
Research Article

Malware Detection Based on Deep Learning of Behavior Graphs

Fei Xiao ,1,2,3 Zhaowen Lin ,1,2,3 Yi Sun ,2,3,4 and Yan Ma1

1Network and Information Center, Institute of Network Technology, Beijing University of Posts and Telecommunications,
Beijing, 100876, China
2Science and Technology on Information Transmission and Dissemination in Communication Networks Laboratory,
Shijiazhuang, 050081, China
3National Engineering Laboratory for Mobile Network Security, Beijing University of Posts and Telecommunications,
Beijing, 100876, China
4Network and Information Center, Institute of Network Technology/Institute of Sensing Technology and Business,
Beijing University of Posts and Communications, Beijing, 100000, China

Correspondence should be addressed to Yi Sun; sybupt@bupt.edu.cn

Received 26 October 2018; Revised 15 January 2019; Accepted 21 January 2019; Published 11 February 2019

Academic Editor: Luis Mart́ınez

Copyright © 2019 Fei Xiao et al. 	is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

	e Internet of 	ings (IoT) provides various bene
ts, which makes smart device even closer. With more and more smart devices
in IoT, security is not a one-device a�air. Many attacks targeted at traditional computers in IoT environment may also aim at other
IoT devices. In this paper, we consider an approach to protect IoT devices from being attacked by local computers. In response
to this issue, we propose a novel behavior-based deep learning framework (BDLF) which is built in cloud platform for detecting
malware in IoT environment. In the proposed BDLF, we
rst construct behavior graphs to provide e�cient information of malware
behaviors using extracted API calls. We then use a neural network-Stacked AutoEncoders (SAEs) for extracting high-level features
from behavior graphs.	e layers of SAEs are inserted one a
er another and the last layer is connected to some added classi
ers.	e
architecture of the SAEs is 6,000-2,000-500. 	e experiment results demonstrate that the proposed BDLF can learn the semantics
of higher-level malicious behaviors from behavior graphs and further increase the average detection precision by 1.5%.

1. Introduction

A large number of malware variants have been automatically
generated per day. Recent Symantec report [1] shows that new
pieces of malware grew by 36 percent from the year before in
2015 with total samples exceeding 430 million. Exponential
growth of malware caused a considerable threat in our daily
life.

Traditional computers bring a lot of attacks in IoT envi-
ronment. Malware attacks computers and uses the infected
computers to attack other connected devices in IoT envi-
ronment. For example, Trojan.Mirai.1 which is the variant
of Mirai can infect windows hosts and utilize these hosts to
infect other devices.	e infectedwindows can steal con
den-
tial information and transform the in�uenced devices into a
botnet to launch a new Distributed Denial of Service (DDoS)
attack. Many current traditional computers’ malware attacks
may also extend to other IoT devices. Unfortunately, there

are no ideal solutions to avoid Mirai and other IoT threats.
One approach aims to weaken these threats by protecting the
security of traditional computers in IoT environment.

	e fast-growing samples bring a large number of
demands for malware detection in IoT environment [2–
4]. With so many sophisticated malware samples, plenty
of researches have been concentrated on proposing miscel-
laneous malware detection methods to mitigate the rapid
growth of malware. Malware detection can be divided into
two main methods: static malware detection and dynamic
malware detection [5, 6]. Static malware detection also
refers to signature-based malware detection which examines
the content of malicious binary without actually executing
malware samples. Signature-based malware detection is able
to obtain full execution path. However, it can be easily
evaded by obfuscation techniques. In addition, signature-
based malware detection requires prior knowledge of mal-
ware samples.

Hindawi
Mathematical Problems in Engineering
Volume 2019, Article ID 8195395, 10 pages
https://doi.org/10.1155/2019/8195395

http://orcid.org/0000-0002-3789-6387
http://orcid.org/0000-0002-1317-4224
http://orcid.org/0000-0002-1427-8682
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/8195395

2 Mathematical Problems in Engineering

In response to the limitation of signature-based malware
detection, various dynamic malware detection methods have
been put forward [7]. Dynamic malware detection analyzes
the sample behaviors during execution and generally called
behavior-based malware detection. Behavior-based malware
detection methods include virtual machine and function
call monitoring, information �ow tracking, and dynamic
binary instrumentation.WindowsApplication Programming
Interface (API) call graph-basedmethod has been considered
as a good prospect in behavior-based malware detection for
a long time [8, 9].

Machine learning algorithms such as Decision Tree (DT),
K-Nearest Neighbor (KNN), Naı̈ve Bayes (NB), and Support
Vector Machine (SVM) are commonly used in malware
detection [10, 11]. 	e traditional machine learning algo-
rithms can potentially learn the behavior features from the
malware. Unfortunately, most machine learning algorithms’
performance depends on the accuracy of the extracted
features. In addition, it is o
en di�cult to extract meaningful
behavior features for improving malware detection per-
formance. Moreover, feature processing requires expertise.
	erefore, traditional machine learning algorithms are still
somewhat unsatisfying for malware detection.

Deep learning is a branch of machine learning that
attempts to learn high-level features directly from the orig-
inal data. In short, deep learning advocates the end-to-end
solution directly. It completely eliminates the whole process
of large and challenging project phase. Deep learning is
e�cient to study high-level features of samples by means of
multilayer deep architecture, and it has been widely used in
image processing, visual recognition, object detection, etc.
[12–17].

	is paper introduces a method to protect IoT devices
from being attacked by local computers. In this paper, we
build a behavior-based deep learning framework (BDLF)
which takes full advantage of Stacked AutoEncoders (SAEs)
and traditional machine learning algorithms for malware
detection. SAEs is one of the deep learning models that
consists ofmultiple layers of sparse AutoEncoders [18, 19].We
use SAEs model extracts high-level features from behavior
graphs and then do classi
cation by the added classi
ers
(i.e., DT, KNN, NB, and SVM). DT, KNN, NB, and SVM
combine with the SAEs model, called SAE-DT, SAE-KNN,
SAE-NB, and SAE-SVM, respectively. 	e proposed BDLF is
implemented in cloud platform.

In short, the main contributes are as follows:

(1) In this paper, we construct a novel behavior-based
deep learning framework called BDLF by combing
SAEs model with behavior graphs of API calls for
malware detection. 	e proposed BDLF aims to
obtain deeper semantics in behavior graphs rather
than previous API call sequences (e.g., n-gram).

(2) In the proposed BDLF, we investigate a deep learning
model of SAEs to automatically acquire high-level
representations of malware behaviors. Our exper-
iment results demonstrate that our method can
extract more meaningful abstract features and help to
improve the average precision in malware detection.

	e remainder of this paper is organized as follows.
Section 2 introduces related work. Section 3 describes the
proposed behavior-based deep learning framework.	e eval-
uation and experiment results are presented in Section 4,
which is followed by the conclusion and future work in
Section 5.

2. Related Work

With more and more malware attacks and smart devices’
connection in IoT environment, security is not a separate
event [20–22]. It is necessary to detect local computers’
attacks for weakening the threats to other smart devices in
IoT environment.

Malware detection proves an e�ective way for preventing
IoT threats. Jiawei et al. present a method for detecting
malware in IoT environment [23]. 	ey
rst convert the
extracted binaries into images and then use the convolutional
Neural Network (CNN) to detect malware. 	e experiment
demonstrated that their method obtains a good performance
in malware detection. Pa et al. analyze the IoT devices
and identify four malware families in IoT environment.
	ey propose an IoT honeypot and sandbox for analyzing
attacks.

Malware samples usually achieve their intentions by per-
forming malicious actions on operating system resources. In
[24], the proposed behavior model captures the interactions
between malware and operating system resources which
consist of
le, registry, process, and network. Sanjeev et al.
[25] observe the actions that are correlated with
le system,
process, network, and memory.

Behavior-based malware detection has witnessed a shi

towards API calls [26]. 	e pattern of API calls provides
an excellent expression which helps to “understand malware
samples better.” API calls provide e�cient information about
the runtime activities of a malware sample. Wu et al. [27]
transform API calls into regular expressions and then use
these rules to detect malware when a similar regular expres-
sion appeared. Taejin et al. [28] convert API calls into the
formatted codes and group the API data using an n-gram.
Pratiksha et al. [29] recognize malware by using API calls
and their frequencies. Sanjeev et al. [25] propose a frequency-
centricmodel for feature construction by employingAPI calls
and OS resources of malware and benign samples.

Remarkably, deep learning is being applied for malware
feature extraction and detection in recent years. Wenyi
et al. [30] propose a deep learning architecture with the
input rests on a sequence of API call events and null-
terminated objects. Bojan et al. [31] use theConvolutional and
Recurrent Network to analyze API call sequences in malware
classi
cation. Razvan et al. [32] explore a few variants of
Echo State Networks (ESNs) and Recurrent Neural Networks
(RNNs) to predict next API call. Omid E. et al. [33] extract
unigrams (1-gram) API call and create an invariant compact
representation of the malware behavior by using a Deep
Belief Network (DBN). Wookhyun et al. [34] present a deep
Recurrent Neural Network (RNN) to deal with the sequence
of API calls. William et al. [12] design a deep learning
architecture using SAEs model. 	e proposed architecture is

Mathematical Problems in Engineering 3

CP: Cloud Platform

IOTE: IoT Environment

Detector

Detector

① Local Light Agent Scanning

② Suspicious Files

③ Responses

Light Agent

Light Agent

Malware

Benign Samples

Monitoring

Files

Behavior graph construction

Behavior

graphs

Extracted

API calls Binary vectors

High-level

features

SAE-based malware detection

...

...

BDLF: Behavior-based Deep Learning Framework

DT

KNN

NB

SVM

SAEs model

h

1

h

3

h

2

①

②

③

Figure 1: System overview.

based on the API calls extracted from the Portable Executable
(PE)
les.

Previous works have shown that di�erent strategies can
be used to build the patterns of API calls. However, the
methods using API calls and their frequencies or API
call fragments are limited. Ammar Ahmed E. et al. [35]
demonstrate that combined API calls and their parameters
raise the malware detection accuracy rather than consid-
ered API calls separately. In their study, each malware
is represented as an API call graph by integrating API
calls and operating system resources. 	ey
rst extract
API calls and their parameters through preprocessing and
then use the proposed API call construction algorithm to
build integrating API call graph. At last, they calculate the
similarity between di�erent graphs to identify the input
sample.

Di�erent from the previous works, the proposed BDLF
is a combined approach using behavior graphs of API calls
and SAEsmodel. Our approach aims to capture the high-level
malicious behaviors for improving malware detection in IoT
environment.

3. Behavior-Based Deep Learning Framework

We in this section elaborate the proposed BDLF. 	e pro-
posed BDLF consists of two modules: behavior graph con-
struction and SAE-based malware detection.

3.1. System Overview. 	e overview of our proposed system
is displayed in Figure 1. 	e proposed system is composed of
IoT environment (IoTE) and cloud platform (CP) module.
	e IoTEmodule consists of local computers and other smart
devices. 	e proposed BDLF is implemented in CP’s detec-
tors, which is themainmodule for behavior construction and
malware detection. In the proposed BDLF, each program is
represented by a behavior graph which consists of many API
call graphs. API call graph integrates API calls with operating
system resources. A
er the behavior graphs are constructed,
CP transforms the behavior features into binary vectors and
then uses these vectors as input to the SAEs.	ere are 3 layers
in the proposed SAEs model. 	e architecture of the SAEs is

ℎ1(6,000)-ℎ2(2,000)-ℎ3(500), (1)

and the last hidden layer’s data are used as the input to
the added classi
ers (i.e., DT, KNN, NB, and SVM). 	e
aim of the proposed BDLF is to learn the semantics of the
high-levelmalicious behaviors and detectmalware e�ectively.
Speci
cally, the purpose and functionality of each component
are described as follows.
(1) IoTE module refers to an IoT environment. 	e

local computer contains an installed light agent which is
responsible for collecting runtime activities. In this module,
computers transfer the scanning information or suspicious

les which are newly installed to CP and receive responses
from CP.

4 Mathematical Problems in Engineering

Table 1: Operating system resource types and API calls.

Operating System
Resource Types

Lists of API Calls

Service OpenSCManager, OpenService, StartService

Process
NtOpenSection, ZwMapViewOfSection, NtFreeVirtualMemory, NtCreateSection, CreateProcessInternal,

ExitProcess,

Filesystem
NtCreateFile, NtReadFile, NtSetInformationFile, NtOpenFile, NtWriteFile, DeviceIoControl, CreateDirectory,

DeleteFile, FindFirstFile, NtDeviceIoControlFile, NtQueryInformationFile

Registry
RegOpenKey, RegSetValue, RegCloseKey, RegDeleteValue, RegQueryValue, RegCreateKey, NtOpenKey,

NtQueryValueKey, RegEnumValue, RegEnumKey, NtQueryKey, RegQueryInfoKey

Synchronization NtCreateMutant, NtOpenMutant

Network WSAStartup, getaddrinfo

System
NtDelayExecution, FindWindow, SetWindowsHook, RemoveDirectory, GetSystemMetrics,

LookupPrivilegeValue

(1) NtCreateFile,0x000000f8,. . . \nso1.tmp
(2) DeleteFile,. . . \nso1.tmp
(3) NtCreateFile,0x000000f8,. . . \Trojan-Downloader.Win32.Zlob.bcl
(4) NtQueryInformationFile,0x000000f8
(5) NtReadFile,0x000000f8
(6) NtReadFile,0x000000f8
(7) NtCreateFile,0x000000ec,. . . \nsi2.tmp
(8) NtSetInformationFile,0x000000f8

Box 1: Sample malware execution trace.

(2) CP provides an unlimited storage space. Detectors
in CP are responsible for detecting scanning data or
les
received from IoTE. For scanning information, CP constructs
behavior graphs and then transforms the API call graphs
into binary vectors which are used as input to SAEs models
for malware detection. For suspicious
les, CP executes
samples in Cuckoo Sandbox and then extracts API calls
from sandbox’s monitoring
les. A
er that, CP manages the
monitoring
les the same way as the scanning information.
A
er the detection, CP gives feedback to IoTE.

3.2. Behavior Graph Construction. 	e actions in behavior-
based malware detection must only include security-critical
operations and related independent operations [36]. We con-
sidered the actions performed on operating system resources
which include seven types such as service, process,
le
system, registry, synchronization, network, and system. An
action contains a set of operations which correspond to a
set of related API calls [37–39]. We list some relationships
between operating system resource types and some API calls
in Table 1.

API calls listed in Table 1 easily happen in benign samples.
However, the combination of these API calls may lead to
malicious purpose with elaborate design. We propose the
behavior graphs of API calls on malware. 	e proposed API
call graphs are designed to learnmalicious behaviors from the
combination of API calls. Box 1 represents a code fragment of
the malware:

(i) create nso1.tmp and then delete (in line (1), (2),
respectively).

(ii) create Trojan-Downloader.Win32.Zlob.bcl and obtain
its information; a
er that, read and set the
le information
of the Trojan-Downloader.Win32.Zlob.bcl (delete, rename, or
change attributes, in line (3), (4), (5), (6), (8), respectively).

(iii) create nsi2.tmp (in line (7)).
Figure 2 represents three features (API call graphs)

extracted from code fragment which is shown in Box 1. We
construct extracted features by grouping related API calls
which belong to the same operating system resource type. For
example, the feature sets

{��������	
��,������	
��},
{��������	
��, ��
������������
��	
��, ������-
	
��,�������������
��	
��},
{��������	
��}

are performed on
le resource nso1.tmp, Trojan-
Downloader.Win32.Zlob.bcl, and nsi2.tmp, respectively.
	e
rst API call graph contains NtCreateFile and DeleteFile.
NtCreateFile has two arguments: �1 (�1 = 0x000000f8)
and �2 (�2 = . . . \nso1.tmp). DeleteFile has one argument
�3 (�3 = . . . \nso1.tmp). 	e label �2 = �3 denotes
that the second argument of NtCreateFile has the same
value as the value of DeleteFile. 	e second API call
graph contains NtCreateFile, NtQueryInformationFile,
NtReadFile, and NtSetInformationFile. NtCreateFile has two

Mathematical Problems in Engineering 5

NtCreateFile DeleteFile

NtQueryInformationFile NtReadFile

NtCreateFile

NtCreateFile NtSetInformationFile

(Y1,Y2)

(Z1,Z2)

(X1,X2) (X3)

(Y3) (Y4) (Y5)

X1=0x000000f8, X2=...\nso1.tmp; X3=...\nso1.tmp

Y1=Y3 Y3=Y4 Y4=Y5

X2=X3

Y1=0x000000f8, Y2=...\Trojan-Downloader.Win32.Zlob.bcl; Y3=0x000000f8; Y4=0x000000f8; Y5=0x000000f8

Z1=0x000000ec, Z2=...\nsi2.tmp

Figure 2: Extracted malware features.

arguments: �1 (�1 = 0x000000f8) and �2 (�2 = . . . \Trojan-
Downloader.Win32.Zlob.bcl). NtQueryInformationFile has
one argument of �3 (�3 = 0x000000f8). NtReadFile has one
argument of �4 (�4 = 0x000000f8). NtSetInformationFile
has one argument of �5 (�5 = 0x000000f8). 	e same as the
labels �1 = �3, �3 = �4, and �4 = �5, �1 = �3 indicates that
the
rst value of NtCreateFile has the same value as the value
of NtQueryInformationFile. 	e third API call graph has
only one node of NtCreateFile which has two arguments of
�1 (�1 = 0x000000ec) and �2 (�2 = . . . \nsi2.tmp).

Our proposed API call graph is a directed acyclic graph
where nodes stand for either an API call or an operating sys-
tem resource and edges represent some types of dependence.
We de
ne the proposed API call graph as

� = (�, �, �, ��, ��,∑) . (2)

In the API call graph �: � stands for a set of nodes,
� ⊆ � × � represents a set of edges, and � is a function that
maps nodes � to API calls or operating system resources in
the alphabet set∑. Furthermore, each node in � and edge in
� has its attribute which can be represented as �� and ��,
respectively.

	e proposed system monitors the API calls and their
parameters to recognize malicious behaviors and has the
following rules to identify hostile attacks.

API calls and their extension functions perform the same
operation, and this kind of “sibling manipulation” leads to
identical features. For example, whenever there is a need
to open the registry, the open operations can be expressed
as RegOpenKeyExA, RegOpenKeyExW, or other forms of
expressions; we identify di�erent forms of expressions as
the same operation in our proposed system. In addition,
the same API call which results in identical features is
performed continuously more than two times, which we
regard as one operation. In Box 1, the API call NtReadFile is
performed twice on Trojan-Downloader.Win32.Zlob.bcl, and
the API call graph is built as a standalone implementation of
NtReadFile:

{��������	
��, NtQueryInformationFile, NtReadFile,
�������������
��	
��}.

	e proposedAPI call graphs do not consider the order of
the behaviors. Malware may perform malicious behaviors in
totally di�erent orders. 	e behaviors described in Figure 2:

{��������	
��,������	
��},
{NtCreateFile, NtQueryInformationFile, NtReadFile,
NtSetInformationFile},
{NtCreateFile},

are considered identical to

{NtCreateFile, DeleteFile},
{NtCreateFile},
{NtCreateFile, NtQueryInformationFile, NtReadFile,
NtSetInformationFile}.

Moreover, we use the API calls and operating system
resource instances to identify API call graphs. From the
example represented in Figure 2 we can see that the operating
system resource is used to identify related operations rather
than the feature vectors. 	is is because malware samples
inclined to use random
le names or other values every time
when they are executed.

3.3. SAE-BasedMalwareDetection. Before using the behavior
graphs of API calls as input to SAEs model, we transform
these features into binary vectors.We employ one-hot encod-
ing to identify unique behavior for everyAPI call graph�. Let
� be the number of the extractedAPI call graphs in the dataset
Δ. API call graphs constructed in dataset Δ are denoted by
binary feature vectors:

Δ�� = (V1, V2, . . . , V�, . . . , V�) (3)

where V� represents the �th API call graph in dataset Δ. In
our proposed system, the behavior graph of sample '� can
be represented as '��� . Sample '� is represented as ('��� , ��),

6 Mathematical Problems in Engineering

6,000

2,000

Input data

Encoder

Input data

6,000

Input data

Encoder

Decoder

500

2,000

Encoder

6,000

Decoder

2,000

Decoder

Output layer

Hidden layer

Input layer

Figure 3: SAEs model in malware detection.

where �� is the class label the sample '� belongs to. 	ere
are two designated class labels associated with the proposed
BDLF with �1 representing the class of malware and �2
representing the class of benign sample.

API call graphs in a sample '� are then transformed into
binary vectors and the behavior graph of sample '� can be
represented as

'��� = (V�1, V�2, . . . , V��, . . . , V��) . (4)

Here V�� = {0, 1}; if the sample '� contains the API call graph
V�, V�� = 1; otherwise V�� = 0.

In order to build a deep neural network, we apply
SAEs model which consists of multiple layers of sparse
AutoEncoders to extract features [40, 41]. An AutoEncoder
(AE) has three layers: input layer, hidden layer, and output
layer. 	e hidden layer is located between the input layer and
the output layer. An AE tries to use the encoder to map the
input data into a hidden layer and use the decoder to map
the hidden layer’s data into an output layer, so as the output
is similar to the input values. In short, an AE attempts to
learn the sparse representation of the input and reconstruct
the input data.

Figure 3 depicts the proposed SAEs model which con-
tains 3 layers. In our approach, the proposed SAEs model
consists of 3 hidden layers:

ℎ1(6,000)-ℎ2(2,000)-ℎ3(500). (5)

Di�erent hidden layers are trained one by one from
bottom to top. In the proposed SAEs model, the
rst layer
receives 11,164-sized original input data and trains simply as
an AE. A
er training is completed in an AE, the hidden layer
ℎ1 of 6,000-sized features generated in the
rst hidden layer
is used as the input to a new AE which is added on top of the
current AE.	e newAE obtains the current AE’s output as its
input and trained similarity. Generally, the *�ℎ hidden layer’s
data are used as the input of the (* + 1)�ℎ layer and trained
simply as an AE. Finally, the last hidden layer’s output is the
entire SAEs model’s output.

When all the training layers
nished, the SAEs model
converts the 11,164-sized original features into 500-sized
high-level features. 	ese 500-sized high-level features are
regarded as the new presentations of an executable program

le. 	e proposed SAEs model aims to reduce the number of
the features and describe the features in a compact high-level
expression.

Algorithm 1 describes a deep learning model which
includes SAEs and some added classi
ers for malware detec-
tion. Line (2) describes the input data activation[0] for each
sample in Δ. Once the
rst layer in line (4) is pretrained, it
can be used as an input to the next AE.We
ne-tune the deep
neural network a
er being pretrained in line (6) and put
nal
layer ℎ’s activation to the added classi
er to line (9). In line
(9),
 = 1 represents the classi
er of DT,
 = 2 represents
the classi
er of KNN,
 = 3 represents the classi
er of NB,
and
 = 4 represents the classi
er of SVM. Line (10) and line
(12) train the added classi
ers and output the class label �	
�
(malware or benign sample). In our experiment, ℎ equals 3, �
equals 11,164, and� equals 4.

4. Evaluation and Experiment Results

In this section, we
rst explain the dataset we used for eval-
uation and evaluation method. To evaluate the e�ectiveness
of our method, we then compare the proposed BDLF with
some shallow models which consists of DT, KNN, NB, and
SVM. Furthermore, we compare ourmethod with other deep
learning methods.

4.1. Dataset and Evaluation Method. We conduct the evalu-
ation with a dataset containing 1760 samples, where 880 are
malware samples, and the other 880 are benign samples. 	e
malware samples are collected from VX Heaven. We analyze
malware and benign samples in Cuckoo Sandbox. In our
experiments, we use *-fold cross-validation method [42] in
malware detection. In *-fold cross-validation, the original
dataset is randomly divided into * equal-sized parts. We use
10-fold cross-validation in malware detection. For 10-fold
cross-validation, we use 1584 samples for training and 176
samples for testing in each experiment.

We evaluate the proposed malware detection method by
using the 	1-�-���. 	1-�-��� is the weighting-harmonic-
mean of the '��-
/
�� and the ��-���. Given the notions of
true positive :' (the positive sample is correctly identi
ed
as the positive sample), true negative :� (the negative
sample is correctly identi
ed as the negative sample), false

Mathematical Problems in Engineering 7

Input: Δ including malware and benign samples ('1, '2, . . . , '�)
sample '� under detection

Output: �	
� // the result of the detection
(1) Begin

Construct binary feature vectors '��� = (V�1, V�2, . . . , V��, . . . , V��)
(2) Activation[0]= {'1�� , '2�� , . . . , '��� }
(3) For * = 1 to ℎ do
(4) Train AE[*] use the activation AE[* − 1] as the input and train *�ℎ hidden
(5) layer’s parameters
(6) Fine tune the neural network
(7) End
(8) For
 = 1 to� do //
 represents di�erent classi
er
(9) Add the classi
er
 to the top layer of the SAEs model
(10) Train the added classi
er
(11) End
(12) Output the class label �	
�
(13) End

Algorithm 1: Behavior-based deep learning model in malware detection.

Table 2: Precision, Recall, and F1-score.

Method Precision Recall F1-Score

DT 0.968 0.967 0.968

SAE-DT 0.986 0.992 0.989

KNN 0.975 0.975 0.975

SAE-KNN 0.981 0.993 0.987

NB 0.911 0.906 0.905

SAE-NB 0.948 0.999 0.973

SVM 0.975 0.975 0.975

SAE-SVM 0.960 0.999 0.980

positive 	' (the negative sample is incorrectly identi
ed as
the positive sample), and false negative 	� (the positive
sample is incorrectly identi
ed as the negative sample),
the '��-
/
�� ('), ��-��� (�), and 	1-�-��� are de
ned as
follows.

' = :'
:' + 	'

(6)

� = :'
:' + 	�

(7)

	1-�-��� = 2 ∗ ' ∗ �' + � (8)

4.2. Experiment and Evaluation Results. In this section, based
on the dataset introduced in Section 4.1, we evaluate the
experiments in two aspects: shallow models and deep learn-
ing models. We conduct eight experiments. 	e experiments
include some shallow models and SAE-based deep learning
models.

	e shallow models select behavior features by IG and
then use these features to predict the labels of the samples.
IG is used to denote information exchange and select certain
properties [43]. 	e measurement criterion in IG is how
much information the feature can bring to the system. 	e

more information the feature brings, the more important it
is. We describe IG in our previous work [11]. Shallow models
include DT, KNN, NB, and SVM.

We train deep leaningmodelswhich include the proposed
SAE-DT, SAE-KNN, SAE-NB, and SAE-SVM. 3 hidden
layers’ deep learning model

ℎ1(6,000)-ℎ2(2,000)-ℎ3(500) (9)

is implemented on Keras. We feed our 11,164 features to SAEs
model and convert them to 500-sized features.	e batch size
for the deep leaning models is 1,000. 	e SAE-based systems
(SAE-DT, SAE-KNN, SAE-NB, and SAE-SVM) are trained
with 100 epochs.

	e average '��-
/
��, ��-���, and 	1-�-��� are shown in
Table 2. It can be observed from Table 2 that the 	1-�-���
of the SAE-based methods outperformed the other shallow
methods. 	e best performance of the detection is that of
the SAE-DT model. In the proposed SAE-DT model, the
'��-
/
�� is as high as 98.6%. 	e high performances were
obtained from the SAE-DT, SAE-KNN, SAE-NB, and SAE-
SVMmodel, which indicate that the features learned from the
SAEsmodel help to improve the performance compared with
traditional classi
cation.

In addition, we compared our best 	1-�-��� with pre-
vious works. William et al. [12] design a deep learning

8 Mathematical Problems in Engineering

Table 3: 	e comparison between our study and other deep learning methods.

Method Features Machine Learning Model Precision Recall F1-Score

William et al. [12] API calls Stacked AutoEncoders 0.955 0.958 0.956

Zhenlong et al. [44] Permissions, Sensitive APIs, App actions Deep Belief Networks 0.968 0.968 0.968

Toshiki et al. [45] Malware communication Recursive Neural Network 0.976 0.962 0.969

Proposed SAE-DT Behavior graphs Stacked AutoEncoders 0.986 0.992 0.989

framework using the SAEs for intelligent malware detection
based on API calls. 	e experiment results on their testing
dataset demonstrate their proposed deep learning method
achieves 95.5% detection precision. Zhenlong et al. [44]
build an Android malware detection engine (DroidDetec-
tor) based on Deep Belief Networks (DBN). 	e proposed
DroidDetector can achieve 96.8% detection precision by
analyzing the features of required permissions, sensitive
APIs, and dynamic behaviors (13 app actions). Toshiki et
al. [45] focus on studying the similarity of data structure
between malware communications and applying Recursive
Neural Network (RNN) formalware analysis.	eir proposed
method achieves 97.6% detection precision. Our proposed
BDLF based on SAEs and behavior graphs achieves 98.6%
detection precision. It can be seen from Table 3 that our
proposed SAE-DT improves the performance in malware
detection. It is meaningful for mining the deep semantic
relationships in behavior graphs.

5. Conclusion and Future Work

In this paper, we build a novel behavior-based deep learn-
ing malware detection framework in IoT environment
for malware detection. By combining behaviors and Stack
AutoEncoder, we obtain optimal detection performance.	e
experimental results in Section 4 demonstrate that SAE-
based models can learn deeper abstract semantics features
and help to improve the average precision of the detection
by 1.5%. We are hopeful that additional works in SAEs
model can be applied in malware detection and classi
ca-
tion.

Data Availability

	e data used to support the
ndings of this study are
available from the corresponding author upon request.

Conflicts of Interest

	e authors declare that they have no con�icts of interest.

Acknowledgments

	is work was supported by the National Natural Sci-
ence Foundation of China (Grant no. 61601041), the Fun-
damental Research Funds for the Central Universities
(2018RC55), and the Beijing Talents Foundation (Grant no.
2017000020124G062).

References

[1] “Internet Security 	reat Report,” 2016, https://www.symantec
.com/content/dam/symantec/docs/security-center/archives/istr-
16-april-volume-21-en.pdf.

[2] H. Sun, X. Wang, R. Buyya, and J. Su, “CloudEyes: Cloud-
based malware detection with reversible sketch for resource-
constrained internet of things (IoT) devices,” So�ware: Practice
and Experience, vol. 47, no. 3, pp. 421–441, 2017.

[3] M. Alhanahnah, Q. Lin, Q. Yan, N. Zhang, and Z. Chen,
“E�cient signature generation for classifying cross-architecture
IoT malware,” in Proceedings of the 6th IEEE Conference on
Communications and Network Security, CNS 2018, Beijing,
China, June 2018.

[4] S. Sharmeen, S. Huda, J. H. Abawajy, W. N. Ismail, and M. M.
Hassan, “Malware threats and detection for industrial mobile-
IoT networks,” IEEE Access, vol. 6, pp. 15941–15957, 2018.

[5] S. Cesare, Y. Xiang, andW. Zhou, “Control �ow-based malware
variant detection,” IEEE Transactions on Dependable and Secure
Computing, vol. 11, no. 4, pp. 304–317, 2014.

[6] H. S. Galal, Y. B. Mahdy, and M. A. Atiea, “Behavior-based
features model for malware detection,” Journal in Computer
Virology and Hacking Techniques, vol. 12, no. 2, pp. 59–67, 2016.

[7] A. Kharraz, A. Sajjad, C. Mulliner, W. Robertson, and K. Engin,
“UNVEIL: a large-scale, automated approach to detecting ran-
somware,” in Proceedings of the USENIX Security Symposium,
pp. 757–772, 2016.

[8] A. A. E. Elhadi, M. A. Maarof, and B. I. A. Barry, “Improving
the detection of malware behaviour using simpli
ed data
dependent API call graph,” International Journal of Security and
Its Applications, vol. 7, no. 5, pp. 29–42, 2013.

[9] B. S. Abhishek and B. A. Prakash, “Graphs for malware detec-
tion: the next frontier,” in Proceedings of the 13th International
Workshop on Mining and Learning with Graphs (MLG), 2017.

[10] M. Fan, J. Liu, X. Luo et al., “Android malware familial
classi
cation and representative sample selection via frequent
subgraph analysis,” IEEE Transactions on Information Forensics
and Security, vol. 13, no. 8, pp. 1890–1905, 2018.

[11] Z. Lin, X. Fei, S. Yi, Y. Ma, C.-C. Xing, and J. Huang, “A secure
encryption-basedmalware detection system,”KSII Transactions
on Internet and Information Systems, vol. 12, no. 4, pp. 1799–1818,
2018.

[12] H. William, C. Lingwei, H. Shifu, Y. Yanfang, and L. Xin,
“DL4MD: A deep learning framework for intelligent malware
detection,” in Proceedings of the International Conference on
Data Mining (DMIN), p. 61, 	e Steering Committee of the
World Congress in Computer Science, Computer Engineering
and Applied Computing (WorldComp), 2016.

[13] O. Ronneberger, P. Fischer, and T. Brox, “U-net: convolutional
networks for biomedical image segmentation,” in Proceedings
of the International Conference on Medical Image Computing

https://www.symantec.com/content/dam/symantec/docs/security-center/archives/istr-16-april-volume-21-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/archives/istr-16-april-volume-21-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/archives/istr-16-april-volume-21-en.pdf

Mathematical Problems in Engineering 9

and Computer-Assisted Intervention (MICCAI ’15), vol. 9351 of
LectureNotes inComputer Science, pp. 234–241, Springer, Cham,
Switzerland, November 2015.

[14] W. Yang, Q. Liu, S. Wang et al., “Down image recognition based
on deep convolutional neural network,” Information Processing
in Agriculture, vol. 5, no. 2, pp. 246–252, 2018.

[15] J. Donahue, L. A. Hendricks, S. Guadarrama et al., “Long-term
recurrent convolutional networks for visual recognition and
description,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2015, pp. 2625–2634,
USA, June 2015.

[16] A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopa-
padakis, “Deep learning for computer vision: a brief review,”
Computational Intelligence and Neuroscience, vol. 2018, Article
ID 7068349, 13 pages, 2018.

[17] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: towards
real-time object detection with region proposal networks,” in
Advances in Neural Information Processing Systems, pp. 91–99,
2015.

[18] E. Protopapadakis, A. Voulodimos, A. Doulamis, N. Doulamis,
D. Dres, and M. Bimpas, “Stacked autoencoders for outlier
detection in over-the-horizon radar signals,” Computational
Intelligence and Neuroscience, vol. 2017, Article ID 5891417, 11
pages, 2017.

[19] L. Vareka and P. Mautner, “Stacked autoencoders for the P300
component detection,” Frontiers in Neuroscience, vol. 11, p. 302,
2017.

[20] S. Sicari, A. Rizzardi, L. A. Grieco, and A. Coen-Porisini,
“Security, privacy and trust in Internet of 	ings: the road
ahead,” Computer Networks, vol. 76, pp. 146–164, 2015.

[21] S. Singh and N. Singh, “Internet of 	ings (IoT): Security
challenges, business opportunities & reference architecture for
E-commerce,” in Proceedings of the 1st International Conference
on Green Computing and Internet of �ings, ICGCIoT 2015, pp.
1577–1581, IEEE, Noida, India, October 2015.

[22] L. Atzori, A. Iera, and G. Morabito, “	e internet of things: a
survey,”Computer Networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[23] J. Su, V. D. Vasconcellos, S. Prasad, S. Daniele, Y. Feng, and K.
Sakurai, “Lightweight classi
cation of IoT malware based on
image recognition,” inProceedings of the 2018 IEEE 42ndAnnual
Computer So�ware and Applications Conference (COMPSAC),
pp. 664–669, Tokyo, Japan, July 2018.

[24] M. Chandramohan, H. B. K. Tan, and L. K. Shar, “Scalable mal-
ware clustering through coarse-grained behavior modeling,” in
Proceedings of the 20th ACMSIGSOFT International Symposium
on the Foundations of So�ware Engineering, FSE 2012, p. 27,
ACM, New York, NY, USA, November 2012.

[25] S. Das, Y. Liu, W. Zhang, and M. Chandramohan, “Semantics-
based online malware detection: Towards e�cient real-time
protection against malware,” IEEE Transactions on Information
Forensics and Security, vol. 11, no. 2, pp. 289–302, 2016.

[26] Y. Ki, E. Kim, and H. K. Kim, “A novel approach to detect
malware based on API call sequence analysis,” International
Journal of Distributed Sensor Networks, vol. 2015, no. 6, Article
ID 659101, 9 pages, 2015.

[27] W. Liu, P. Ren, K. Liu, and H.-X. Duan, “Behavior-based
malware analysis and detection,” in Proceedings of the 1st Inter-
national Workshop on Complexity and Data Mining (IWCDM
’11), pp. 39–42, IEEE, September 2011.

[28] T. Lee, B. Choi, Y. Shin, and J. Kwak, “Automatic malware
mutant detection and group classi
cation based on the n-gram

and clustering coe�cient,” �e Journal of Supercomputing, pp.
1–15, 2015.

[29] P. Natani and D. Vidyarthi, “Malware detection using API
function frequency with ensemble based classi
er,” in Proceed-
ings of the International Symposium on Security in Computing
and Communication, vol. 377, pp. 378–388, Springer, Berlin,
Germany, 2013.

[30] W. Huang and J. W. Stokes, “MtNet: a multi-task neural
network for dynamic malware classi
cation,” in Proceedings
of the International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment, vol. 9721 of Lecture
Notes in Computer Science, pp. 399–418, Springer International
Publishing, Cham, Switzerland, 2016.

[31] B. Kolosnjaji, A. Zarras, G. Webster, and C. Eckert, “Deep
learning for classi
cation of malware system call sequences,”
in Proceedings of the Australasian Joint Conference on Arti
-
cial Intelligence, Lecture Notes in Comput. Sci., pp. 137–149,
Springer, Cham, Switzerland, 2016.

[32] R. Pascanu, J. W. Stokes, H. Sanossian, M. Marinescu, and A.
	omas, “Malware classi
cation with recurrent networks,” in
Proceedings of the International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 1916–1920, IEEE, Australia,
April 2014.

[33] O. E. David and N. S. Netanyahu, “DeepSign: deep learning
for automatic malware signature generation and classi
cation,”
in Proceedings of the International Joint Conference on Neural
Networks (IJCNN ’15), pp. 1–8, July 2015.

[34] J. Wookhyun, K. Sangwon, and C. Sangyong, “Poster: deep
learning for zero-day �ash malware detection,” in Proceedings
of the 36th IEEE Symposium on Security and Privacy, 2015.

[35] A. A. E. Elhadi, M. A. Maarof, B. I. A. Barry, and H. Hamza,
“Enhancing the detection of metamorphic malware using call
graphs,” Computers & Security, vol. 46, pp. 62–78, 2014.

[36] P. M. Comparetti, G. Salvaneschi, E. Kirda, C. Kolbitsch,
C. Kruegel, and S. Zanero, “E�ective and e�cient malware
detection at the end host,” in Proceedings of the USENIX Security
Symposium, vol. 4, pp. 351–366, 2009.

[37] M. Chandramohan, H. B. K. Tan, L. C. Briand, L. K. Shar,
and B. M. Padmanabhuni, “A scalable approach for malware
detection through bounded feature space behavior modeling,”
in Proceedings of the Automated So�ware Engineering (ASE),
2013 IEEE/ACM 28th International Conference, pp. 312–322,
November 2013.

[38] B. Ulrich, P. M. Comparetti, C. Hlauschek, K. Christopher,
and E. Kirda, “Scalable, behavior-based malware clustering,” in
NDSS, vol. 9, pp. 8–11, 2009.

[39] D. Canali, A. Lanzi, D. Balzarotti, C. Kruegel, M. Christodor-
escu, and E. Kirda, “A quantitative study of accuracy in system
call-basedmalware detection,” in Proceedings of the 21st Interna-
tional Symposium on So�ware Testing and Analysis, ISSTA 2012,
pp. 122–132, ACM, New York, NY, USA, July 2012.

[40] J. Yu, C. Hong, Y. Rui, and D. Tao, “Multitask autoencoder
model for recovering human poses,” IEEE Transactions on
Industrial Electronics, vol. 65, no. 6, pp. 5060–5068, 2018.

[41] K. Zeng, J. Yu, R. Wang, C. Li, and D. Tao, “Coupled deep
autoencoder for single image super-resolution,” IEEE Transac-
tions on Cybernetics, vol. 47, no. 1, pp. 27–37, 2017.

[42] Y. Zhang, S. Wang, P. Phillips, and G. Ji, “Binary PSO with
mutation operator for feature selection using decision tree
applied to spam detection,” Knowledge-Based Systems, vol. 64,
pp. 22–31, 2014.

10 Mathematical Problems in Engineering

[43] L. Wenke and D. Xiang, “Information-theoretic measures for
anomaly detection,” in Proceedings of the Security and Privacy
2001 IEEE Symposium, pp. 130–143, 2001.

[44] Z. Yuan, Y. Lu, and Y. Xue, “Droiddetector: android malware
characterization and detection using deep learning,” Tsinghua
Science and Technology, vol. 21, no. 1, Article ID 7399288, pp.
114–123, 2016.

[45] T. Shibahara, T. Yagi, M. Akiyama, D. Chiba, and T. Yada,
“E�cient dynamicmalware analysis based on network behavior
using deep learning,” in Proceedings of the GLOBECOM 2016 -
2016 IEEE Global Communications Conference, pp. 1–7, Wash-
ington, DC, USA, December 2016.

Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International

Journal of

Mathematics and

Mathematical

Sciences

Hindawi

www.hindawi.com Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

nalysNumerical AnalysisNumerical AnalysisericalNumerical AnalysisNumerical AnalysisericNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Discrete Dynamics in
Nature and Society

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Differential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at

www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

