
Malware Detection on Highly Imbalanced Data
through Sequence Modeling

Rajvardhan Oak
rvoak@berkeley.edu

University of California, Berkeley

Min Du
min.du@berkeley.edu

University of California, Berkeley

David Yan
david.yan@berkeley.edu

University of California, Berkeley

Harshvardhan Takawale
harshvardhantakawale@gmail.com

BITS Pilani

Idan Amit
iamit@paloaltonetworks.com

Palo Alto Networks

ABSTRACT

We explore the task of Android malware detection based on dy-

namic analysis of application activity sequences using deep learning

techniques. We show that analyzing a sequence of the activities

is informative for detecting malware, but that analyzing longer

sequences does not necessarily lead to a more accurate model. In

the real-world scenario, the number of malware is low compared

to that of harmless applications. Our dataset has more than 180,000

samples, two-thirds of which are malware. This dataset is signifi-

cantly larger than other datasets used in previous studies. Wemimic

real-world cases by randomly sampling a small portion of malware

samples. Using the state-of-the-art model BERT, we show that it is

possible to achieve desired malware detection performance with an

extremely unbalanced dataset. We find that our BERT based model

achieves an F1 score of 0.919 with just 0.5% of the examples being

malware, which significantly outperforms current state-of-the-art

approaches. The results validate the effectiveness of our proposed

method in dealing with highly imbalanced datasets.

CCS CONCEPTS

· Security and privacy → Malware and its mitigation.

KEYWORDS

malware detection; sequence modeling; imbalanced data

ACM Reference Format:

Rajvardhan Oak, Min Du, David Yan, Harshvardhan Takawale, and Idan

Amit. 2019. Malware Detection on Highly Imbalanced Data through Se-

quence Modeling. In 12th ACM Workshop on Artificial Intelligence and Se-

curity (AISec’19), November 15, 2019, London, United Kingdom. ACM, New

York, NY, USA, 0 pages. https://doi.org/10.1145/3338501.3357374

1 INTRODUCTION

Malicious applications known as malware have plagued personal

machines and large scale systems from even before the inception of

the internet. Once a malware application is installed in the system,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

AISec’19, November 15, 2019, London, United Kingdom

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6833-9/19/11. . . $15.00
https://doi.org/10.1145/3338501.3357374

it can potentially siphon off sensitive data to third parties, switch

on your camera, or consume your device resources for activities

like bitcoin mining. In severe cases, malware applications, such as

those that perform Advanced Persistent Threat (APT) [38] attacks,

have been linked to election disruption [15] and murder [22]. As the

advent of the internet has given rise to new methods of remotely

installing and running software, the potential avenues for infect-

ing systems have only grown in number. The increasing threat

of malware has caused companies to spend billions of dollars on

security systems and pressured consumers to spend hundreds on

malware detection services. Traditional malware detection mecha-

nisms [6, 8, 42] explore rule-based detection methods to monitor

the activities of each software, and classify it as either benign or

malicious. The shortcomings of this approach are that it tends to

have a high false positive rate due to varying system behaviors,

and may require a significant amount of domain knowledge to

construct heuristics. Attackers can also disguise malware as benign

applications by spreading apart harmful actions among a sequence

of harmless or normal ones. In the past, such shortcomings have

been a huge detriment to malware detection services.

Recent advances in machine learning have shown increasingly

impressive results in a wide variety of classification tasks, such as

image classification [32] and natural language processing [10]. In

the area of natural language processing, two of the most well known

model architectures are Long Short-TermMemory (LSTM) [17], and

the recent state-of-the-art language model, Bidirectional Encoder

Representations from Transformers (BERT) [10]. LSTM networks

are a special class of neural networks that excel at remembering

historical sequence data. They use the current as well as a number

of history inputs for prediction. BERT attempts to create deep

bidirectional representations by pre-training on unlabeled text with

masked words and sentences. Its pre-trained model can then be fine-

tuned with a single output layer for a wide variety of downstream

tasks with a minimum amount of additional training needed. This

model has been shown to be empirically very powerful at various

text classification tasks, while also requiring significantly less time

to train.

LSTM has already been shown to be effective in log file analysis

and system anomaly detection [11]. Log files or activity sequences

are similar to language models in the sense that both consist of

ordered sequences of tokens. Our hypothesis, therefore, is that ap-

plying language models on malware detection would perform well.

We validate this through some initial experiments. From these find-

ings, we then hypothesize that BERT would also perform well for

Session: Malware Detection AISec ’19, November 15, 2019, London, United Kingdom

37

https://doi.org/10.1145/3338501.3357374
https://doi.org/10.1145/3338501.3357374


the task since it performs even better on several language modeling

tasks. This hypothesis is not only validated through experiments

which include our entire dataset, but also in the ones where we

intentionally re-balanced the dataset to contain more harmless ex-

amples, than harmful ones, simulating the unbalanced nature of

malware datasets [7]. This is a significant finding since traditional

machine learning models do not work well with such data, pushing

all predictions to the majority class.

In our experiments, we use a dataset produced by Palo Alto

Networks WildFire [3, 25, 43], from which we extract the labeled

action sequences of Android applications. The actions in the dataset

are not a log of the specific function calls, but rather a high level

description of each application’s behavior. Such actions include

łAPK file used the HTTP POSTmethodž and łAPK file created a hidden

filež. These activities are recorded while the application is being

monitored, and a chronological sequence of the activities describe

the behavior of the application.

We summarize our contributions as follows.

(1) We propose and implement a supervised LSTM based ap-

proach for malware classification, validating the assumption

that sequence information helps with the classification. We

achieve a near-perfect F1 score of almost 0.985 on a large

dataset having 183, 000 samples, 2/3 of which being malware.

(2) To deal with highly imbalanced datasets which are common

in real-world cases, we borrow the knowledge learned from

natural language domain. Using the state-of-the-art language

model BERT, we achieve an F1 score of 0.919 on a dataset

with only 0.5% malware samples.

(3) We systematically study the benefits brought by BERT pre-

training, by comparing the detection results of the models

with different initializations (randomly initialized or pre-

trained on Android data), and trained on small Android

datasets having different sizes. We show that using a pre-

trainedmodel is particularly useful when the labeled training

dataset is small. The pre-trained models are also available

for downloading to save further malware detection efforts.

(4) We extensively study the effectiveness of applying BERT

model for Android malware detection with multiple exper-

iment settings, as well as studying the activity sequences

in-depth, and present various statistics to understand the

validity of utilizing such data. This study may shed light on

future work regarding other security sequence data analysis.

The rest of the paper is organized as follows. Section 2 intro-

duces some basic preliminaries about LSTM networks and BERT

sequence modeling approach. Section 3 illustrates our data and ap-

proach towards the malware classification task. Section 4 presents

the evaluation results of the proposed methods, along with multi-

ple baselines. Finally, we review previous work in Section 5 and

conclude the paper in Section 6.

2 PRELIMINARIES

2.1 Overview of Android malware detection
and Wildfire

Android is a free, open source, Linux-based operating system for

mobile devices. It is structured in the form of a software stack

comprising of several major components: a Linux kernel operating

system, an Android run-time environment, middleware, libraries,

and applications.

Malware detection has two main approaches: static and dynamic

analysis. In static analysis [12] , the application is analyzed with-

out being executed. The detection is usually based on signatures,

program structure similarity (e.g., AST), and used utilities. In dy-

namic analysis [12] , the inspected program is run and observed

in a sandbox. The detection is based on the application’s actual

activities such as API calls being made and Internet domains being

contacted. A service called WildFire [25] provided by Palo Alto

Networks can perform both types of analysis. For dynamic analy-

sis, WildFire generates a sequence of activities while running an

application in a sandbox. An example activity is łAPK file leaked the

phone number of the devicež, which possibly indicates that a privacy

leakage issue is detected. (APK stands for Android Package Kit, the

Android application we examine.)

2.2 LSTM

Long short-term memory (LSTM) [17] is a type of recurrent neural

network (RNN) that can process long sequences of data. As an

RNN, LSTM contains feedback connections that include previous

outputs in the current input, as shown in Figure 1. Because of

this, LSTM models are able to analyze entire sequences instead of

single examples, and have been broadly applied to time series data

analysis. An LSTM cell contains three gates: an input gate it which

controls the size of the input, a forget gate ft that determines what

of information from the feedback connections to discard, and an

output gate ot . Assuming xt is the input at step t and ht denotes

the output of the LSTM cell, ht could be calculated as follows:

it = σ (xtUi + ht−1Wi ); ft = σ (xtUf + ht−1Wf );

ot = σ (xtUo + ht−1Wo ); ct = tanh(xtUc + ht−1Wc );

mt =mt−1 ⊙ ft + ct ⊙ it ; ht = ot ⊙ tanh(mt )

(1)

Ui ,Wi ,Uf ,Wf ,Uo ,Wo are the LSTM network parameter matrices

that can be trained through deep learning optimization methods,

while ct ,mt−1 andmt are the internal states used to carry infor-

mation from the input and previous steps.

LSTM 

cell

Input

Output

re
c
u

rr
e

n
t

in
p

u
t

(a) LSTM network

LSTM 

cell

Output

Time 

dimension

LSTM 

cell

LSTM 

cell

Input(t-3) Input(t-2) Input(t-1)

! − 3 ! − 2 ! − 1 !

Unroll

(b) unrolled version of Figure 1(a)

Figure 1: LSTM architecture.

2.3 BERT

Bidirectional Encoder Representations fromTransformers [10] (BERT)

is a recently proposed language model which has obtained state-of-

the-art results on several tasks in the natural language processing

(NLP) space. At the heart of BERT lies the Transformer [37]. In

contrast to recurrent neural networks such as LSTMs, transformers

rely entirely on attention mechanisms for sequence modeling.

Session: Malware Detection AISec ’19, November 15, 2019, London, United Kingdom

38



BERT utilizes a new pre-training objective called the Masked

Language Model (MLM). In MLM, some words from the input text

are randomly masked, and the model tries to predict the masked

words based on context. While previous language models generate

unidirectional representations, BERT looks at sentences in both the

left-to-right and the right-to-left directions to generate bidirectional

representations. The key innovation of BERT is that it can learn

the context of a particular token with respect to tokens both before

and after it. Pre-trained BERT representations can be fine-tuned

with just one additional output layer for custom classification tasks.

BERT has established state-of-the-art results on natural language

classification tasks such as SST-2 [33] andCoLA [39]. The pretrained

BERT model on BooksCorpus (800M words) and English Wikipedia

[10] saves a lot of training time since only a few epochs of fine-

tuning are needed to obtain desired results[13, 28, 36].

3 METHODOLOGY

3.1 Data sources

In this paper, we focus on Android malware detection by analyzing

the activity sequence an application produces, which describes the

application’s chronological behavior after installation. The activities

may refer to the Android operating system APIs called by the

application, internal function calls, or various events identified

by some monitoring services (e.g., WildFire). There are several

properties for the activities being collected: 1) the types of activities

are from a finite set; 2) each activity has the same meaning across

all applications on the same Android operating system; and 3) the

finer the granularity of the activities, the better the detection results

can be. As stated in Section 2.1, for each Android application to be

investigated, WildFire generates a sequence of high level activities.

A snippet of an activity sequence is shown in Figure 2.

Note that not all aspects of the activities are analyzed in this

paper. For example, studying records of contacted domains is a

great method of detecting malware, but orthogonal to this paper.

Investigating a different approach that considers all aspects of the

activities for malware detection is considered as our future work.

APK file used SSL
APK file set up an alarm 
APK file got a system property 
APK file read a file on SDC 
APK file connected to host 
APK file set up an alarm 
APK file requested BT access 
…

Figure 2: A snippet of activity sequence by WildFire.

3.2 Data pre-processing

As previously mentioned, each activity is a high level description

of the Android application behaviour, e.g., łAPK file read a file on

the devicež. To make the activities learn-able by machine learning

models, we need to parse them into digital representations that

could be taken as model inputs. Recall that a property of the ac-

tivities is that they exist in a finite set. Therefore, we can use an

integer to represent each of the 174 distinct activities. Based on the

requirements of downstream machine learning applications, these

integers can either be regarded as symbols and encoded accordingly,

or simply used as the numerical inputs of corresponding models.

3.3 Analyzing Android activities

In this section, we first review the possible ways to identify Android

malware by analyzing activity sequences, and then present our

proposed methodology.

3.3.1 Representation alternatives. The naive approach for detecting

malware is to analyze activities made by an application individually.

This approach uses only a small part of the available information. In

most cases, a single activity does not provide enough information

to determine if an entire sequence is malicious. More often than not,

a sequence of normal activities combined together could achieve a

malicious effect, and that sequence can be interleaved among other

activities to mask the intended purpose.

A potential solution to this problem is to use a method that ana-

lyzes multiple activities together, such as N-gram. N-gram analysis

processes a continuous sequence of activities together. The length

of the continuous sequence can be adjusted according to the ex-

pected length of malicious sequences. However, this technique has

many shortcomings. To begin with, the number of N-grams is |L|N ,

exponential with respect to the N-gram length given an alphabet L,

forcing the use of short N-grams. Also, N-grams tend to be redun-

dant. If the real indication is a sequence longer than the length of

the N-gram, any of its sub-sequences will be common. Of course,

the predictive power of each sub-sequences will be significantly

lower than that of the full one. Lastly, locality is not guaranteed. In

trying to evade detection, a malicious actor can deliberately delay

the activities, and inject dummy activities to make the represen-

tation and detection of such sequences harder. To validate these

shortcomings, we provide 1-gram and 2-gram analysis of the data

using mutual information in Section 4.4.

Thankfully, recent developments in deep neural networks have

made malware detection more automatic and intelligent. A model

can be fed with the entire activity sequence, extract the relevant

features indicating malicious activity, and ignore the dummy activi-

ties that were meant to throw it off. From this, the model should be

able to construct an accurate classification of the application. Both

LSTM and BERT employ this approach in the experiments.

3.3.2 Utilizing advanced language models. Malware samples are

extremely hard to find. The ratio of malicious Android applications

in real-world ranges somewhere between 0.01% to 2%. Because of

this, having a model that can be trained on an imbalanced dataset

is highly desirable. This, unfortunately, is a major challenge for

many existing machine learning methods, including LSTM. As

presented in Section 3.3.1 and evaluated in Section 4.2, sequence

information greatly helps with malware detection and eliminates

the efforts of manual feature engineering. This observation inspires

us to experiment with more advanced language models that surpass

LSTM, especially for highly imbalanced datasets.

Session: Malware Detection AISec ’19, November 15, 2019, London, United Kingdom

39



BERT is the state-of-the-art language model for several natural

language tasks [33, 39]. The predecessor of BERT is called Trans-

former [37]. In contrast to recurrent neural networks that use his-

tory sequences for prediction, Transformer utilizes a self-attention

mechanism that is able to model relationships between all words

in a sentence. BERT takes this a further step and uses bidirectional

training of Transformers. BERT has a pre-training mechanism that

is able to effectively learn the parameters through self-supervised

learning on unlabeled datasets. The core innovation of BERT lies

in the use of the masked language model. Before feeding word se-

quences into BERT, 15% of the words in each sequence are replaced

with a masking token. The model then attempts to predict the orig-

inal value of the masked word(s) based on the context provided by

the other words in the sequence. An important point to note here is

that it uses the whole context, i.e., words both before and after the

masked word to predict what it should be. A model pre-trained on

this task is able to effectively model relationships between tokens

(words) in different contexts.

BERT can be used in two ways. First, the bidirectional architec-

ture of a self-attention Transformer model is a powerful approach

to extract features for input sequences. As a result, the BERT model

can be trained from scratch for any machine learning task with se-

quence data as inputs, and corresponding labels as outputs. Second,

the pre-training mechanism presented in [10], as well as summa-

rized above, is able to capture contextual encodings and essential

sequence relations in the NLP domain through training on large

datasets such as Wikipedia data. These pre-trained models can be

fine-tuned with labeled, domain-specific sequences for downstream

machine learning tasks.

Our first finding is that a pre-trained BERT model on NLP data

performs surprisingly well for Android malware detection, after

fine-tuning on Android activity sequence data. Our intuition is that

the bi-directional training of a self-attentionmechanism using BERT

effectively learns the (non-continuous) sequence patterns that are

relevant to Android maliciousness. Moreover, the pre-training on

natural language data, although having different contextual encod-

ings with Android activity data, helps to identify the parameters

that are important for sequence modeling, while deactivating oth-

ers. We extensively study both effects in the experiments section,

which validates our assumption.

The fine-tuning process on Android sequence data works as in

Figure 3. BERT is essentially the bi-directional training process of

a multi-layer Transformer model. The BERT encoder produces a

sequence of hidden states. For classification tasks, we need to reduce

the sequence of tokens to a single value. In order to do this, we

consider the hidden state corresponding to the token representing

the first activity. As the model is trained with bi-directional self-

attention mechanism, it is expected that the token encodes all of

the sequence information. As shown in Figure 3, we utilize this

architecture and add a final softmax layer for classification. In order

to fine-tune our model for the specific malware detection task,

we train it with labeled Android activity sequence data. During

fine-tuning, all pre-trained model parameters are adjusted with the

added classification layer to optimize for the task.

Note, that if a pre-trainedmodel is not available or suitable, BERT

architecture can also be trained from scratch for domain specific

tasks with labeled datasets. For Android malware classification

T
R
A
N
S
F
O
R
M
E
R

T
R
A
N
S
F
O
R
M
E
R

<CLS>

11

2

2

35

6

T1

T2

T3

T4

T5

T6

……….

H1

H2

H3

H4

H5

H6

SOFTMAX

Benign(0) / Malware (1)

Figure 3: Fine-Tuning BERT for malware classification. Ti
are the intermediate states and Hi are the final output.

from activity sequences, training the model is the same procedure

presented in Figure 3 without the pre-training.

In our evaluation, we explore the effectiveness of Android mal-

ware detection of both BERT models pre-trained on NLP datasets,

and BERT models trained from scratch. The results suggest that

the BERT model architecture, and the pre-training process on NLP

data are both important in achieving strong F1 scores.

4 EXPERIMENTS

In this section, we systematically evaluate the effectiveness of us-

ing BERT for Android malware detection with unbalanced labels,

through comparing with multiple baseline models and exploring

different settings. The source code for our BERT approach, and

the pretrained models are available at https://github.com/sunblaze-

ucb/Android-malware-detection-imbalanced.

4.1 Set up

Previous work have contributed several datasets such as DREBIN[4]

and Kharon[20], to foster research related to Android malware.

However, these datasets do not contain the sequence information

regarding activities. The dataset used for this work is the Android

malware family dataset released by Palo Alto Networks [3], which

contains WildFire [25] reports consisting of activity sequence infor-

mation obtained from over 180, 000 APK files. WildFire is a cloud

service for malware analysis provided by Palo Alto Networks. Wild-

Fire has more than 26, 000 customers, who may feed the service

with various suspicious files logged by firewalls, endpoints, and

cloud services for security analysis. After receiving a suspicious

file, WildFire applies machine learning combined with static anal-

ysis, dynamic analysis and threat intelligence to identify known

and novel threats. In the process of dynamic analysis, WildFire

produces a dynamic activity sequence made by the file being in-

vestigated. The dataset contains 60, 390 (33%) benign, and 120, 780

(66%) malware files.

For each Android application, the collected data includes various

information, such as contacted domains, requested permissions,

a sequence of dynamic activities made by the application, and

the certificate used to sign the APK. As explained in Section 3.1,

Session: Malware Detection AISec ’19, November 15, 2019, London, United Kingdom

40

https://github.com/sunblaze-ucb/Android-malware-detection-imbalanced
https://github.com/sunblaze-ucb/Android-malware-detection-imbalanced


this paper focuses on the analysis of dynamic activity sequences.

Therefore, for each application, we only extract its application

sequence from the WildFire report, while ignoring all others.

4.1.1 Data pre-processing. This section illustrates how we process

the WildFire reports to produce sequences of activities that can

be fed into machine learning models for malware classification.

The analysis reports generated by WildFire[25] are in XML format.

To obtain the action sequence for each application, we extract

the action description in chronological order by following each

< ACTION − MONITORED > tag in the XML files. A unique

integer token is assigned to each distinct action. The generated

lookup table (i.e., the vocabulary set for machine learning models),

contains a total of 174 distinct actions/activities.

Finally, with the lookup table, we obtain a sequence of integers

representing the dynamic action sequencemade by each application.

Figure 4 presents the sequence length distribution. Note that there

is a negligible number of activity sequences that contain more than

1, 000 actions. These are ignored in this figure for better illustration.

0 200 400 600 800 1000
Length of Activity Sequence

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

Pr
ob

ab
ilit

y D
en

sit
y

Benign 
Malware

Figure 4: Distribution of the length of activity sequences for

benign and malware samples.

After pre-processing, we get a total of 183000 sequences, out

of which 120, 780 are malware and 60, 390 are benign. Each token

in the sequences is an integer from 1 to 174, indicating 174 pos-

sible activities. Note that the characteristics of the sequences are

very different from those of any natural language. Therefore, the

excellent performance shown by BERT demonstrates remarkable

versatility of the architecture and the pre-trained model.

4.1.2 Evaluation metrics. To evaluate our model, we will use four

key metrics: Accuracy, Precision, Recall, and F-1 score, which could

be calculated from the number of true positives (TP), true negatives

(TN), positives (P) and negatives (N) [40]. Accuracy is the fraction of

the number of correct predictions over the total number of samples,

calculated as (TP + TN )/(P + N ). Precision=TP/P ′ indicates the

correctness of the predictions indicating malware. Recall=TP/P

measures the percentage of malware being detected by the model.

Finally, F1 score=2· Precision · Recall / (Precision+Recall) together

is an informative, overall evaluation of the model.

4.2 Sequence analysis for malware detection

In this section, we explore how much better sequence analysis

performs than bag-of-words analysis. We use methods that analyze

activities as bag-of-words as baselines, and compare the evaluation

results with those that analyze the sequences.

4.2.1 Dataset. For this set of experiments, we utilize all available

data samples, and randomly split them into a training dataset and

a test dataset. Our training data consists of 75% (137, 250 samples)

of the total dataset, while the remaining 25% (45, 750 samples) is

used as test data. The train-test split is stratified, which means that

both the training and test data have the same ratio of malware and

benign applications.

4.2.2 Malware detection without sequence analysis. In this section,

we consider the activities made by the application but not the order

in which they are made. This is analogous to the Bag of Words [44]

approach in language modeling where a piece of text is represented

as the bag (multi-set) of the words it contains. Specifically, each ac-

tivity sequence, e.g., <5,3,2,2,1>, is represented as an activity vector,

for example, [1,2,1,0,1,...], where the i-th position represents the

token i (indicating an activity as in Section 4.1), and the value at

each position means the index of the activity in that sequence. To

eliminate the influence of the background activities (the equivalents

of stop words such as łthež, łandž in NLP domain) that are ubiqui-

tous among all vectors, each value in the activity vector is further

replaced by its Term Frequency-Inverse Document Frequency (TF-

IDF) [27] value. For classification of the activity vectors, we use a

multi-layer perceptron approach [16]. Our neural network has 3

hidden layers, each with 100 neurons, which give the optimal re-

sults among all hyperparameter combinations we’ve experimented

with. We observe the accuracy, precision, recall and F1 score values

to be 0.96 each.

A disadvantage of this approach is that it is only suitable for

offline detection where the test dataset is available while the model

is being trained. This is because the TF-IDF vector construction

needs to be consistent across all activity vectors in training and test

datasets. In our experiment, we first process the whole dataset with

the TF-IDF approach, and then split the resulting TF-IDF activity

vectors into training and test datasets.

4.2.3 Malware detection with sequence analysis. Compared with

the TF-IDF approach, analyzing each activity sequence directly for

classification makes malware detection easier. Moreover, it has the

potential to further boost malware detection performance through

sequence analysis. For this experiment, we simply use all activ-

ity sequence data after pre-processed in Section 4.1, without any

further processing.

We use LSTM as described in Section 2.2 for sequence classi-

fication. Since the length of each sequence varies as in Figure 4,

we truncate each sequence with a fixed length, H . Specifically, for

each sequence, we only use the first H tokens for classification. A

sequence shorter than H is padded with the value 0, which rep-

resents no activity. We vary H from 5 to 75 and test the malware

detection performance. The results are shown in Table 1. Initially,

all measurements continue to improve with the increase of length

H until H = 50. We observe that in Figure 4, most activity se-

quences, especially malware, have sequence lengths smaller than

Session: Malware Detection AISec ’19, November 15, 2019, London, United Kingdom

41



50, which means that H = 50 could capture most information for

most sequences. However, F1 score drops when H increases to 75.

We believe this is caused by the memorability of LSTM. Specifically,

the longer the input sequence, the harder it is for LSTM network

to remember the full history, especially the first several tokens in

the sequence. Nevertheless, we show that the best performance

for LSTM (F1 score = 0.985) is almost perfect, and outperforms the

TF-IDF approach. These related proposals are discussed in greater

detail in Section 5. We also tested LSTM with sequences that have

varying lengths, and found that such a network trained very slowly,

and performed worse than the results in Table 1.

Sequence Length Accuracy Precision Recall F1 score

5 0.837 0.826 0.909 0.871

10 0.871 0.892 0.895 0.894

20 0.901 0.909 0.929 0.919

50 0.975 0.989 0.979 0.985

75 0.941 0.970 0.931 0.942

Table 1: LSTM performance with varying sequence length.

4.3 Dealing with highly imbalanced dataset

As explained above, malware samples are rare. To estimate the pos-

itive rate, i.e., the ratio of malware among all Android applications,

we utilize the AutoFocus system [24] provided by Palo Alto Net-

works. AutoFocus is a service which combines machine learning

analysis with human intelligence on the samples collected by the

WildFire system. It utilizes up to trillions of data points to deliver

improved contextual threat intelligence. This analysis allows us

to drill down into the dataset with respect to data type and time.

According to the AutoFocus analysis, the positive rate varies based

on different years, definitions or scopes of the collected samples.

When considering instances of programs, popular applications like

"Google Play" will be dominant, and the ratio of malicious instances

are negligible. If we consider application level, e.g. counting all in-

stances of "Google Play" as a single application, the positive rate

of malicious applications rises to around 0.01%. Maliciousness can

be more popular in łnewž files, defined by their creation time or

first exposure to security vendors. For new files, positive rate in-

creases to 0.5% for Windows executable files, and to 2% for Android

executable files.

4.3.1 Dataset sub-sampling. A special focus of this paper is dealing

with highly imbalanced datasets. For this purpose, based on the

original dataset described in Section 4.1, we deliberately construct

datasets that have different low positive ratios. Specifically, we uti-

lize all benign application sequences (60, 390 in total), and randomly

select some malware sequences according to the positive ratio. For

each experiment, we vary the positive ratio among the values of

0.2%, 0.5%, 1%, 2%, and 5%. We don’t analyze cases of ratios of the

order 0.01% and below, because they would result in extremely low

positive examples, making the learning and estimation prone to

errors.

4.3.2 Attempts of outlier detection. In the past, when the percent-

age of anomalies is extremely low in the dataset, unsupervised

outlier detection has been a popular direction to pursue. In particu-

lar, unsupervised detection aims to model a distribution that fits

the majority of the samples in the dataset, and label the ones that

do not fit as outliers.

In particular, for unsupervised outlier detection, we present two

pervasively used methods, clustering and Autoencoder [16], and

a recently proposed state-of-the-art method, DAGMM [45]. We

also compare with a semi-supervised anomaly detection method,

DeepLog[11], which is the state-of-the art approach for system

log sequence anomaly detection. These baselines help to show the

difficulty in dealing with highly imbalanced datasets. For this set of

experiments, we use two datasets from Section 4.3.1, with positive

ratios of 1% and 2% respectively. The best results for each method

is shown in Table 2, and we detail them below.

Clustering. We implement K-Means clustering [16] with cosine

distance as the distance metric and attempt to separate malware

and benign applications using K = 2. The first step is to encode

each activity sequence with an embedding vector, such that cosine

distance could be calculated between every two sequence represen-

tations. For the encoding approach, we tried various ways including

the aforementioned TF-IDF vectors in Section 4.2.2, as well as an

average-Word2Vec embedding approach, which works as follows.

By treating each sequence as a łsentencež, we first encode each

integer token using the word2Vec approach [23], and then calcu-

late the average embedding for all tokens in each sequence, as the

embedding of the data sample. However, the best results we can

get, as shown in Table 2, has an F1 score of only 0.029. To under-

stand whether malware samples are easily separable from benign

samples, we visualize the embedding vector for each sample in a

2-dimensional space. In particular, we use Principal Component

Analysis (PCA) to reduce the dimension of each sample embedding

to 2. The resulted representations are plotted in Figure 5, where

each green dot represents a benign sample, while each red cross-

mark represents a malware sample. This figure shows that malware

sample embeddings are mixed with benign ones and not easily sep-

arable, which further indicates the difficulty in dealing with highly

imbalanced data.

Autoencoder. Autoencoder is a commonly used neural network

for anomaly detection. It contains an encoder which reduces the

dimension of each input example, and a decoder which aims to

reconstruct the input data. Because dimensionalality reduction

inevitably causes information loss, Autoenocoder learns to keep

the information that is common among most of the input samples.

An outlier sample is detected by measuring the error between the

input and corresponding output, referred to as reconstruction error.

This error score is supposed to be bigger for outliers because it has

patterns that are not learned by the network. To use Autoencoder

for outlier detection on activity sequence data, we use LSTM as

the encoder and decoder. More specifically, we train a sequence

to sequence model, where the training objective is to minimize

the error between input sequence and output sequence. For the

dataset containing 1% malware data, we obtain an F1 score of 0.61,

as shown in Table 2, and 0.66 for 2% positive ratio. We find that

there is no clear decision boundary between the reconstruction

errors of the malware and benign activity sequences. Moreover, the

Session: Malware Detection AISec ’19, November 15, 2019, London, United Kingdom

42



       0.50       0.25     0.00      0.25       0.50       0.75
Residual Component 1

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Re
sid

ua
l C

om
po

ne
nt 

2

Benign 
Malware

Figure 5: Visualization of 2-dimensional embedding vectors

for benign/malware sequences (not easily separable for K-

means clustering).

average reconstruction error for malware samples is only 1% higher

than that of the benign sequences.

DAGMM. DAGMM is short for Deep Autoencoder Gaussian Mix-

ture Model [45], which is a recently proposed model that claims

to achieve state-of-the-art results on anomaly detection for high

dimensional data. DAGMM contains two parts, an Autoencoder,

followed by a Gaussian mixture model. Specifically, each data sam-

ple is first fed into an Autoencoder for dimensionality reduction.

Then, a vectorV is constructed by concatenating the output embed-

ding of the encoder (i.e., the input of the decoder), and the distance

(error) between the input and output. Vector V is further used to

fit the following Gaussian mixture model. The Autoencoder and

Gaussian mixture model parameters are optimized together, details

of which can be found in [45]. DAGMM has been found to boost

F1 scores by up to 14% on several public benchmark datasets such

as KDDCup [21] and Thyroid [21] datasets. In our experiment, we

use LSTM-Autoencoder, i.e., the sequence to sequence model as

described in Section 4.3.2 for the Autoencoder network, and fit a

Gaussian mixture model with 4 mixture components. Using this

method, we obtain an F1 score of 0.53-0.55, which is even worse

than the Autoencoder method. We think that the superiority of

DAGMM is not revealed here because the input dimension is not

very high.

DeepLog. DeepLog [11] is a recently proposed work for system

log anomaly detection and remains the current state-of-the-art ap-

proach. Similar to our goal in Android malware detection, DeepLog

also analyzes system log sequence directly. Note that each system

log message, e.g, łTransaction A finished.ž, can be viewed as a type

of activity, as described in Section 3.1. Inspired by this, we utilize

a similar method to analyze Android activity sequences for mal-

ware detection. Specifically, the training data should only contain

normal/benign sequences. Given a sequence, an LSTM sequence

prediction model is trained to predict the next activity based on a

fixed number of history activities. For example, as shown in Fig-

ure 6, if the activity sequence is <7,12,12,1,9,10,9,4,5....>, we could

generate the following input-label pairs for LSTM model training:

[7,12,12,1,9]: 10; [12,12,1,9,10]:9; [12,1,9,10,9]:4; [1,9,10,9,4]:5; .... When

the trained model is used for detection, given a new activity se-

quence (e.g., <12,1,9,10,9,4,5....>), we could apply a sliding window

with the same fixed length. Given a sliding window history (e.g.,

[12,1,9,10,9]) as the input for DeepLog model, it outputs a prob-

ability distribution on all activities that may appear as the one

following the inputs: {4: 80%, 5: 19%, ...}. Then we can compare the

actual activity at the position with the predicted one, and classify

it as anomalous if the difference is too large. For Android malware

detection, we consider an activity sequence is malware if at least

one activity is detected as anomalous, and benign otherwise. The

F1 score for DeepLog method on a 2% positive ratio dataset is 0.65,

although among the best of all baselines, is still not good enough

for real-world Android malware detection.

7 12 12 1 9 10 9 4 5 67 68 11 12 99 0 8

History
7, 12, 12, 1, 9 

12, 12, 1, 9, 10
12, 1, 9, 10, 9 
1, 9, 10, 9, 4

Output 
10
9
4
5

Figure 6: Training sample construction from sequence data

(DeepLog).

Model Positive Ratio Accuracy Precision Recall F1 score

Clustering
1% 0.749 0.005 0.153 0.010

2% 0.696 0.016 0.233 0.029

Autoencoder
1% 0.993 0.790 0.501 0.613

2% 0.985 0.611 0.709 0.656

DAGMM
1% 0.992 0.729 0.423 0.535

2% 0.984 0.658 0.472 0.550

DeepLog
1% 0.990 0.502 0.846 0.630

2% 0.985 0.615 0.684 0.648

Table 2: Performance of baseline detection methods.

4.3.3 Applying BERT for Android malware detection. We present

our major finding that BERT, the current state-of-the-art language

model, is surprisingly effective in dealing with highly imbalanced

datasets.

Effectiveness of BERT for highly imbalanced datasets. For

the first experiment, we adopt a pre-trained BERT model, i.e., the

BERTBase-Uncasedmodel [10]. Themodel, with around 110million

parameters, was pre-trained with the masked language modeling

Session: Malware Detection AISec ’19, November 15, 2019, London, United Kingdom

43



task on the Google News and Wikipedia corpora. We find that

using the hyper-parameters suggested in [10] guarantees decent

results. Specifically, we use Adam optimizer with a learning rate

of 5 × 10−5, a batch size of 32, and a dropout probability of 0.1.

The pre-trained model is fine-tuned by 3 epochs on the Android

activity sequence datasets with different positive ratios. ] We split

the test and training sets evenly so that both are approximately the

same size. The results are shown in Table 3. Surprisingly, the BERT

model pre-trained on natural language is able to get exceptional

results on highly imbalanced Android sequence datasets with only

3 epochs of fine-tuning. As an example, the F1 score for the dataset

containing only 2% positive ratios is 0.91.

One may point out that even though the training datasets con-

tain extremely low positive ratios, BERT model is still trained as

a supervised classification task, compared with the unsupervised

and semi-supervised baselines presented in Section 4.3.2. To fur-

ther show the superiority of BERT model, we apply the supervised

LSTM model as described in Section 4.2.3 on the imbalanced train-

ing dataset with different positive ratios. Note that the LSTMmodel

is able to achieve an F1 score of up to 99% on a somewhat balanced

dataset (1/3 benign and 2/3 malware sequences). However, a direct

application of the same model on imbalanced dataset only gives

an F1 score of 0.49 for the dataset with a 5% positive ratio, and

an F1 score of 0 for the datasets with positive ratios of 2% under,

as shown in the łLSTMž column of Table 4. To deal with imbal-

anced datasets for supervised classification, a commonly adopted

approach is to use weighted loss function. Specifically, if there are a

total of 100 training samples, among which only 1 has a positive

label, then in the training objective function, the weight for label 0

is 1/100=0.01, and the weight for label 1 is (1-0.01)=0.99. The idea is

to emphasize the minority class by assigning higher weights. We

use this approach to improve the supervised LSTM method, and

present its results in the łLSTM-weightedž column shown in Table 4.

The performance improves significantly compared to the LSTM

approach without weighed loss, e.g., from 0 to 0.49 for positive ratio

2%. However, BERT is able to achieve an F1 score of 0.91 for the

same positive ratio, and much better results on all other cases. We

also tried weighted loss function for BERT model while fine-tuning,

but did not get better results. This may be due to the fact that the

existing BERT model is already powerful enough at extracting the

hidden information for highly imbalanced datasets.

Positive Rate Accuracy Precision Recall F1 score

0.2% 0.999 1.000 0.647 0.786

0.5% 0.999 0.957 0.776 0.857

1% 0.998 0.975 0.805 0.882

2% 0.997 0.956 0.876 0.914

5% 0.993 0.982 0.892 0.934

Table 3: BERT performance, model pre-trained on NLP data

and fine-tuned for 3 epochs.

To validate if the effectiveness is brought by the pre-training

itself, or by the BERT model architecture, we further conduct two

Positive Rate LSTM LSTM-weighted BERT

0.2% 0.001 0.001 0.786

0.5% 0.001 0.279 0.857

1% 0.002 0.406 0.882

2% 0.003 0.491 0.914

5% 0.487 0.615 0.934

Table 4: Comparison of F1 scores of BERT and LSTM.

other experiments, to train a clean BERT model from scratch, for 3

epochs and 30 epochs respectively.

Effectiveness of pre-training. To understand whether the pre-

training process on NLP data is helpful for Android sequence mod-

eling, we train a clean BERT model from scratch for 3 epochs, on

the same dataset used to fine-tune the pre-trained BERT model

in previous section. The results on datasets with different posi-

tive ratios are shown in Table 5. We can observe that, the results

for the model trained from scratch are not as good as the ones

presented in Table 3, which contains the results trained from a

pre-trained BERT model. This indicates that the pre-training pro-

cess on NLP data indeed helps with Android malware detection.

One possible explanation is that the pre-trained model is easier to

optimize compared to a random initialization, since the exact way

of how a model is randomly initialized also matters a lot. Moreover,

we find a closely related reference in [46], where a neural machine

translation model is pre-trained on a high-resource language (e.g.,

French), and fine-tuned on a low-resource language (e.g., Uzbek).

For fine-tuning, the Uzbek words are initially mapped to random

French embeddings. The results show that the pre-training process

on a high-resource language domain is able to boost the perfor-

mance on the low-resource language domain. In our case, we can

understand Android activity sequences as a language different than

English, and that with a more advanced language model BERT,

pre-training on English texts helps with the sequence modeling

in Android activity sequences. This finding could potentially be

applied to other sequence data.

Positive Rate Accuracy Precision Recall F1 score

0.2% 0.999 0.789 0.441 0.566

0.5% 0.998 0.896 0.706 0.789

1% 0.997 0.961 0.726 0.827

2% 0.996 0.972 0.804 0.880

5% 0.992 0.976 0.851 0.909

Table 5: BERT performance, model trained from scratch for

3 epochs.

Effectiveness of the BERT architecture. In this experiment, we

train a clean BERT model from scratch for 30 epochs to evaluate

the effectiveness of the BERT model architecture. The results with

different positive ratios in the training datasets are shown in Ta-

ble 6. We can observe that this set of results is in general better

than the results obtained from training a clean BERT model for 3

epochs (Table 5), and comparable to fine-tuning a pre-trained BERT

Session: Malware Detection AISec ’19, November 15, 2019, London, United Kingdom

44



model for 3 epochs (Table 3). This shows the effectiveness of BERT

architecture in modeling security sequence data.

Positive Rate Accuracy Precision Recall F1 score

0.2% 1.000 0.960 0.706 0.814

0.5% 0.999 0.974 0.871 0.919

1% 0.998 0.922 0.822 0.869

2% 0.996 0.947 0.849 0.895

5% 0.992 0.950 0.896 0.922

Table 6: BERT performance, model trained from scratch for

30 epochs.

4.3.4 Pre-training BERT on Android dataset. With the abundant An-

droid data we have, it is intriguing to explore the benefits brought

by pre-training, where the pre-training data are from the same do-

main as the training data used for the detection task. The problem

settings is: suppose we need to train an Android malware detection

model and we only have a small dataset with unbalanced labels,

but we have a large unlabeled Android sequence dataset, we are

interested to explore whether pre-training on the unlabeled dataset

could improve the performance of the model trained on the small

unbalanced dataset. We want to answer the following three ques-

tions: 1) whether pre-training on Android data helps to improve the

detection performance; 2) what kind of pre-training data produces

better results, a dataset containing only benign execution sequences,

or a dataset that contains all available data which include malware

execution sequences; 3) whether pre-training is more beneficial if

the training dataset is smaller.

Datasets and set up. For each experiment, we’ll need three non-

duplicated datasets: 1) a large dataset that could be used for pre-

training; 2) a small labeled dataset that is used as the training dataset

for Android malware detection task; and 3) a test dataset that could

be used to evaluate the model performance.

As described in Section 4.1, we have 60,390 benign, and 120,780

malware execution sequences that could be exploited, which we

call as base dataset. To construct the three datasets explained above,

we first split the base dataset into three portions with 60%, 30%,

10% each, referred as datasets D1, D2, D3 respectively. From D1,

we construct two types of datasets for pre-training. The first one

D1-all contains all data in D1. The second one D1-benign contains

only benign sequences in D1. For D2 and D3, we further down-

sample them to contain a positive ratio of 2% in order to simulate

the highly imbalanced case. The new D3 is then used as the test

dataset. To evaluate the benefits of using a pre-trained model when

the available training data might be insufficient, we extract different

portions of data from D2 (10%, 20%, 50%), and call them as D2-0.1,

D2-0.2, D2-0.5 respectively. This dataset construction procedure

along with all constructed datasets are summarized in Table 7.

With these datasets, we conduct the following experiments

which help to answer the aforementioned three questions. For

each experiment, we will train a malware detection model using a

variant of D2, and test the model performance on D3. The differ-

ence is the initial model to be used. We exploit three choices: 1) a

clean BERT model that has randomly initialized parameters; 2) a

base dataset: 60,390 benign, and 120,780 malware sequences

60% 30% 10%

D1-all
down-sample each to

have 2% positive ratio

D2
D3

D1-benign: all benign sequences

from D1-all

D2-10%, D2-20%,

D2-50%: sample

10%, 20%, 50% data

from D2

pre-train train test

Table 7: Dataset construction.

BERT model pre-trained on D1-all; 3) a BERT model pre-trained on

D1-benign. Following [10], each pre-training process is done for 40

epochs. It takes roughly 24 hours to pre-train on D1-benign and 80

hours on D1-all, using one NVIDIA GeForce GTX 1080 GPU card.

Table 8 lists the results. In correspondence to the questions at

the beginning of this section, we can observe the following. First,

compared with a randomly initialized BERT model, pre-training on

Android sequence data in general achieves better results, both for

D1-all and D1-benign. Second, for each variant of training dataset

D2, pre-training on benign sequences only is slightly better than

pre-training on all Android data including malware sequences. One

possible explanation is, a malicious token in training data could be

treated as out of vocabulary if pre-training on D1-benign, which is

another clue to be classified as malicious. Nevertheless, considering

the facts that the malware ratio in D1-all is particularly high (66.7%)

but in real world the positive ratio is extremely low, and that pre-

training on D1-all also has significant improvements, it should be

safe to pre-train the model on all available unlabeled sequences.

Finally, the smaller the training dataset, the more evident of the

benefits brought by pre-training. For example, for training dataset

D2-10% which only contains 10% data of D2, pre-training improves

the F1 score from 0.677 to 0.787, a 16.2% improvement; while the

improvement for dataset D2 is only 2.5% (from 0.878 to 0.900).

This indicates that a pre-trained model is especially useful when

the training dataset is small, which aligns with the observation in

previous work [10, 46].

4.4 Activity analysis

The analysis we’ve done so far can be applied to any sequence

data. In this section, we would like to examine the specific dataset

behavior and explain what leads to the usefulness of the sequence

data.

We begin with the simplest process to examine the predictive

power of each activity alone. Taking a look at the top 10 activi-

ties with the highest correlation to malware, according to mutual

information metric, leads to some interesting insights. Some activi-

ties that strongly infer malicious behaviors, such as removing the

launcher icon, an evasion method that benign application do not

perform. Other activities, such as connecting to a socket, might

be due to both harmless and harmful causes. By using threat in-

telligence and prior analysis one can determine if the socket is

Session: Malware Detection AISec ’19, November 15, 2019, London, United Kingdom

45



Initial BERT

model

Training

dataset

Accuracy Precision Recall F1 score

Randomly

initialized

D2-10% 0.982 0.933 0.546 0.677

D2-20% 0.988 0.981 0.649 0.777

D2-50% 0.989 0.967 0.707 0.816

D2 0.989 0.957 0.813 0.878

Pre-trained

on D1-all

D2-10% 0.982 0.957 0.647 0.772

D2-20% 0.983 0.977 0.651 0.781

D2-50% 0.983 0.901 0.751 0.819

D2 0.989 0.966 0.804 0.878

Pre-trained

on D1-benign

D2-10% 0.982 0.889 0.705 0.787

D2-20% 0.984 0.939 0.697 0.799

D2-50% 0.987 0.993 0.757 0.859

D2 0.991 0.962 0.846 0.900

Table 8: BERT performance comparison with different pre-

trained models and training datasets.

Activity Mutual in-

formation

Hit Rate Precision

APK file set up an alarm 0.22 0.65 0.76

APK file removed the launcher icon 0.21 0.33 0.99

APK file fetched the information of apps

installed on the device

0.19 0.47 0.37

APK file fetched device specific informa-

tion

0.17 0.45 0.41

APK file deleted a file 0.17 0.51 0.37

APK file tried to connect to a socket 0.16 0.66 0.68

APK file fetched the current running

tasks on the device

0.15 0.31 0.35

APK file tried to connect to a malicious

socket

0.14 0.23 1.00

APK file tried to connect to the URL 0.11 0.48 0.44

APK file ran a command 0.10 0.18 0.56

Table 9: Activities and their mutual information.

malicious. This would identify "malicious socket connection", an

activity of a lower hit rate but higher precision.

However, this information of singular activities is not nearly

as informative as that from sequences. Certain activities may be

completely benign on their own, but can be indicated to bemore sus-

picious when linked with other activities. The mutual information

from a bag of words representation help with this type of analysis

but it does not take into account the ordering of the activities. This

is critical to capture in malware detection as the ordering of activi-

ties is oftentimes very important. An example would be to consider

the two activities, łAPK file deleted SMS records in the databasež ž

and łAPK file sent out an SMS message to a premium numberž. If the

deletion happened after sending a message, it is more suspicious

since the malware could be trying to evade detection of the SMS by

deleting its record. The opposite ordering would imply something

completely different. Hence, there are informative indications in

the ordering of the activities, not just the existence of both.

4.5 Discussion

4.5.1 Applying BERT to other security sequence data. A valuable

result from our experiments is the effectiveness of BERT language

model for highly imbalanced Android activity sequence datasets.

This finding is particularly interesting for security domain. For one

thing, a lot of security data is sequential, for example binary code

sequence, and any kind of system event sequences, e.g. system log

sequence, syscall sequence, system command sequence, etc. For

another, malicious data are especially hard to collect in security

domain, which could be at the cost of attackers successfully break-

ing the system. Therefore, we believe our findings could shed light

on other security data analysis, like binary analysis in DEEPVSA

[14], and system log analysis in DeepLog [11]. We also demonstrate

that the pre-training process in NLP domain is helpful in saving

the training efforts for security data, validated by having decent

results with only 3 epochs of fine-tuning, compared with using a

BERT model trained from scratch (Section 4.3.3).

4.5.2 Threat to validity. For imbalanced dataset construction in

our experiments, our goal is to conduct experiments that would

represent the use in real world cases on a sufficiently large dataset.

Although our dataset is significantly larger than the ones in pre-

vious studies, the positive rate in nature is so low that we cannot

be arbitrarily close to this goal. We could not fully simulate a real

world dataset since a positive rate of 0.01% on a dataset having

180, 000 samples, would have only 18 positive samples. As a com-

promise to make sure that the model performed decently well, we

ran the experiments on slightly larger positive ratios.

Another threat to validity is the likely violation of the Indepen-

dent Identical Distribution (i.i.d.) assumption. This is caused by

malicious actors that attempt to avoid detection by uploading the

same malware software colored in different ways [5]. This leads to

multiple variants of the same malware existing in both the training

and testing datasets, boosting the results. In the most severe case,

there could be as many as 1, 000 samples that are taken from a single

malware software. Due to the large scope of variant identification,

we don’t address this issue here, and leave it to future work.

In addition, one of the limitations of this work is the lack of time-

aware experiments. The dataset we used was collected from about a

month without a specific timestamp for each sample, making such

an analysis in-feasible. It is possible that some of the data points in

the training dataset are posterior to items in the test set [1], which

possibly biases our observed results. We leave the analysis of time-

aware splits, which may be available by exploring the AndroZoo [2]

dataset, to our future work.

5 RELATEDWORK

Early methods for malware detection can be broadly classified

into two categories: signature-based[8] and behavior based[6, 42].

Signature-based techniques cross check application signatures with

a known list of malware signatures. On the other hand, behavioral

methods evaluate an application based on it’s program structure,

and monitor deviations from normal program states.

One of the earliest works in machine learning based malware

detection by Sahs and Khan [30] uses permissions and control

flow graphs (an abstract representation of a program in which

vertices represent atomic blocks of non-jump instructions, and

Session: Malware Detection AISec ’19, November 15, 2019, London, United Kingdom

46



edges represent the possible paths of program flow) as features, and

a One-Class Support Vector Machine (SVM) [31] to classify. The

work also provides guidelines on the choice of kernel for the SVM

and compares the performance of different kernel functions. SVM

has also been used for malware classification along with decision

trees by Peiravian and Zhu [26].

Sequential pattern mining on application program opcodes by

Darabian et al [9] has shown to be effective in detecting malware in

the Internet of Things(IoT) space. Kakisim et al [34] have performed

extensive experiments on dynamic feature-basedmalware detection.

Their experiments reveal that API calls, system library usage and

operation sequences are important features for malware detection.

The API calls made by applications are used as features for malware

classification in a recent work by Jung et al [18]. The approach

presented in the paper does not consider sequence of API calls as a

whole. Instead, it uses a list of common API calls obtained from the

Android website. Using ranked lists of API calls in malicious and

benign applications as features, malware classification is performed

using a Random Forest classifier. Although the authors present

some guidelines on how to effectively select the subset of API calls,

the use of only certain calls and excluding others completely might

lead to the loss of valuable information from the feature space.

The work most closely related to our work isMalDozer [19], a

deep learning based framework for malware classification. Similar

to our work, MalDozer it uses API call sequences as input. An

important contribution of this work is the attribution of malware

with their specific families, and binary malware classification. Using

word embeddings, each call is mapped to a fixed length vector. The

application is thus represented by a series of embeddings. Although

the results obtained by MalDozerare significant (F1 score of more

than 0.96), the problem setting does not accurately mimic the real

world. In MalDozer , the malware forms around 50% of the dataset.

The techniques and the results have not been evaluated under low

positive rate settings.

A framework called DroidDeep [35] also effectively leverages

deep learning for Android malware classification. In DroidDeep ,

a high dimensional, multi-level feature space is constructed from

a variety of information such as the static information including

permissions, API calls, and deployment of components for charac-

terizing the behavioral pattern of Android apps. DroidDeepuses a

neural network for feature extraction, and an SVM to perform the

actual classification based on those features. A notable contribution

of DroidDeep is the remarkable run-time efficiency and scalability

it achieves; the run-time varies almost linearly with number of

applications being processed.

6 CONCLUSION

In this paper, we have explored the problem of solving the mal-

ware classification task using a few machine learning techniques.

Our focus has been on using just the activity sequences as the fea-

tures for classification. Our experiments with both sequence and

non-sequence data show that considering the order and locality

of activities adds some value to the classification. We show that

LSTM networks have good performance, but with a high positive

rate for training. We also find that a larger history window does

not necessarily lead to better performance in classification. Finally,

we experiment with BERT, a state-of-the-art language model. Our

simulations show that BERT model achieves state-of-the-art re-

sults for malware classification in a low positive rate setting. An

interesting research problem that deserves attention is evaluating

whether this technique can also attribute the malware to its class

or family. In addition, it would be a worthwhile research direction

to evaluate how well other recent language models, such as XLNet

[41] perform for the malware detection task. Due to the versatil-

ity of the language models it will be interesting to apply them to

more cyber sequence datasets. Finally, exploiting the robustness

of the proposed technique to adversarial manipulation of activity

sequences [29] is also an intriguing direction to explore.

ACKNOWLEDGMENTS

We would like to acknowledge Yinnon Meshi, Erez Levy, Tomer

Schwartz and Xiao Zhang from Palo Alto Networks, and Richard

Shin and Dawn Song from UC Berkeley, for the valuable discussions

and helpful feedback. We also thank the anonymous reviewers for

their insightful comments which helps to improve the quality of

the paper. This work was supported by the CLTC (Center for Long-

Term Cybersecurity) at UC Berkeley.

REFERENCES
[1] Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. 2015. Are

your training datasets yet relevant?. In International Symposium on Engineering
Secure Software and Systems. Springer, 51ś67.

[2] Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. 2016.
Androzoo: Collecting millions of android apps for the research community. In
2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR).
IEEE, 468ś471.

[3] Idan Amit, John Matherly, William Hewlett, Zhi Xu, Yinnon Meshi, and Yigal
Weinberger. 2019. Machine Learning in Cyber-Security - Problems, Challenges
and DataSets. The AAAI-19 Workshop on Engineering Dependable and Secure
Machine Learning Systems (2019). Available at https://arxiv.org/abs/1812.07858.

[4] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Konrad Rieck,
and CERT Siemens. 2014. Drebin: Effective and explainable detection of android
malware in your pocket.. In Ndss, Vol. 14. 23ś26.

[5] Babak Bashari Rad, Maslin Masrom, and Suhaimi Ibrahim. 2012. Camouflage In
Malware: From Encryption To Metamorphism. International Journal of Computer
Science And Network Security (IJCSNS) 12 (01 2012), 74ś83.

[6] Iker Burguera, Urko Zurutuza, and Simin Nadjm-Tehrani. 2011. Crowdroid:
behavior-based malware detection system for android. In Proceedings of the 1st
ACM workshop on Security and privacy in smartphones and mobile devices. ACM,
15ś26.

[7] Nitesh V. Chawla and Nathalie Japkowicz. 2004. Editorial: special issue on
learning from imbalanced data sets. SIGKDD Explor. Newsl (2004), 1ś6.

[8] Mihai Christodorescu, Somesh Jha, Sanjit A Seshia, Dawn Song, and Randal E
Bryant. 2005. Semantics-aware malware detection. In 2005 IEEE Symposium on
Security and Privacy (S&P’05). IEEE, 32ś46.

[9] Hamid Darabian, Ali Dehghantanha, Sattar Hashemi, Sajad Homayoun, and
Kim-Kwang Raymond Choo. 2019. An opcode-based technique for polymorphic
Internet of Things malware detection. Concurrency and Computation: Practice
and Experience (2019), e5173.

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[11] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017. Deeplog: Anomaly
detection and diagnosis from system logs through deep learning. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security.
ACM, 1285ś1298.

[12] Ekta Gandotra, Divya Bansal, and Sanjeev Sofat. 2014. Malware analysis and
classification: A survey. Journal of Information Security 5, 02 (2014), 56.

[13] Jianfeng Gao, Michel Galley, Lihong Li, et al. 2019. Neural approaches to con-
versational AI. Foundations and Trends® in Information Retrieval 13, 2-3 (2019),
127ś298.

[14] Wenbo Guo, Dongliang Mu, Xing Xinyu, Min Du, and Dawn Song. 2019. DEEP-
VSA: Facilitating Value-set Analysis with Deep Learning for Postmortem Program
Analysis. In Proceedings of The 28th USENIX Security Symposium. USENIX.

Session: Malware Detection AISec ’19, November 15, 2019, London, United Kingdom

47

https://arxiv.org/abs/1812.07858


[15] David M. Halbfinger and Ronen Bergman. 2019. Gantz, Netanyahu’s
Challenger, Faces Lurid Questions After Iran Hacked His Phone.
https://www.nytimes.com/2019/03/15/world/middleeast/gantz-netanyahus-
challenger-faces-lurid-questions-after-iran-hacked-his-phone.html

[16] Jiawei Han, Jian Pei, and Micheline Kamber. 2011. Data mining: concepts and
techniques. Elsevier.

[17] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735ś1780.

[18] Jaemin Jung, Hyunjin Kim, Dongjin Shin, Myeonggeon Lee, Hyunjae Lee, Seong-
je Cho, and Kyoungwon Suh. 2018. Android Malware Detection Based on Useful
API Calls and Machine Learning. In 2018 IEEE First International Conference on
Artificial Intelligence and Knowledge Engineering (AIKE). IEEE, 175ś178.

[19] ElMouatez Billah Karbab, Mourad Debbabi, Abdelouahid Derhab, and Djedjiga
Mouheb. 2018. MalDozer: Automatic framework for android malware detection
using deep learning. Digital Investigation 24 (2018), S48śS59.

[20] Nicolas Kiss, Jean-François Lalande, Mourad Leslous, and Valérie Viet Triem Tong.
2016. Kharon dataset: Android malware under a microscope. In The {LASER}
Workshop: Learning from Authoritative Security Experiment Results ({LASER}
2016). 1ś12.

[21] Lichman. 2013. UCI Machine Learning Data Repository. http://archive.ics.uci.ed
u/ml

[22] Oren Liebermann. 2019. How a hacked phone may have led killers to
Khashoggi. https://edition.cnn.com/2019/01/12/middleeast/khashoggi-phone-
malware-intl/index.html

[23] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed Representations of Words and Phrases and their Compositionality. In
Advances in Neural Information Processing Systems 26, C. J. C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K. Q. Weinberger (Eds.). Curran Associates, Inc.,
3111ś3119.

[24] Palo Alto Networks. 2019. AutoFocus Threat intelligence for security analysts.
https://www.paloaltonetworks.com/products/secure-the-network/autofocus

[25] Palo Alto Networks. 2019. WILDFIRE MALWARE ANALYSIS Find and stop un-
known attacks automatically. https://www.paloaltonetworks.com/products/secu
re-the-network/wildfire

[26] Naser Peiravian and Xingquan Zhu. 2013. Machine learning for android malware
detection using permission and api calls. In 2013 IEEE 25th international conference
on tools with artificial intelligence. IEEE, 300ś305.

[27] Juan Ramos et al. 2003. Using tf-idf to determine word relevance in document
queries. In Proceedings of the first instructional conference on machine learning,
Vol. 242. Piscataway, NJ, 133ś142.

[28] Siva Reddy, Danqi Chen, and Christopher D Manning. 2019. Coqa: A conversa-
tional question answering challenge. Transactions of the Association for Compu-
tational Linguistics 7 (2019), 249ś266.

[29] Ishai Rosenberg, Asaf Shabtai, Lior Rokach, and Yuval Elovici. 2018. Generic
black-box end-to-end attack against state of the art API call based malware
classifiers. In International Symposium on Research in Attacks, Intrusions, and
Defenses. Springer, 490ś510.

[30] Justin Sahs and Latifur Khan. 2012. A machine learning approach to android mal-
ware detection. In 2012 European Intelligence and Security Informatics Conference.
IEEE, 141ś147.

[31] Bernhard Schölkopf, John C Platt, John Shawe-Taylor, Alex J Smola, and Robert C
Williamson. 2001. Estimating the support of a high-dimensional distribution.
Neural computation 13, 7 (2001), 1443ś1471.

[32] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[33] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning,
Andrew Ng, and Christopher Potts. 2013. Recursive deep models for semantic
compositionality over a sentiment treebank. In Proceedings of the 2013 conference
on empirical methods in natural language processing. 1631ś1642.

[34] Ibrahim Sogukpinar. 2019. Analysis and Evaluation of Dynamic Feature-Based
Malware Detection Methods. In Innovative Security Solutions for Information Tech-
nology and Communications: 11th International Conference, SecITC 2018, Bucharest,
Romania, November 8 {u2013} 9, 2018, Revised Selected Papers, Vol. 11359. Springer,
247.

[35] Xin Su, Dafang Zhang, Wenjia Li, and Kai Zhao. 2016. A deep learning ap-
proach to android malware feature learning and detection. In 2016 IEEE Trust-
com/BigDataSE/ISPA. IEEE, 244ś251.

[36] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang.
2019. BERT4Rec: Sequential Recommendation with Bidirectional Encoder Repre-
sentations from Transformer. arXiv preprint arXiv:1904.06690 (2019).

[37] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems. 5998ś6008.

[38] N. Virvilis and D. Gritzalis. 2013. The Big Four -WhatWeDidWrong in Advanced
Persistent Threat Detection?. In 2013 International Conference on Availability,
Reliability and Security. 248ś254. https://doi.org/10.1109/ARES.2013.32

[39] Alex Warstadt, Amanpreet Singh, and Samuel R Bowman. 2018. Neural network
acceptability judgments. arXiv preprint arXiv:1805.12471 (2018).

[40] Wikipedia contributors. 2019. Confusion matrix Ð Wikipedia, The Free Encyclo-
pedia. https://en.wikipedia.org/w/index.php?title=Confusion_matrix&oldid=90
6886050. [Online; accessed 28-August-2019].

[41] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov,
and Quoc V. Le. 2019. XLNet: Generalized Autoregressive Pretraining for Lan-
guage Understanding. arXiv:cs.CL/1906.08237

[42] Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel, and Engin Kirda.
2007. Panorama: capturing system-wide information flow for malware detec-
tion and analysis. In Proceedings of the 14th ACM conference on Computer and
communications security. ACM, 116ś127.

[43] Xiao Zhang and Zhi Xu. 2018. On the Feasibility of Automatic Malware
Family Signature Generation. In Proceedings of the First Workshop on Radi-
cal and Experiential Security (RESEC ’18). ACM, New York, NY, USA, 69ś72.
https://doi.org/10.1145/3203422.3203430

[44] Yin Zhang, Rong Jin, and Zhi-Hua Zhou. 2010. Understanding bag-of-words
model: a statistical framework. International Journal of Machine Learning and
Cybernetics 1, 1-4 (2010), 43ś52.

[45] Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu, Daeki
Cho, and Haifeng Chen. 2018. Deep autoencoding gaussian mixture model for
unsupervised anomaly detection. (2018).

[46] Barret Zoph, Deniz Yuret, Jonathan May, and Kevin Knight. 2016. Transfer learn-
ing for low-resource neural machine translation. arXiv preprint arXiv:1604.02201
(2016).

Session: Malware Detection AISec ’19, November 15, 2019, London, United Kingdom

48

https://www.nytimes.com/2019/03/15/world/middleeast/gantz-netanyahus-challenger-faces-lurid-questions-after-iran-hacked-his-phone.html
https://www.nytimes.com/2019/03/15/world/middleeast/gantz-netanyahus-challenger-faces-lurid-questions-after-iran-hacked-his-phone.html
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://edition.cnn.com/2019/01/12/middleeast/khashoggi-phone-malware-intl/index.html
https://edition.cnn.com/2019/01/12/middleeast/khashoggi-phone-malware-intl/index.html
https://www.paloaltonetworks.com/products/secure-the-network/autofocus
https://www.paloaltonetworks.com/products/secure-the-network/wildfire
https://www.paloaltonetworks.com/products/secure-the-network/wildfire
https://doi.org/10.1109/ARES.2013.32
https://en.wikipedia.org/w/index.php?title=Confusion_matrix&oldid=906886050
https://en.wikipedia.org/w/index.php?title=Confusion_matrix&oldid=906886050
http://arxiv.org/abs/cs.CL/1906.08237
https://doi.org/10.1145/3203422.3203430

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Overview of Android malware detection and Wildfire
	2.2 LSTM
	2.3 BERT

	3 Methodology
	3.1 Data sources
	3.2 Data pre-processing
	3.3 Analyzing Android activities

	4 Experiments
	4.1 Set up
	4.2 Sequence analysis for malware detection
	4.3 Dealing with highly imbalanced dataset
	4.4 Activity analysis
	4.5 Discussion

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

