
Received June 9, 2019, accepted July 6, 2019, date of publication July 9, 2019, date of current version July 25, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2927552

Malware Classification Using Probability
Scoring and Machine Learning

DI XUE , JINGMEI LI , TU LV, WEIFEI WU, AND JIAXIANG WANG
College of Computer Science and Technology, Harbin Engineering University, Harbin 150001, China

Corresponding author: Jingmei Li (lijingmei@hrbeu.edu.cn)

This work was supported by the National Key Research and Development Plan of China under Grant 2016YFB0801004.

ABSTRACT Malware classification plays an important role in tracing the attack sources of computer

security. However, existing static analysis methods are fast in classification, but they are inefficient in

some malware using packing and obfuscation techniques; the dynamic analysis methods have better

universality for packing and obfuscation, but they will cause excessive classification cost. To overcome

these shortcomings, in this paper, we propose a classification system Malscore based on the probability

scoring and machine learning, which sets the probability threshold to concatenate static analysis (called

Phase 1) and dynamic analysis (called Phase 2). The convolutional neural networks with spatial pyramid

pooling were used to analyze the grayscale images (static features) in Phase 1, and the variable n-grams

and machine learning were used to analyze the native API call sequences (dynamic features) in Phase 2.

Malscore combined static analysis with dynamic analysis not only accelerated the static analysis process by

taking advantage of the CNN in image recognition but also appeared to bemore resilient to obfuscation by the

dynamic analysis. Different from other static and dynamic analysis techniques, when malware is detected,

due to the fact that malware will most likely be labeled only by static analysis, we could reduce the overheads

by dynamically analyzing a fewmalware that has less obvious features or greater confusion in static analysis.

We performed experiments on 174 607 malware samples from 63 malware families. The result showed that

Malscore achieved 98.82% accuracy for malware classification. Furthermore, Malscore was compared with

the method of using static and dynamic analysis. The preprocessing and test time represented a reduction

of 59.58% and 61.70%, respectively.

INDEX TERMS Grayscale image, native API call, malware, machine learning, probability scoring, static

and dynamic analysis.

I. INTRODUCTION

The emergence of various automated tools has shown that

the speed with which malware mutates on the Internet is

far faster than people realized. Kaspersky Labs detected

15,714,700 malicious objects in 2017 [1], while the number

of malicious files detected by McAfee Labs increased to

79 million per day in 2018 Q1 (Q1 means the first quar-

tal), up from 45 million in 2017 Q4 (Q4 means the fourth

quartal) [2]. Although the speed with which malware mutates

on the Internet is getting faster and faster, most unknown

malware is derived from known malware. Therefore, finding

the homology among samples plays an important role in

tracing attack sources, restoring operating environments, and

preventing attacks.

The associate editor coordinating the review of this manuscript and
approving it for publication was Minho Jo.

Most malware can be classified by analyzing static fea-

tures, but the proliferation of the packing and obfuscation

techniques easily facilitates the creation of malware with

consistent behavior and inconsistent static features. Dynamic

analysis is required for such malware. Although dynamic

analysis is very effective in behavioral analysis, it also means

more cost than static analysis [3]. Thus, it is necessary to find

an effective combination scheme to solve these problems.

That is, static analysis can be used to classify most malware,

and dynamic analysis can be fully utilized to analyze the

behavior of the malware.

In this work, we propose a malware classification sys-

tem Malscore based on probability scoring and machine

learning. We first generate grayscale images from raw mal-

ware as static features and extract native API call sequences

by executing malware in the sandbox as dynamic fea-

tures. Grayscale images can reflect the overall outline and

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 91641

https://orcid.org/0000-0002-6430-5466
https://orcid.org/0000-0002-7246-3093

D. Xue et al.: Malware Classification Using Probability Scoring and Machine Learning

static structure of malware, and have been demonstrated

to be an effective static feature [4]. API call sequences

with rich semantics and not easily changed with obfus-

cation techniques are the most commonly used dynamic

features for mining malware behavior. Then, we train the

classifier S and the classifier D using grayscale images

and native API call sequences, respectively. The classifier

S is based on Convolutional Neural Networks (CNNs) with

Spatial Pyramid Pooling (SPP) [5], and the classifier D

is based on variable n−grams(n = 2, 3, 4) and machine

learning.

To concatenate the classifier S and the classifier D, this

paper proposes a kind of probability scoring with probability

threshold (PT). We set the output of the softmax layer in

the classifier S as the probability value vector, and judge

the credibility of the classification result by comparing the

probability value vector of each malware sample with PT.

The classifier D will further analyze malware with lower

credibility. Malscore mainly utilizes the detection speed and

low cost of static analysis, and the better robustness of

dynamic analysis for packed/obfuscated malware. Packing/

obfuscation malware will get a probability value vector after

it is analyzed by the classifier S. Such malware is dispersed

and will not be absolutely similar to any family. But such

malware can easily be filtered out and entered into classi-

fier D. In this way, Malscore improves the robustness for

packed/obfuscatedmalware, and thus improves the classifica-

tion accuracy. Because of the high-cost of dynamic analysis,

if all malware samples are input into classifier D, this will

greatly increase the detection cost.We use probability scoring

to filter out most malware that get reliable classification

results in classifier S, and only input unreliable malware

into classifier D. Through this method, the execution times

of dynamic analysis is reduced, and the detection cost of

Malscore is reduced.

The contributions of this paper are four-fold:

1) We take grayscale images as static features and classify

malware using CNN with SPP layer. Thus, Malscore

can reduce the information loss of malware caused by

the image preprocessing.

2) We use variable n-grams as dynamic features and apply

DF.IDF to select meaningful features. Thus, Malscore

can support association between features so that the

semantic information in the malware is retained as

much as possible.

3) We propose a probability scoring to concatenate

static analysis and dynamic analysis, which can

improve the classification accuracy of Malscore and

reduce the classification cost of dynamic analysis in

Malscore.

4) We perform a series of evaluation experiments for

Malscore on a real and large malware data set. The

results show that Malscore has higher accuracy and

lower classification cost.

The remainder of the paper is organized as fol-

lows. Section II surveys the key research content of the

related work. Section III describes the system framework

of Malscore. Sections IV and V explain the process that

grayscale images are analyzed by using CNN with SPP, and

native API call sequences are analyzed by using variable

n-grams and machine learning. The experimental and results

are presented in Section VI. Section VII describes the lim-

itations of our paper. Finally, Section VIII summarizes this

paper and proposes future work.

II. RELATED WORK

A. MALWARE CLASSIFICATION USING STATIC ANALYSIS

AND VISUALIZED IMAGES

In static analysis, the visualized images are extracted from

the raw executable file, which represents the overall feature

of malware [3], [4], [6]–[15].

Nataraj et al. [4] were the first to classify malware

families by visualizing malware binary files as grayscale

images and using similarity calculations between images. The

authors perform experiments on 9,458 samples representing

25 malware families and reach a classification accuracy

of 98%. A number of researchers extend the method

proposed by Nataraj by using multiple classification

methods [3], [6], [7], including machine learning mod-

els, to test multiple malware corpora containing more than

100,000 malware samples. Unlike Nataraj, Han et al. [8]

propose a weighted, synthetic, multi-segmented texture fin-

gerprint similarity matching method to detect malicious code

variants and unknown malicious code. When this method

classify six malicious code families, its highest accuracy

can reach 85.77%. Hanbing et al. [9] propose a Pairwise

rotation invariant co-occurrence local binary pattern feature

for analyzing the grayscale image generated from binary

file. This method has a good effect in solving code obfus-

cation. Liu et al. [10] and Makandar and Patrot [11] use

K-Nearest Neighbor (KNN) and wavelet transform to pro-

cess grayscale images generated from malware, respectively.

And the accuracy of these malware classification approach

can reach 98.2% and 98.88%, respectively. Furthermore,

given the stirring of interest in deep learning in recent

years, an increasing number of researchers propose using

deep learning methods to classify malware using visualized

images [12]–[15]. Tobiyama et al. [14] were the first to

extract features from a trained recurrent neural network

(RNN) and generate feature images. Then, feature images

with labels were assembled to form the input to the CNN.

The system classify 26 types of malware from 11 families.

This method can reach a classification accuracy of 96%.

In addition to extracting features from the raw malware,

there are also other methods that extract higher-level fea-

tures to detect malware. For example, MaMaDroid modele

behavior as abstract API call sequences and transform them

into Markov chains [16]. DroidSieve build features model

from lightweight code and resource parsing for obfuscated

malware detection and classification [17]. And data streams

from sensitive resources are also proved to be an effective

method for detecting malware [18].

91642 VOLUME 7, 2019

D. Xue et al.: Malware Classification Using Probability Scoring and Machine Learning

FIGURE 1. Overview of Malscore.

B. MALWARE CLASSIFICATION USING DYNAMIC

ANALYSIS AND API CALLS

As background to the method proposed in this paper, this

section introduces some malware classification work using

API calls by dynamically executing malware. Ki et al. [19]

extract common malicious API call sequence model from

different kinds of malware using DNA sequence alignment

algorithms. The model divide 26 different types of API calls

with a standard of API call functions. Their work achieve

a recall of 99.8%. Pektaş et al. [20] also modele API calls

with a standard of API call functions. They focus on mining

meaningful behavioral features from the API call sequence,

and use the TFIDF of each n-grams as the weight of each

feature. This method can reach a classification accuracy

of 98%. Lee et al. [21] collect API call sequences through

the Cuckoo sandbox, then convert API calls into same type

of code, and finally detect malware using n-grams and clus-

tering coefficients. Comparing the similarity of malware take

0.0097s on a server with a 2.5GHz CPU in this method.

Natani and Vidyarthi et al. [22] use API function frequen-

cies as feature vectors and classify malware using classifier

with ensemble learning. This method has a good classifica-

tion performance in a data set with 200 malware samples.

Kolosnjaji et al. [23] were the first to analyze API sequences

using deep learning, which process dynamically API call

sequences by using a neural network with convolutional

and recurrent layers. From a dataset that included 10 mal-

ware families, this method can reach a classification accu-

racy of 89.4%. In addition to directly using API sequences

as features, there are also other features model applied to

dynamic analysis. For example, L. Onwuzurike et al. model

dynamically acquired API sequences as Markov chains [24].

Afonso et al. [25] develop a system to monitor malware

dynamically. The system detects malicious behavior of

mobile applications by monitoring API function calls and

system calls. DroidScribe [26] uses Support Vector Machines

with Conformal Prediction to process sparse data to complete

malware detection. It uses system calls andOS objects asmal-

ware features. In addition, system call sequences in dynamic

analysis can also be affected by obfuscation technologies.

Droidcat is a method to solve the obfuscation problem of

system calls in dynamic analysis by using method calls and

inter-component communication Intents [27], [28].

C. MALWARE CLASSIFICATION INTEGRATING STATIC

ANALYSIS AND DYNAMIC ANALYSIS

Han et al. [29] propose a malware visualization method

based on static and dynamic analysis in which RGB images

are first generated from opcode sequences extracted from

malware samples. Then, key blocks are selected to extract

opcode sequences using a method that dynamically executes

malware. The method calculates image similarity using pixel

color information fromRGB images. This method can reach a

classification accuracy of 98.96%. Shijo and Salim et al. [30]

use printable string information extracted from malware as

static feature and API call sequence extracted from Cuckoo

sandbox as dynamic feature. These extracted features are then

converted into binary vectors, which are assembled to form

the input to two machine learning algorithms, Support Vector

Machine (SVM) and Random Forest (RF). Their work can

reach a classification accuracy of 98.71% in the SVM algo-

rithm and 97.68% in the RF algorithm. Kilgallon et al. [31]

extract four static features and one dynamic feature. Static

features include binary features, PE input features, string

features, and PE metadata features that are processed by

hash functions and combine into a fixed-dimension vector.

Dynamic feature is Windows API system calls. Finally they

assemble these features to form the input to the machine

learning for classification. This method’s best accuracy can

reach 85.77%. StormDroid [32] presents a combined set of

contributed features for machine learning classifiers, com-

pared with the traditional combination of static and dynamic

features. At the same time, StormDroid proposes a detection

method based on Streaminglized Machine Learning, which

uses the concept of flow to solve the problem of large-scale

data analysis.

III. SYSTEM FRAMEWORK

System framework of Malscore is shown in Figure 1, which

consists of training and testing. The training includes fea-

ture learning of the classifier S and the classifier D, and

the features includes grayscale images and native API call

VOLUME 7, 2019 91643

D. Xue et al.: Malware Classification Using Probability Scoring and Machine Learning

sequences. The testing includes two Phases, named Phase 1

and Phase 2. The CNN with SPP layer is used to ana-

lyze grayscale image (static feature) in Phase 1, and the

variable n-grams and machine learning are used to analyze

native API call sequence (dynamic features) in Phase 2.

Malscore sets the probability scoring to concatenate Phase 1

and Phase 2. In the testing Phase, we propose a probability

scoring to reduce detection time. Specifically, the classifier S

in Phase 1 generates a one-dimensional probability value

vector pvv(p1, p2, p3, . . . , p63), and pk (k = 1, 2, 3, . . . , 63)

represents the probability that the malware sample belongs

to the family k . According to whether max(pk) is greater

than PT, we can judge the credibility of the classification

result. Phase 2 continues to analyze the malware samples

with low credibility. The classification results of Phase 1 and

Phase 2 complemented each other. Phase 2 only focused

on the malware samples with low credibility in Phase 1.

Whether or not the classification result of Phase 2 was the

same as that of Phase 1, Malscore took the classification

result of Phase 2 as the classification criterion. Because low

credibility had proved that the classification results of these

samples in Phase 1 are unreliable.

InMalscore, we used probability scoring to decide whether

to perform dynamic analysis or not, instead of directly using

entropy-based detection method [33]. This is because the

method based on entropy can only detect whether malware is

packed or not, and cannot detect whether malware uses dead

code insertion, code transposition, subroutine reorder and

other technologies that can avoid static analysis. In addition,

there are still some problems in malware, such as less obvious

static features and smaller packed/encryption blocks which

do not affect the distribution of static features. Such mal-

ware need dynamic analysis to further judge and give more

accurate classification result. So Malscore didn’t directly

divide samples of static analysis and dynamic analysis, but

evaluated the reliability of malware in static analysis by

probability scoring to decide whether to use dynamic analysis

or not.

IV. ANALYSIS OF GRAYSCALE IMAGES USING

CNN WITH SPP

A. GENERATION OF GRAYSCALE IMAGES

Inspired by Nataraj et al. [4], it is an effective static anal-

ysis method to convert malware into grayscale images.

Figure 2 shows the process of converting malware into

grayscale images, which requires the following steps:

1) The executable file is treated as an original binary

stream.

2) Splitting the binary stream with every 8-bits and con-

verting each 8-bits to 256-level gray value. The con-

version scheme maps byte values from 0 (black) to

255 (white).

3) Gray values are converted into a two-dimensional

grayscale matrix in an orderly manner. The width and

height of the matrix are determined based on the size

of the malware file [4] to obtain grayscale images.

FIGURE 2. Grayscale image conversion process.

According to the scheme of Figure 2, grayscale images

with different sizes were generated. But the last fully-

connected layer of the CNN requires that the input fea-

ture maps be the same size, the general CNN network

structure needs to preprocess the image to unify the image

size. The existing processing methods segment the grayscale

images [10]–[13]. However, these methods not only com-

plicate the preprocessing of malware, but also reduce the

correlation between image blocks and the effective informa-

tion of images. To solve this problem, this paper constructed

CNN based on VGGNet-16 [34] and SPP [5], which was

named M-CNN.

B. CONSTRUCTION OF M-CNN

Considering that the size of malware may be less than 1 KB

(for example, the size of Backdoor.Win32.Agent.amjd is

only 640 B, which was converted into a grayscale image

of 32 × 20.), M-CNN used smaller convolution filters in

deeper parts of the network. As shown in Figure 3, the

M-CNN has an input layer, 13 convolutional layers, 5 pooling

layers, 3 full-connection layers, and an output layer. All the

convolutional layers use a 3 × 3 convolution kernel with a

step size of 1. Because the size of the feature map does not

change when the feature map passes through a convolutional

layer, a 1-pixel edge fill is performed on each input feature

map in the convolution layer. The first four pooling layers use

max pooling with a 2×2 sliding window and a step size of 2.

The last pooling layer uses SPP instead of max pooling. The

output of the SPP layer is a k × B dimension vector, where

B represents the number of bins and k represents the number

of filters in the last convolution layer. This fixed-dimensional

vector forms the input to the fully-connected layer, allowing

the inputs to be images of any size. From Figures 3 and 4,

Malscore uses 3-layer pyramid pooling and obtains vectors of

4× 4× 512, 2× 2× 512, and 1× 1× 512 dimensions. Then,

the output of SPP is connected to a 21 × 512 dimensional

vector and output to the fully connected layer.

To prevent network overfitting, the M-CNN included a

dropout regularization layer with a probability of 0.5 after

each pair of convolutional and pooling layers. In addi-

tion, to enhance the convergence performance of the

M-CNN network, Malscore used the Leaky ReLU activation

function [35], a uniformly distributed weight initialization

and batch normalization [36].

To get the probability value vector of each malware sam-

ple, the output layer uses the softmax function. The clas-

sification result of the softmax is expressed by probability,

91644 VOLUME 7, 2019

D. Xue et al.: Malware Classification Using Probability Scoring and Machine Learning

FIGURE 3. Network structure of M-CNN.

FIGURE 4. The workflow of CNN with SPP.

which increases the interpretability of classification. We used

equation (1) to calculate the probability that sample x belongs

to family k:

P(y = k|x) =
ezk

∑63
k=1 e

zk
(1)

Whereby, zk is the input vector of softmax.

According to equation (1), a probability value vector

pvv can be calculated for each malware sample x:

pvv(x) = (P(y = 1|x),P(y = 2|x), . . . ,P(y = 63|x)) (2)

When max(P(y = k|x)) is greater than or equal to PT,

we consider that sample x must belong to family k; otherwise,

sample x does not necessarily belong to family k . Further

analysis using classifier D for sample x is needed to determine

the family to which the sample x belongs.

V. ANALYSIS OF NATIVE API CALL SEQUENCES USING

VARIABLE N-GRAMS AND MACHINE LEARNING

For the grayscale images generated in Section IV-A, there

may be some samples of the same family whose static

features are not very obvious. The classifier S may obtain

classification results with low credibility for such malware.

Then, Malscore used classifier D to analyze such malware

for obtaining higher classification accuracy. To analyze the

behavior of malware, Malscore extracted the native API call

FIGURE 5. Feature Processing.

sequences by executing malware in the Cuckoo sandbox [37].

Figure 5 shows the process of feature processing.

A. EXTRACTION OF VARIABLE N-GRAMS FEATURES

N-grams are a language model that enables computers to

automatically classify text [38]. In this paper, n-grams were

short sequences including n native API calls. In the past

research work of researchers, 3−gram is the most widely

used and n−gram(n > 4) is less used. When n ≥ 5,

the greater the value of n, the greater the proportion of accu-

racy reduction and the more the number of parameters. The

accuracy of n−gram(n ≥ 5) in many machine learning algo-

rithms is 5% - 26% lower than that of n < 5 [10]. As long as

there is enough training set theoretically, the greater the value

of n, the higher the performance. In this way, the next word

will have more constraints and n−gram will have greater

discrimination. But the actual situation is that the training set

is very limited, which is easy to generate sparse data which

does not satisfy the law of large numbers [38]. Meanwhile,

if n is great, the parameter space will be too large to cause

dimension disaster, so it will not be practical. On the contrary,

the smaller the value of n, the more times n−gram appears in

the training set, which brings more reliable statistical infor-

mation and higher practicability.

Therefore, Malscore made up n-grams with lengths

n = 2, 3, 4 for mining some meaningful native API calls.

We found that native API call sequences of some samples

have one native API call or native API call subsequence

that was called continuously, which may cause informa-

tion redundancy. There were also some continuous native

API calls (subsequences) that are truly important features of

the malware family. According to our research experience,

we set a threshold of 80%.When 80% of themalware samples

in a certain malware family included the same continuous

native API calls (subsequences), we identified them as salient

VOLUME 7, 2019 91645

D. Xue et al.: Malware Classification Using Probability Scoring and Machine Learning

FIGURE 6. Extraction process of n-grams features (n = 2, 3, 4).

features. Thus, we needed to preprocess the native API call

sequence before extracting n-grams feature, and deleted the

continuous native API call or native API call subsequence

existing in a few samples of the same family. The process

of preprocessing is described as in Algorithm 1.

Algorithm 1 Preprocessing of Native API Call Sequences

Require: APISequence = Raw native API call sequence for

each malware sample;

Ensure: NewAPISequence = Preprocessed native API call

sequence;

1: for family in dataset do

2: for sample in family do

3: Traversal APISequence, APIConcall ← one native

API call or native API call subsequences that are

called 4 times or more continuously

4: for APIConcall do

5: for sample1 in family except sample do

6: Traversal APISequence, if APIConcall exist,

N ← N + 1

7: end for

8: if N > 80% of the number of samples in family

then

9: Do not process APIConcall

10: else

11: Delete repetitive native API calls in

APIConcall in the family

12: end if

13: end for

14: end for

15: end for

We extracted the n-grams features from the NewAPISe-

quence with the length of n = 2, 3, 4. Figure 6 shows the

extraction process of n-grams features. The sequence on the

left represents the partial native API call sequence extracted

frommalware, and the short sequences on the right represents

extracted 2−grams, 3−grams, and 4−grams features.

B. SELECTION OF VARIABLE N-GRAMS FEATURES

Most n-grams may not be meaningful for the malware clas-

sification. We selected some common n-grams features in

the family training classifier D, which appear less frequently

in other families. Malscore proposes Document Frequency-

Inverse Document Frequency (DF · IDF) to process the

selection of n-grams features. DF was used to select fea-

tures that are common to each family, and then IDF was

used to select features that appear less frequently in other

families. The DF · IDF of n-grams feature is calculated by

equation (3)–(5):

DF(i, j, k) =
{j : i ∈ d(k)}

D(k)
(3)

Whereby,DF(i, j, k) represents the document frequency of

the API call sequence j containing n-gram i in family k; {j :

i ∈ d(k)} is the number of sequences including n-gram i in

family k , i belongs to j; D(k) represents the number of native

API call sequences in family k .

IDF(i, j, k) = log2(
D− D(k)

{j : i ∈ d ∩ j : i 6∈ d(k)} + 1
) (4)

Whereby, IDF(i, j, k) represents the inverse document fre-

quency of the API call sequence j containing n-gram i in the

data set; D − D(k) represents the total number of API call

sequences in the data set (excluding family k); {j : i ∈ d ∩ j :

i 6∈ d(k)} is the number of API call sequences containing n-

gram i in the data set (excluding family k).

DF · IDF(i, j, k) = DF(i, j, k)× IDF(i, j, k) (5)

Whereby, DF · IDF(i, j, k) represents the DF · IDF of

n-gram i in the malware family k , and i belongs to j.

Based on the DF · IDF of each n-grams feature, we can

assess the importance of each n-grams feature. Malscore

selected the top t n-grams features in each malware family

according to the descending order of DF · IDF . Finally,

63 × t n-grams features were selected as the input of clas-

sifier D. The Term Frequency (TF) of each n-grams feature

was selected as the feature weight. It can be calculated as:

TF(i, j) =
n(i, j)

∑
z n(z, j)

(6)

Whereby, TF(i, j) represents the frequency of n-gram i in

the API call sequence j, and n(i, j) is the number of times that

i appears in j.

For example, we extracted 1,923,460 and 1,375,083 API

short sequences (n−grams) from the Backdoor.Win32.Agent

(3561 samples) and Trojan.Win32.Monder (1341 samples),

respectively. We selected part of n−grams to illustrate the

extraction process of API short sequence of malware. Table 1

shows three API short sequence features in each family.

From Table 1, the more samples containing n−grams in the

family, the greater the DF value. The more samples con-

taining n−grams outside the family, the smaller the IDF

value. Interestingly, both Backdoor.Win32.Agent and Tro-

jan.Win32.Monder contain the API short sequence ‘‘NtAllo-

cate VirtualMemory > NtRequestWaitReplyPort > NtQuery

Attributes File’’, but this short sequence is only a feature of

Trojan.Win32.Monder, not of Backdoor.Win32.Agent.

91646 VOLUME 7, 2019

D. Xue et al.: Malware Classification Using Probability Scoring and Machine Learning

TABLE 1. Some API short sequences (n−grams) extracted from the
malware family.

C. SELECTION OF MACHINE LEARNING ALGORITHMS

We train the machine learning algorithm to obtain the clas-

sifier D by using the n-grams feature vectors with known

tags. Classifier D can detect the family of malware from

unlabeled n-grams feature vectors. In our work, we train five

machine learning algorithms, namely SVM [39], RF [40],

Adaboost [41], Naive Bayes (NB) [42], and KNN [43].

Finally, we validate the performance of these machine

learning algorithms and select a better classifier as the

classifier D.

SVM [39] is a machine learning algorithm based on

VC Dimension theory and Structural Risk Minimization the-

ory of statistical learning theory. Standard SVM is mainly

used for 2-classification problems whose basic model is to

find the best Separating Hyperplane in the feature space to

maximize the interval between positive and negative sam-

ples on the training set. This paper belongs to the multi-

classification problem, and applies one-against-all SVM.

One-against-all SVM establishes N decision boundaries for

N classifications, and each decision boundary determines

the attribution of one classification to all other classifi-

cations. Meanwhile, all decision boundaries can be com-

puted iteratively by modifying the optimization problem of

standard SVM.

RF [40] is a machine learning algorithm that integrates

multiple trees by ensemble learning, whose basic unit is a

decision tree. Unlike decision tree algorithm, RF extracts

training samples to train each tree by using Random Sam-

pling With Replacement, and randomly select some features

through the tree nodes. Then the results of several weak clas-

sifiers (trees) form a strong classifier via a voting mechanism.

In RF, we can modify the number of decision tree, number of

features to consider for each node, and maximum depth of the

decision trees to improve the classifier.

Adaboost [41] is the most popular boosting algorithm in

machine learning. The Adaboost classifiers use the weak

classifiers as the base classifiers, assign different weight

parameters based on the error rate of the classifier, and finally

accumulate the weighted prediction results as the output.

In our work, we chose the relatively simple NB classifiers

based on NB algorithms as the base classifiers. Compared

with RF, Adaboost uses an adaptive method to change the

probability distribution and learns each base classifier itera-

tively. In each iteration, the data weights of the last wrong

classification and the weights of the base classifier with

smaller classification error rate are increased. Then the linear

combination of the base classifiers is regarded as a strong

classifier.

NB [42] is amachine learning algorithm based onBayesian

theorem and independent assumption of feature conditions.

It calculates the probability that an unknown sample is cor-

rectly predicted as belonging to given family. Naive Bayes

Classifier (NBC) requires few estimated parameters, is not

sensitive to missing data, and is relatively simple. In theory,

NBC has the smallest error rate compared with other clas-

sification methods. But in fact, the independent assumption

of feature conditions is often not valid, which has a certain

impact on the correct classification of NBC.

KNN [43] is a supervised and lazy learning algorithm in

machine learning. The classifier in the KNN algorithm selects

K nearest neighbors for the input data point in the training

set, and classifies the data point according to the category

which appears most frequently in K neighbors (Maximum

Voting Rule). In KNN algorithm, the selected neighbors are

all correctly classified samples. The classifier does not need

to use training set for training, so it has less time complexity,

and is especially suitable for multi-classification problems.

VI. EXPERIMENTS AND RESULTS

In this section, we evaluated the efficiency of our pro-

posed system Malscore on a real and large data set. First,

we described the experimental environment and the data set.

Second, we defined evaluation criteria for Malscore. Third,

we evaluated the performance of variable n-grams and fixed

n-grams on different machine learning algorithms, and the

effect of changes of PT in Phase 1 on the classification results.

Fourth, we showed the experimental results and time costs for

multi-classification. Finally, we showed the confusion matrix

of malware classification and the comparison results with

other similar methods.

A. EXPERIMENTAL ENVIRONMENT AND DATA SET

The experimental data set for this paper was collected pri-

marily through the VX Heaven website [44], which contains

271,092 tagged malware samples. There were two criteria

for dataset selection used in this paper. One was that the

number of samples in malware family cannot be too low,

because we use deep learning. The other was all malware

samples belong to Win32 platform. Before data processing,

we didn’t delete any samples in selected data set, and used all

native malware as our data set to reduce the impact of human

factors on classification results. So we chose 174,607 real and

effective malware samples from 63 families. All experiments

were performed on a laptop of Windows 10 v1809 operating

VOLUME 7, 2019 91647

D. Xue et al.: Malware Classification Using Probability Scoring and Machine Learning

system with Inter(R) Core i7-7700 @3.6G Hz CPU, 16G

RAM and DDR4. In our experiments, the training set

contained 139,687 samples and the test set contained

34,920 samples. And because our data set size was enough,

our experimental data set was fixed instead of cross valida-

tion. The number of samples is shown in Table 4.

B. EVALUATION CRITERIA

We evaluated the classification performance of Malscore

using Precision, Recall, F1−score, and Accuracy. The four

evaluation criteria are calculated as:

Precision =
TP

TP+ FP
(7)

Recall =
TP

TP+ FN
(8)

F1−score =
2× Precision× Recall

Precision+ Recall
(9)

Accuracy =
correctly classified samples

total number of samples
(10)

Whereby, the true positive (TP) is the number of samples

belonging to the family k that are correctly labeled as fam-

ily k; the false positive (FP) is the number of samples not

belonging to the family k that are erroneously labeled as

family k; the false negative (FN) is the number of samples

belonging to the family k that are erroneously labeled as other

family.

C. EVALUATION OF N-GRAMS AND MACHINE LEARNING

We experimentally compared the influence of variable

n−grams(n = 2, 3, 4) with fixed n-grams on the classi-

fication results. Meanwhile, we also compared the influ-

ence of the five machine learning algorithms mentioned in

Section V-C on the classification results. The results are

shown in Figure 7. Figures 7(a) to 7(e) show the variation

trend of the Accuracy of 2−grams, 3−grams, 4−grams, and

n−grams(n = 2, 3, 4) with increasing number of features in

different machine learning algorithms. These machine learn-

ing algorithms include SVM, RF, Adaboost, NB, and KNN.

In Figure 7(a), the Accuracy of the classifier with 3−grams

is better than that of the other classifiers when the number

of features is lower than 12. However, the Accuracy of the

classifier with n-grams rises rapidly and exceeds the classifier

with 3−gramswhen the number of features is greater than 12.

When the number of features is equal to 16, the Accuracy

of the classifier with n-grams is 97.55% and tends to be

stable, which is 2.36% to 5.27% higher than that of the other

classifiers.

Figures 7(b) and 7(c) illustrate similar growth trends for

the Accuracy of the all classifiers with increasing number of

feature in the RF algorithms and Adaboost algorithms. When

the number of features is greater than 13, the Accuracy of the

classifier with n-grams is 97.73% and 97.74%, respectively,

which is significantly better than that of the other classifiers.

In Figure 7(d), clearly, the Accuracy of all classifiers in

the NB algorithm is not good, regardless of the number of

TABLE 2. The Mean and Std of different machine learning algorithm for
Phase 2 in Malscore. Num represents the number of features.

feature. The Accuracy is not stable until the number of fea-

tures is equal to 20. The best Accuracy of all classifiers is no

more than 80%. The Accuracy of classifiers with 2−grams,

3−grams, 4−grams and n-grams ranges from 41.21% to

79.69%.

From Figure 7(e), the classifiers with 2−grams and

3−grams aremore accurate than 4−grams and n-gramswhen

the number of features is lower than 10. The Accuracy of all

classifier tends to be stable when the number of features is

between 11 and 13, and the Accuracy of the classifier with

n-grams is 87.14%.

From Figures 7(a) to 7(e), Although the Accuracy of the

classifier with n-grams is lower than that of the other classi-

fier when the number of features is small, the Accuracy of the

classifier with n-grams is better than that of the other classi-

fier when the Accuracy tends to be stable. As the number of

features increases, the more the number of n-grams features,

the more representative the semantic information of malware.

As we can see from Figure 7, the Accuracy of the classifier

with n−grams(n = 2, 3, 4) is better than that of the other

classifiers when the Accuracy of the classifier with n−grams

(n = 2, 3, 4) tends to be stable. Therefore, we com-

pare the classification performance of the classifier with

n−grams(n = 2, 3, 4) using different machine learning algo-

rithm in our selected data sets in Malscore. Table 2 shows the

performance of Phase 2 inMalscore compared with the meth-

ods using different machine learning algorithm and [45] using

deep learning on the malware dataset. Zhao et al. [45] with

CNN can be compared with our experiments. The Phase 2

in Malscore outperforms almost other techniques when it

comes to classifying malware, that is, Accuracy = 97.73%.

This superior performance is seen for Precision, Recall and

F1−score as well.

Figure 7(f) compares the Accuracy of the classifier with

n-grams in different machine learning algorithms. From

Figure 7(f) and Table 2, the Accuracy of the classifiers in RF

and Adaboost algorithm is highest while that of the classifiers

in NB algorithm is lowest. Although the Accuracy of the

classifier in SVM algorithm is similar to RF and Adaboost

algorithm, the Accuracy of the classifier in SVM algorithm

91648 VOLUME 7, 2019

D. Xue et al.: Malware Classification Using Probability Scoring and Machine Learning

FIGURE 7. Evaluation of n-grams and machine learning. (a) n-grams with different n in Support Vector Machine (SVM); (b) n-grams
with different n in Random Forest (RF); (c) n-grams with different n in Adaboost; (d) n-grams with different n in Naive Bayes (NB);
(e) n-grams with different n in K-Nearest Neighbor (KNN); (f)different machine learning with variable n-grams.

TABLE 3. The comparison of time cost between RF algorithm and
Adaboost algorithm.

cannot reach stability until the number of features is equal

to 16.

To further verify performance of the classifiers in RF and

Adaboost algorithms, we analyzed the time cost of both.

The comparison results are shown in Table 3. From Table 3,

the training and testing time of the classifier in Adaboost

algorithm are 31.63% and 34.78% longer than that of the

classifier in RF algorithm while the Accuracy is only 0.01%

higher than that in RF algorithm. Therefore, we chose the

classifier in RF algorithm as classifier D.

D. EVALUATION OF PROBABILITY THRESHOLD

IN PHASE 1

In order to maximize classification advantage of Phase 1 and

Phase 2, the PT was used to concatenate trained classifier S

based CNN algorithm and classifier D based RF algorithm.

A suitable PT can not only improve the Accuracy of the

classification, but also minimize the time cost of Malscore.

Figure 8 shows the trend of the number of samples inputted

into the Phase 2 and the classification Accuracy as the

PT increases. From Figure 8, the number of samples inputted

into the Phase 2 is small, and the Accuracy of the Malscore

is similar to the Accuracy of the classifier S (the green dot

in Figure 8 represents the Accuracy of the classifier S) when

the PT is lower than 0.4. So the dynamic analysis in Phase 2

will be meaningless, because most malware can be filtered.

When the PT is greater than 0.89, as the number of sam-

ples inputted into the Phase 2 increases, the classification

performance of the Phase 1 becomes weaker. We needed to

determine PT by weighing classification accuracy and time

cost. These malware samples with low credibility (possibly

classified correctly, possibly incorrectly) in Phase 1 were

further submitted to Phase 2 for analysis and judgment by

the PT. And the suitable PT will bring the advantages of

phase 1 (static analysis) and phase 2 (dynamic analysis) into

full play.

As a result, the classification Accuracy of Malscore was

only 0.14% higher than that of the classifier D (the red dot

in Figure 8 represents the Accuracy of the classifier D).

In Figure 8, the Accuracy of Malscore tends to be sta-

ble when the PT is between 0.79 and 0.89. When the

number of samples inputted into the Phase 2 increases

from 8,128 to 17,878, the Accuracy increases only from

98.77% to 98.89%. According to Figure 8, we chose

PT = 0.84. When PT = 0.84, the classification accu-

racy of Malscore can achieve 98.82% while minimizing the

number of samples submitted to Phase 2. When Malscore

classified malware, PT was fixed as Malscore’s system

parameter.

VOLUME 7, 2019 91649

D. Xue et al.: Malware Classification Using Probability Scoring and Machine Learning

FIGURE 8. Evaluation of probability threshold (PT) in Phase 1.

FIGURE 9. Average FPR (false positive rate) of different malware family.

FIGURE 10. Average FNR (false negative rate) of different malware family.

E. EXPERIMENTAL RESULTS FOR MULTI-CLASSIFICATION

According to the evaluation in Sections VI-C and VI-D,

Malscore set the probability threshold in Phase 1 is 0.84 and

the machine learning algorithm in Phase 2 uses the RF algo-

rithm.We verified the classifier S, the classifier D, the ensem-

ble learning (both the classifier S and the classifier D) and the

Malscore, and the verification results are shown in Table 4.

From Table 4, the classifier D is better in some families than

the classifier S, for example, the 18th family and the 22nd

family. The classification accuracy of Malscore is 98.82%,

which is higher than that of classifier S and classifier D, and

is similar to ensemble learning.

Figures 9 and 10 show the FPR and FNR of Phase 1 and

Malscore. As shown in Figures 9 and 10, Malscore has lower

FPR and FNR than Phase 1 (Static Analysis), and FPR and

FNR are 0% in 52 families. Because the dataset contained

somemalware samples using packing/encryption technology,

which makes static analysis difficult. Malscore used dynamic

analysis to compensate for shortcomings of static analysis,

so that the classification system can recognize these samples.

However, from Figures 9 and 10, Malscore cannot eliminate

FPR/FNR. There were two main reasons. (1) To avoid the

detection of dynamic analysis, some malware may detect

the execution environment. If virtual machine environment

is detected, these malware will resist running. Then, dynamic

analysis still has a problem that it cannot traversed all execu-

tion paths. When malicious execution path(s) cannot be trig-

gered, malware will be judged as ‘‘benign’’. (2) The threshold

(probability scoring) we set was to minimize FPR/FNR of

phase 1 (static analysis) in Malscore, and cannot guarantee

that classification accuracy of Phase 1 was absolutely 100%.

Even though FPR/FNR of Phase 1was lower, it will still make

a ‘‘contribution’’ to Malscore’s FPR/FNR.

While Malscore reduced FPR/FNR, the decision whether

or not to omit the costly dynamic analysis depending on a

probability (credibility of static analysis results) for every

malware sample can help us solve the problem of costly

dynamic analysis. Combining with the classification results

in Table 4, it is found that the recall of packed malware

samples in Phase 1 is lower than Malscore.

F. CALCULATION OF TIME COST

Tables 5 and 6 show the time cost of classifier S and classi-

fier D. From Tables 5 and 6, generation of grayscale images

and extraction of n-grams features account for more than 99%

of the time cost in the total learning process. The classifier D

belonged to the dynamic analysis so that it was also much

more time cost than the classifier S belonging to the static

analysis. At the same time, Tables 5 and 6 also show some

interesting information. For example, the test time of the

classifier in RF algorithm is more than that of the classifier in

CNN algorithm, but the training time is less.

Tables 7 and 8 show the time cost of the ensemble learning

and the Malscore. This ensemble learning algorithm used

ensemble learning idea to integrate Phase 1 and Phase 2,

and was used to compare with Malscore to illustrate the

advantages of Malscore. Ensemble learning was used to iden-

tify malware by integrating the results of multiple compo-

nent learners (Different types of individual learners), thereby

improving the final accuracy and reducing the FPR. We used

the idea of bagging [46] to construct ensemble learning

method, and bagging uses the playback sampling to select

the training dataset of each learner, which can not only ensure

that the trained learners are different, but also ensure the clas-

sification performance of component learners. In this paper,

we trained two component learners hS and hD, hS was classi-

fier S based on CNN algorithm and hD was classifier D based

on RF algorithm. For each malware x, a label cj was pre-

dicted by the learners from label set {c1, c2, . . . , cj, . . . , c63},

and we used plurality voting as a combination strategy.

91650 VOLUME 7, 2019

D. Xue et al.: Malware Classification Using Probability Scoring and Machine Learning

TABLE 4. Precision, Recall , F 1−score and Accuracy of the four classification methods.

We represented the predicted output of hS and hD on sample x

as two 63-dimensional vector (h1S (x), h
2
S (x), . . . , h

j
S (x), . . . ,

h63S (x)) and (h1D(x), h
2
D(x), . . . , h

j
D(x), . . . , h

63
D (x)), where hj

is a class probability representing the output of learners on

the class label cj. Equation 11 can calculate the voting result

H (x), which is the predictive label cj of malware sample x.

H (x) = c
argmax

j

[h
j
S (x)+h

j
D(x)]

(11)

H (x) is the highest vote label. If there are multiple labels

with the highest vote, one of them will be selected randomly

as the label of sample x.

Table 7 shows the time cost of the total training and testing

phase, and Table 8 shows the sample average of the time cost.

From Tables 7 and 8, compared with the ensemble learning in

testing, the preprocessing and test time of Malscore represent

a reduction of 59.58% and 61.70%, respectively, when the

VOLUME 7, 2019 91651

D. Xue et al.: Malware Classification Using Probability Scoring and Machine Learning

TABLE 5. The time cost of the classifier S (total sample).

Accuracy represents a reduction of 0.09%. Because the prob-

ability threshold of Phase 1 was set to 0.84 in Section VI-D,

the number of samples inputted into Phase 2 was only 13,087,

which was 21,833 less than the number of samples in the

Classifier D, thus the time cost in testing was reduced.

After analysis in subsections VI-E and VI-F, Malscore’s

classification performance was better than static analy-

sis, dynamic analysis and ensemble learning in terms of

cost-accuracy tradeoff. With the maturity of malware tech-

nology, more and more problems will bring troubles to detec-

tion methods, such as traversing execution paths, concept

drift [16], and obfuscated system calls [27], [28]. Malscore

was only starting, and needed further optimization in future

research work to deal with various detection difficulties.

G. CONFUSION MATRIX

Figure 11 shows the Confusion Matrix of the 63 families in

the experiments. The ID of each malware family is shown

in Table 4. Each column of the Confusion Matrix represents

the predicted classification of the sample, and each row

represents the real classification of the sample. It is evident

from Figure 11 that the Malscore has the best classification

capability for 52 families, in which families, the Accuracy

can achieve 100%.

H. COMPARISON WITH OTHER SIMILAR METHODS

The Accuracy and classification cost of malware classi-

fication are the key to identifying malware classification

methods. By probability scoring and machine learning,

the Accuracy of malware classification of Malscore

FIGURE 11. Confusion Matrix related to the malware classification.

reached 98.82%. Firstly, Malscore fused CNN network and

RF algorithm results by concatenating ensemble. Concretely,

concatenating ensemble combined two phases (CNNdiscrim-

inant result and RF discriminant result) to train a malware

classifier. Table 9 provides more inside intoMalscore. Table 9

shows Malscore yields much better performance compared

with Phase 1 or Phase 2 only.

Then we compared Malscore with other similar classi-

fication methods. Figures 12 and 13 provide a compari-

son result. Figure 12 shows the Accuracy and number of

malware of other similar classification methods, including

static ensemble learning with grayscale images and opcode

sequence [10], [12], static and dynamic analysis with API

calls or opcode sequence [29], [31], only static analysis with

grayscale images or API calls [11], [20], and only dynamic

analysis with FCG or registry [47], [48]. From Figure 12,

the accuracy of methods 5 and 6 is slightly higher than that of

Malscore. By making analysis the articles of methods 5 and 6

in depth, we found that the data sets of these two methods

TABLE 6. The time cost of the classifier D (total sample).

TABLE 7. The comparison of time cost between Ensemble learning and Malscore.

91652 VOLUME 7, 2019

D. Xue et al.: Malware Classification Using Probability Scoring and Machine Learning

FIGURE 12. Comparison with other similar methods (From the
perspective of dynamic analysis and static analysis). (1)Method 1
represents the Malscore; (2)Methods 2 and 3 represent static ensemble
learning; (3)Methods 4 and 5 represent static and dynamic analysis;
(4) Methods 6 and 7 only represent static analysis; (5) Methods 8
and 9only represent dynamic analysis.

are too small to cover the features contained in the malware

family as much as possible, and the samples selected from

each malware family have relatively high similarity. More-

over, method 5 uses a traditional graph distance similarity

algorithm that can take more time cost, and method 6 is

vulnerable to packing or obfuscation techniques. In order to

make up the problems of methods 5 and 6, Malscore con-

catenated static analysis (deep learning) and dynamic anal-

ysis (machine learning) to classify malware. Although our

accuracy was theoretically lower than methods 5 and 6, it can

be seen from Table 10 that Malscore has a better accuracy-

cost tradeoff in the same dataset. Althoughmethod 5 is 0.29%

higher thanMalscore, method 5 costed an average of 53.72ms

to detect a malware sample while Malscore only costed

0.04ms. For our testing set (34,920 samples), method 5 costed

about 31.27 minutes, while Malscore only costed 1.25s. For

millions of malware, the detection time of method 5 took

days to complete. Method 6 had the advantage of static

analysis, and the preprocessing time and testing time were

lower than Malscore, but the accuracy of method 6 on our

testing set was only 90.45%, not 98.88% mentioned in the

original article. This is because our testing set contains about

2,500 packed/encrypted malware, and static analysis cannot

extract such malware features. The accuracy of method 6 also

decreased with the increase of packed malware, which is the

limitation of static analysis. The average preprocessing time

and testing time of Malscore were only 0.95s and 0.02ms

more than the static analysis method 6, but 2.25s and 0.05ms

less than ensemble learning. As shown in Table 10, Malscore

is better in the accuracy-cost tradeoff. Malscore not only had

the ability to handle packed malware, but it also had lower

time cost. In practice, Malscore focused on static analysis

and supplements dynamic analysis. In Table 10, Malscore’s

average time cost is 1.6s. In fact, 1.6s is the average cost of

TABLE 8. The comparison of time cost between Ensemble learning and
Malscore (Sample average).

FIGURE 13. Comparison with other similar methods (From the
perspective of machine learning and deep learning).

static analysis and dynamic analysis. Because of the high cost

of dynamic analysis, the average value is higher.We deployed

Malscore on our server. In our dataset, about 75% of the

malware was an average of 185ms instead of 1.6s.

In Figure 12, we compared Malscore-like classification

methods from the perspective of dynamic analysis and static

analysis. Besides these eight malware classification methods

in Figure 12, we further compared Malscore-like classifi-

cation methods from the perspective of machine learning

and deep learning. As shown in Figure 13, we classified

the classification methods into three categories. The first

is that grayscale images and API sequences are learned by

learning algorithms different from CNN and RF [6], [15],

[45], [49], [50]. The second is that malware features different

from gray image and API sequence are learned by CNN and

RF algorithms [51]–[53]. The last is that learning algorithms

and malware features different from those of Malscore [23],

[54]–[57]. From Figure 13, (1) Compared with other machine

learning or deep learning algorithms, the CNN and RF algo-

rithms in Malscore had better classification performance

when learning grayscale images andAPI sequences. (2) Com-

pared with other malware features, the grayscale images and

API sequences proposed in Malscore can be better learned

in CNN algorithm and RF algorithms. (3) The Malscore had

better classification performance both in feature selection and

classification algorithm selection.

In Figure 13, Method 1 represents the Malscore;

Methods 2 to 4 learn grayscale images using RF, Artificial

VOLUME 7, 2019 91653

D. Xue et al.: Malware Classification Using Probability Scoring and Machine Learning

TABLE 9. The Mean and Std of Malscore on the Phase 1, Phase 2, and concatenating Phase 1 and Phase 2.

TABLE 10. The accuracy and time cost of comparative experiments
(sample average).

Neural Network and ensemble learning algorithms, respec-

tively; Methods 5 and 6 learns API sequences using RNN and

CNN algorithms, respectively; Method 7 learns Local binary

pattern features of grayscale images using CNN algorithm;

Methods 8 and 9 learn self-organizing feature maps and

opcode using RF algorithm, respectively; Method 10 learns

system call sequence using a neural network based on con-

volutional and recurrent network layers; Method 11 learns

image from opcode using SVM algorithm; Method 12 learns

malware feature maps generated by using deep autoen-

coder using transfer-deep convolutional generation adversar-

ial networks; Method 13 learns metadata, input functions

and opcode of PE files by combining CNN algorithm with

feed-forward Neural Network algorithm; Method 14 learns

machine activity data by using RNN algorithm. The captured

metrics of active data are: system CPU usage, user CPU use,

packet send, packets received, et al.

VII. LIMITATIONS

In this paper, Malscore used probabilistic scoring to concate-

nate static analysis and dynamic analysis. Because of the high

cost of dynamic analysis, Malscore didn’t use dynamic anal-

ysis as the main detection method, but used dynamic analysis

as a complementary method of static analysis for the robust-

ness of packed/obfuscated malware. Therefore, Malscore’s

detection cost was lower than that of dynamic analysis, and

its detection accuracy was higher than that of static analysis

and dynamic analysis.

Over time, the performance of malware detection methods

will naturally degrade with the appearance of concept drift

problems [16]. Malscore doesn’t take into account concept

drift, and we don’t provide any incremental learning strate-

gies to fortify Malscore’s re-learning ability. At the same

time, with the development of malware detection methods,

more and more malware producers use a variety of tech-

nologies to resist dynamic and static analysis. For example,

these producers obfuscate not only raw malware, but also

system calls of malware in dynamic analysis. This kind of

malware will make our static analysis and dynamic analysis

lose ‘‘eye’’. Therefore, Malscore also lacks the ability to

detect such malware.

Although Malscore has achieved some success in malware

detection, there are still some areas for improvement. Our

future work on Malscore will focus on the following:

1) Although concept drift is a well-known and trou-

blesome thing in machine learning, we can use

MaMaDroid [58]–[60] and incremental learning algo-

rithms to reduce the impact of concept drift on

Malscore. In this environment, additional experiments

are needed to evaluate the impact of concept drift on

Malscore.

2) Although dynamic analysis of obfuscation features is a

problem, recently somemethods have been proposed to

solve this problem [27], [28]. We hope to enhance the

robustness of dynamic analysis in Malscore, not only

as a supplement to static analysis, but also as a major

contribution to Malscore detection.

VIII. CONCLUSION

In this paper, the main goal was to present a systemMalscore

for malware classification, which was based on probability

scoring and machine learning. In the Malscore, the convo-

lutional neural networks with Spatial Pyramid Pooling was

used to analyze grayscale image (static feature) in Phase 1,

and the variable n-grams and machine learning were used

to analyze native API call sequence (dynamic features) in

Phase 2. To concatenate Phase 1 and Phase 2, a probability

scoring was proposed to identify the credibility of the classi-

fication results in Phase 1, and Phase 2 further analyzed these

malware with lower credibility. We performed experiments

on 174,607 malware samples from 63 malware families.

The result showed Malscore achieved 98.82% accuracy for

malware classification, and the recall and precision of 100%

in 52 families. Compared with the ensemble learning in test-

ing, the preprocessing and test time of Malscore represented

a reduction of 59.58% and 61.70%, respectively. This showed

that the Malscore had a lower time cost. Malscore took only

0.04ms to detect a packed malware sample and 0.001ms to

detect a unpacked malware sample in an operating system

with 16G RAM and 3.6G CPU. Through this system, not

only the performance of static analysis for static classification

is utilized, but also the universality of dynamic analysis for

packing and obfuscation techniques is fully utilized.

91654 VOLUME 7, 2019

D. Xue et al.: Malware Classification Using Probability Scoring and Machine Learning

REFERENCES

[1] AO Kaspersky Lab. Kaspersky Security Bulletin Overall Statistics for

2017. Accessed: Jul. 22, 2018. [Online]. Available: https://securelist.

com/ksb-overall-statistics-2017/83453/

[2] B. Christiaan, D. Taylor, G. Steve, K. Mary, M. Niamh, and

P. Chris. (Jun. 2018). McAfee Labs Threats Reports. McAfee.

Accessed: Aug. 2, 2018. [Online]. Available: https://www.mcafee.com/

enterprise/en-us/assets/reports/rp-quarterly-threats-jun-2018.pdf

[3] L. Nataraj, V. Yegneswaran, P. Porras, and J. Zhang, ‘‘A comparative

assessment of malware classification using binary texture analysis and

dynamic analysis,’’ in Proc. ACM Workshop Secur. Artif. Intell., 2011,

pp. 21–30.

[4] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath, ‘‘Malware

images: Visualization and automatic classification,’’ in Proc. ACM 8th Int.

Symp. Visualizat. Cyber Secur., 2011, pp. 1–7.

[5] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Spatial pyramid pooling in deep

convolutional networks for visual recognition,’’ IEEE Trans. Pattern Anal.

Mach. Intell., vol. 37, no. 9, pp. 1904–1916, Sep. 2015.

[6] K. Kosmidis and C. Kalloniatis, ‘‘Machine learning and images for mal-

ware detection and classification,’’ in Proc. ACM 21st Pan-Hellenic Conf.

Informat., 2017, pp. 1–7.

[7] K. Kancherla and S. Mukkamala, ‘‘Image visualization based malware

detection,’’ in Proc. IEEE Comput. Intell. Cyber Secur., Apr. 2013,

pp. 40–44.

[8] X. G. Han, Q. U. Wu, X. X. Yao, C. Y. Guo, and Z. Fang, ‘‘Research on

malicious code variants detection based on texture fingerprint,’’ J. Com-

mun., vol. 35, no. 8, pp. 125–136, 2014.

[9] H. Yan, H. Zhou, and H. Zhang, ‘‘Automatic malware classification via

PRICoLBP,’’ Chin. J. Electron., vol. 27, no. 4, pp. 852–859, 2018.

[10] L. Liu, B.-S. Wang, B. Yu, and Q.-X. Zhong, ‘‘Automatic malware clas-

sification and new malware detection using machine learning,’’ Frontiers

Inf. Technol. Electron. Eng., vol. 18, no. 9, pp. 1336–1347, Sep. 2017.

[11] A. Makandar and A. Patrot, ‘‘Malware class recognition using image

processing techniques,’’ in Proc. Int. Conf. Data Manage., Anal. Innov.,

2017, pp. 76–80.

[12] J. Yan, Y. Qi, and Q. Rao, ‘‘Detecting malware with an ensemble method

based on deep neural network,’’ Security Commun. Netw., vol. 2018,

Mar. 2018, Art. no. 7247095.

[13] M. Kalash, M. Rochan, N. Mohammed, N. D. B. Bruce, Y. Wang, and

F. Iqbal, ‘‘Malware classification with deep convolutional neural net-

works,’’ in Proc. IEEE IFIP Int. Conf. New Technol., Mobility Secur.,

Feb. 2018, pp. 1–5.

[14] S. Tobiyama, Y. Yamaguchi, H. Shimada, T. Ikuse, and T. Yagi, ‘‘Malware

detection with deep neural network using process behavior,’’ in Proc. IEEE

40th Annu. Comput. Softw. Appl. Conf., Jun. 2016, pp. 577–582.

[15] A. Makandar and A. Patrot, ‘‘Malware analysis and classification using

artificial neural network,’’ in Proc. IEEE Int. Conf. Trends Autom., Com-

mun. Comput. Technol., Dec. 2016, pp. 1–6.

[16] L. Onwuzurike, E. Mariconti, P. Andriotis, E. De Cristofaro, G. Ross,

and G. Stringhini, ‘‘MaMaDroid: Detecting Android malware by building

Markov chains of behavioral models (extended version),’’ ACM Trans.

Privacy Secur., vol. 22, no. 2, pp. 1–34, 2019.

[17] G. Suarez-Tangil, S. K. Dash, M. Ahmadi, J. Kinder, G. Giacinto, and

L. Cavallaro, ‘‘DroidSieve: Fast and accurate classification of obfuscated

Android malware,’’ in Proc. 7th ACM Conf. Data Appl. Secur. Privacy,

2017, pp. 309–320.

[18] V. Avdiienko, K. Kuznetsov, A. Gorla, A. Zeller, S. Arzt, S. Rasthofer, and

E. Bodden, ‘‘Mining apps for abnormal usage of sensitive data,’’ in Proc.

37th IEEE Int. Conf. Softw. Eng., May 2015, pp. 426–436.

[19] Y. Ki, E. Kim, and H. K. Kim, ‘‘A novel approach to detect malware based

on api call sequence analysis,’’ Int. J. Distrib. Sensor Netw., vol. 11, no. 6,

2015, Art. no. 659101.

[20] A. Pektaş and T. Acarman, ‘‘Malware classification based on API calls and

behaviour analysis,’’ IET Inf. Secur., vol. 12, no. 2, pp. 107–117, 2018.

[21] T. Lee, B. Choi, Y. Shin, and K. Jin, ‘‘Automatic malware mutant detection

and group classification based on the n-Gram and clustering coefficient,’’

J. Supercomput., vol. 74, no. 8, pp. 3489–3503, 2015.

[22] P. Natani and D. Vidyarthi, ‘‘Malware detection using API function fre-

quency with ensemble based classifier,’’ in Proc. Int. Symp. Secur. Comput.

Commun., vol. 377, Nov. 2013, pp. 378–388.

[23] B. Kolosnjaji, A. Zarras, G. Webster, and C. Eckert, ‘‘Deep learning for

classification of malware system call sequences,’’ in Proc. Australas. Joint

Conf. Artif. Intell. Cham, Switzerland: Springer, 2016, pp. 137–149.

[24] L. Onwuzurike, M. Almeida, E. Mariconti, J. Blackburn, G. Stringhini,

and E. D. Cristofaro, ‘‘A family of droids-Android malware detection via

behavioral modeling: Static vs dynamic analysis,’’ in Proc. IEEE 16th

Annu. Conf. Privacy, Secur. Trust (PST), Aug. 2018, pp. 1–10.

[25] V. M. Afonso, M. F. de Amorim, A. R. A. Grégio, G. B. Junquera, and

P. L. de Geus, ‘‘Identifying Android malware using dynamically obtained

features,’’ J. Comput. Virol. Hacking Techn., vol. 11, no. 1, pp. 9–17, 2015.

[26] S. K. Dash, G. Suarez-Tangil, S. Khan, K. Tam, M. Ahmadi, and J. Kinder,

‘‘DroidScribe: Classifying Android malware based on runtime behavior,’’

in Proc. IEEE Secur. Privacy Workshops (SPW), 2016, pp. 252–261.

[27] H. Cai, N. Meng, B. Ryder, and D. Yao, ‘‘DroidCat: Unified dynamic

detection of Android malware,’’ Ph.D. dissertation, Dept. Comput. Sci.,

Virginia Polytechnic Inst. State Univ., Blacksburg, VA, USA, 2016.

[28] H. Cai, N. Meng, B. G. Ryder, and D. Yao, ‘‘DroidCat: Effective Android

malware detection and categorization via app-level profiling,’’ IEEE Trans.

Inf. Forensics Security, vol. 14, no. 6, pp. 1455–1470, Jun. 2019.

[29] K. Han, B. Kang, and E. G. Im, ‘‘Malware analysis using visualized image

matrices,’’ Sci. World J., vol. 2014, Jul. 2014, Art. no. 132713.

[30] P. V. Shijo and A. Salim, ‘‘Integrated static and dynamic analysis for mal-

ware detection,’’ Procedia Comput. Sci., vol. 46, pp. 804–811, Feb. 2015.

[31] S. Kilgallon, L. De La Rosa, and J. Cavazos, ‘‘Improving the effectiveness

and efficiency of dynamic malware analysis with machine learning,’’ in

Proc. IEEE Resilience Week, Sep. 2017, pp. 30–36.

[32] S. Chen, M. Xue, Z. Tang, L. Xu, and H. Zhu, ‘‘StormDroid: A streamin-

glized machine learning-based system for detecting Android malware,’’ in

Proc. 11th ACM Asia Conf. Comput. Commun. Secur., 2016, pp. 377–388.

[33] R. Lyda and J. Hamrock, ‘‘Using entropy analysis to find encrypted

and packed malware,’’ IEEE Security Privacy, vol. 5, no. 2, pp. 40–45,

Mar./Apr. 2007.

[34] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for

large-scale image recognition,’’ inProc. Int. Conf. Learn. Represent., 2014.

[Online]. Available: https://arxiv.org/abs/1409.1556

[35] A. L. Maas, A. Y. Hannun, and A. Y. Ng, ‘‘Rectifier nonlinearities improve

neural network acoustic models,’’ in Proc. 30th Int. Conf. Mach. Learn.,

vol. 28, 2013, p. 3.

[36] S. Ioffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep network

training by reducing internal covariate shift,’’ in Proc. Int. Conf. Mach.

Learn., vol. 37, Jul. 2015, pp. 448–456.

[37] Cuckoo Sandbox. Accessed: Oct. 19, 2018. [Online]. Available:

http://www.

cuckoosandbox.org/

[38] P. F. Brown, P. V. deSouza, R. L. Mercer, V. J. D. Pietra, and

J. C. Lai, ‘‘Class-based n-Gram models of natural language,’’ J. Comput.

Linguistics, vol. 18, no. 4, pp. 467–479, 1992.

[39] R. G. Brereton and G. R. Lloyd, ‘‘Support Vector Machines for classifica-

tion and regression,’’ Analyst, vol. 135, no. 2, pp. 230–267, 2010.

[40] M. Hassen, M. M. Carvalho, and P. K. Chan, ‘‘Malware classification

using static analysis based features,’’ in Proc. 32th Int. Conf. Mach. Learn.,

vol. 37, 2015, pp. 448–456.

[41] J. Cao, L. Drabeck, and R. He, ‘‘Statistical network behavior based threat

detection,’’ in Proc. Comput. Commun. Workshops, 2017, pp. 420–425.

[42] C. Ravi and R. Manoharan, ‘‘Malware detection using windows api

sequence and machine learning,’’ Int. J. Comput. Appl., vol. 43, no. 17,

pp. 12–16, 2012.

[43] M. Ni, T. Li, Q. Li, H. Zhang, andY. Ye, ‘‘FindMal: A file-to-file social net-

work based malware detection framework,’’ Knowl.-Based Syst., vol. 112,

pp. 142–151, Nov. 2016.

[44] Vxheavens. Accessed: Aug. 21, 2018. [Online]. Available:

https://83.133.184.251/virensimulation.org/index.html

[45] B. L. Zhao, X. Meng, J. Han, J. Wang, and F. D. Liu, ‘‘Homology analysis

of malware based on graph,’’ J. Commun., vol. 38, no. S2, pp. 86–93, Nov.

2017.

[46] L. Breiman, ‘‘Bagging predictors,’’ Mach. Learn., vol. 24, no. 2,

pp. 123–140, 1996.

[47] J. Stiborek, T. Pevný, and M. Rehák, ‘‘Multiple instance learning for mal-

ware classification,’’ Expert Syst. Appl., vol. 93, pp. 346–357, Mar. 2018.

[48] H.H. Jazi andA.A.Ghorbani, ‘‘Dynamic graph-basedmalware classifier,’’

in Proc. Privacy, Secur. Trust, 2017, pp. 112–120.

[49] L. Liu and B. Wang, ‘‘Malware classification using gray-scale images and

ensemble learning,’’ in Proc. Int. Conf. Syst. Inform., 2017, pp. 1018–1022.

[50] R. Pascanu, J. W. Stokes, H. Sanossian, M. Marinescu, and A. Thomas,

‘‘Malware classification with recurrent networks,’’ inProc. IEEE Int. Conf.

Acoust., Apr. 2015, pp. 1916–1920.

VOLUME 7, 2019 91655

D. Xue et al.: Malware Classification Using Probability Scoring and Machine Learning

[51] J.-S. Luo and D. C.-T. Lo, ‘‘Binary malware image classification using

machine learning with local binary pattern,’’ in Proc. IEEE Int. Conf. Big

Data, Dec. 2017, pp. 4664–4667.

[52] P. Burnap, R. French, F. Turner, and K. Jones, ‘‘Malware classification

using self organising feature maps and machine activity data,’’ Comput.

Secur., vol. 73, pp. 399–410, Mar. 2018.

[53] A. Shabtai, R. Moskovitch, C. Feher, S. Dolev, and Y. Elovici, ‘‘Detecting

unknown malicious code by applying classification techniques on OpCode

patterns,’’ Secur. Informat., vol. 1, p. 1, Dec. 2012.

[54] T. Wang and X. Ning, ‘‘Malware variants detection based on opcode image

recognition in small training set,’’ in Proc. IEEE Int. Conf. Cloud Comput.

Big Data Anal., Apr. 2017, pp. 328–332.

[55] J.-Y. Kim, S.-J. Bu, and S.-B. Cho, ‘‘Zero-day malware detection using

transferred generative adversarial networks based on deep autoencoders,’’

Inf. Sci., vols. 460–461, pp. 83–102, Sep. 2018.

[56] B. Kolosnjaji, G. Eraisha, G. Webster, A. Zarras, and C. Eckert, ‘‘Empow-

ering convolutional networks for malware classification and analysis,’’ in

Proc. Int. Joint Conf. Neural Netw., 2017, pp. 3838–3845.

[57] M. Rhode, P. Burnap, and K. Jones, ‘‘Early-stage malware prediction

using recurrent neural networks,’’ Comput. Secur., vol. 77, pp. 578–594,

Aug. 2018.

[58] X. Fu and H. Cai, ‘‘On the deterioration of learning-based malware detec-

tors for Android,’’ in Proc. IEEE 41st Int. Conf. Softw. Eng., Companion,

2019, pp. 350–351.

[59] H. Cai and J. John, ‘‘Towards sustainable Android malware detection,’’ in

Proc. ACM 40th Int. Conf. Softw. Eng., Companion, 2018, pp. 350–351.

[60] H. Cai, ‘‘A preliminary study on the sustainability of Android malware

detection,’’ ACM, New York, NY, USA, Tech. Rep., Jul. 2018. [Online].

Available: https://arxiv.org/abs/1807.08221

DI XUE is currently pursuing the Ph.D. degree

with the College of Computer Science and

Technology, Harbin Engineering University. His

research interests include big data, and networks

and information security.

JINGMEI LI received the M.S. and Ph.D. degrees

from Harbin Engineering University, Harbin,

China. She is currently a Professor with the

College of Computer Science and Technology,

Harbin Engineering University. Her research inter-

ests include computer architecture performance

optimization, big data and cloud computing, net-

works and information security, and embedded

technology.

TU LV is currently pursuing the master’s degree

with the College of Computer Science and Tech-

nology, Harbin Engineering University.

WEIFEI WU received the M.S. degree from the

College of Computer Science and Technology,

Harbin Engineering University, where he is cur-

rently pursuing the Ph.D. degree. His research

interests include cloud computing, and networks

and information security.

JIAXIANG WANG is currently a Professor with

the College of Computer Science and Technology,

Harbin Engineering University. His research inter-

ests include data security and access control, and

networks and information security.

91656 VOLUME 7, 2019

	INTRODUCTION
	RELATED WORK
	MALWARE CLASSIFICATION USING STATIC ANALYSIS AND VISUALIZED IMAGES
	MALWARE CLASSIFICATION USING DYNAMIC ANALYSIS AND API CALLS
	MALWARE CLASSIFICATION INTEGRATING STATIC ANALYSIS AND DYNAMIC ANALYSIS

	SYSTEM FRAMEWORK
	ANALYSIS OF GRAYSCALE IMAGES USING CNN WITH SPP
	GENERATION OF GRAYSCALE IMAGES
	CONSTRUCTION OF M-CNN

	ANALYSIS OF NATIVE API CALL SEQUENCES USING VARIABLE N-GRAMS AND MACHINE LEARNING
	EXTRACTION OF VARIABLE N-GRAMS FEATURES
	SELECTION OF VARIABLE N-GRAMS FEATURES
	SELECTION OF MACHINE LEARNING ALGORITHMS

	EXPERIMENTS AND RESULTS
	EXPERIMENTAL ENVIRONMENT AND DATA SET
	EVALUATION CRITERIA
	EVALUATION OF N-GRAMS AND MACHINE LEARNING
	EVALUATION OF PROBABILITY THRESHOLD IN PHASE 1
	EXPERIMENTAL RESULTS FOR MULTI-CLASSIFICATION
	CALCULATION OF TIME COST
	CONFUSION MATRIX
	COMPARISON WITH OTHER SIMILAR METHODS

	LIMITATIONS
	CONCLUSION
	REFERENCES
	Biographies
	DI XUE
	JINGMEI LI
	TU LV
	WEIFEI WU
	JIAXIANG WANG

