
ta into the useful information. 

4. Conclusion 
Advanced malwares are posing a severe threat to the internet and computer systems. Signature-based antivirus 
products are able to detect only those malwares that has already caused damage and are registered. Ever evolv-
ing techniques used by malicious softwares to thwart static analysis directed to the development of dynamic 
analysis which executes the malware sample under controlled environment and monitors its behavior. The re-
ports generated by dynamic analysis can be compiled into behavioral profiles that can be clustered to combine 
samples with similar behavior into coherent families. The disadvantage of dynamic analysis is that it is time and 
resource intensive. To counter the trade-off between analysis speed and detecting obfuscated malwares, re-
searches have adapted a technique incorporating a combination of static and dynamic features for detecting and 
classifying malwares. This paper highlights the existing techniques for analyzing, detecting and classifying 
malwares. Table 1 gives the list of publications categorized according to malware analysis techniques. The ma-
chine-learning technologies that are being used in detecting and classifying malwares are not adequate to handle 
challenges arising from the huge amount of dynamic and severely imbalanced network data. These should be 
transformed so that their potential can be leveraged to address the challenges posed in cyber security. 
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