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Abstract: Malware is one of the most frequent cyberattacks, with its prevalence growing daily across
the network. Malware traffic is always asymmetrical compared to benign traffic, which is always
symmetrical. Fortunately, there are many artificial intelligence techniques that can be used to detect
malware and distinguish it from normal activities. However, the problem of dealing with large
and high-dimensional data has not been addressed enough. In this paper, a high-performance
malware detection system using deep learning and feature selection methodologies is introduced.
Two different malware datasets are used to detect malware and differentiate it from benign activities.
The datasets are preprocessed, and then correlation-based feature selection is applied to produce
different feature-selected datasets. The dense and LSTM-based deep learning models are then trained
using these different versions of feature-selected datasets. The trained models are then evaluated
using many performance metrics (accuracy, precision, recall, and F1-score). The results indicate
that some feature-selected scenarios preserve almost the same original dataset performance. The
different nature of the used datasets shows different levels of performance changes. For the first
dataset, the feature reduction ratios range from 18.18% to 42.42%, with performance degradation of
0.07% to 5.84%, respectively. The second dataset reduction rate is between 81.77% and 93.5%, with
performance degradation of 3.79% and 9.44%, respectively.

Keywords: malware detection; deep learning; dense model; feature selection; LSTM

1. Introduction

Malware has affected a lot of computing gadgets in the digital age. Malevolent
software, or malware, is created with the intention of achieving the negative goals of a
malicious attacker. Malware can attack networks, damage vital infrastructure, compromise
computers and smart devices, and steal sensitive data [1].

The modern idea of an information society has evolved thanks to the Internet of
Things (IoT) and its applications. However, security issues provide a significant barrier to
achieving the advantages of this industrial development as cybercriminals target specific
PCs and networks in order to steal private information for financial gain and disrupt
systems [2]. Such attackers utilize malicious software, or “malware,” to expose system
vulnerabilities and pose substantial hazards. Computer software designed to harm the
operating system is known as malware (OS) [3]. These malware attacks have increased

Symmetry 2023, 15, 123. https://doi.org/10.3390/sym15010123 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15010123
https://doi.org/10.3390/sym15010123
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-3063-5360
https://orcid.org/0000-0003-4228-9298
https://orcid.org/0000-0003-3521-0465
https://orcid.org/0000-0001-5802-5946
https://orcid.org/0000-0002-0702-422X
https://doi.org/10.3390/sym15010123
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15010123?type=check_update&version=2


Symmetry 2023, 15, 123 2 of 21

significantly since our daily interactions have undergone a significant transformation as a
result of the development of mobile technology. Online learning, social networking, online
banking, online shopping, and web browsing are a few examples of services offered by
mobile devices while connected to the Internet. Mobile gadgets have therefore played a key
role and have evolved into a necessary aspect of daily life [4]. In total, 4.78 billion people
worldwide are using mobile devices as of 2020 [5]. These mobile devices do make life
more convenient for consumers, but they are also vulnerable to virus invasion and attacks
because of online social networks and services. Mobile malware is capable of disguising
itself as ordinary code and then altering any intended program to corrupt and obstruct the
operation of the system [5–7].

A permission-based approach has been offered by Google Play as a security measure
to prevent the application from obtaining private data. By taking into account the assets of
the application that have been accessed, this permission prompts users prior to installation.
Before moving forward with the installation, the users must expressly accept the agreement.
Unfortunately, the Google Play method cannot fully safeguard the user because they have a
tendency to accept the agreement without carefully reading the authorization [5,8]. Another
threat possibility can come from profiting off successful Android apps, as seen by the over
10-fold increase in Android malware detections between 2012 and 2018 [9]. Furthermore,
every day in 2018, there were over 12 K brand-new Android malware samples found. The
recently revealed Android malware samples are more advanced than the ones that first
surfaced a few years ago in terms of escaping anti-virus monitoring through coding and
encryption, in addition to the rapid proliferation of malware [10,11].

Malware detection studies utilizing machine learning are growing in popularity be-
cause they are a successful strategy that can produce a high level of detection accuracy [12].
Some previous studies utilized machine learning (ML) algorithms, which can make deci-
sions after learning from the data templates. Machine learning is the concept of minimizing
human intervention in computing systems [13]. Through the use of computer learning
methodologies and experience or previous data, machine learning predicts decisions. To
analyze the features and track the model, there are supervised and unsupervised learning
methods [14,15]. In both cases, the machine learns to distinguish between malicious and
benign activities. In supervised learning, the ML model is given the input and targets
together and learns to always match the actual malware patterns with their corresponding
“malware” classes and match the normal activities with the “normal” classes. The train-
ing process is repeated until the model learns to correctly predict all samples [5]. Many
ML algorithms have been used, like support vector machines (SVM) [16–18], K-nearest
neighbor (KNN) [19,20], Bayesian estimation [21,22], genetic algorithms [23], etc., in order
to build malware detection systems. Unsupervised learning methods provide the inputs
without any targets, and the ML algorithm is learned to distinguish between malware and
benign samples. However, some studies fused the supervised and unsupervised learning
methodologies together [24].

Malware detection is an important security topic with strong associations with firms’
legal, reputational, and economic concerns. Deep learning as a method for making and
fixing detection mechanisms is a good way to solve many problems with how to detect
malware. But when it comes to deep learning, there are many difficult things that need
to be considered when thinking about detection mechanisms. Correlation-based feature
selection, the dense layer model, and the LSTM model are presented as three challenging
and symmetric ways to affect performance.

In the current research, two different datasets will be used. One of them contains
a large number of records, while the other one consists of a large number of predictors
(attributes). The feature selection of the best attributes will be used in many scenarios in
order to define the best combination of attributes. The correlation with the target attribute
“classification” will be used as the feature selection methodology. In the training step, the
Dense and LSTM models will be used and compared, so that many training scenarios will
be configured depending on different feature selection criteria, different splitting criteria,
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and different dataset architectures. Our main contribution is using the efficiency of deep
learning and feature selection methodologies in the malware detection field in order to
build a robust, powerful, low-computational malware detection system.

Related Work

Some of the previous studies used machine learning (ML) approaches, while others
applied deep learning (DL) techniques, including convolutional networks (CNN), recurrent
neural networks (RNN), and long-short-term memory networks (LSTM) [25–27]. Some
of them used desktop-related malware datasets, but most took care of the mobile-related
malware datasets.

Many machine learning and deep learning models were used for malware detection,
according to Vinayakumar et al. [3]. They used the Ember malware dataset, consisting
of 70,140 benign and 69,869 malware recodes. Several ML and DL models were applied
(KNN, SVM, Random Forests (RF), AdaBoost, Logistic Regression (LR), Naïve Bayes (NB),
and Deep Neural Network (DNN)). They used the Adam optimization algorithm, and the
models were trained for 200 epochs. The best result was obtained by the LSTM model with
98.9% accuracy.

A malware detection system based on DL was introduced by Jeon and Moon in
2020 [25]. They used the convolutional encoder to translate the opcode sequences extracted
from Windows executable files. The recurrent neural networks (RNNs) were then used for
the malware detection process. Their approach achieved 96% detection accuracy and a 95%
true positive rate.

In another study by Yazdinejad et al. [26], opcodes for malware and benign activities
were extracted from a dataset of 200 benign and 500 malware records. They applied the
LSTM model to build a malware detection system using 10-fold cross-validation on the
acquired dataset. Their study achieved a detection accuracy of 98%.

Opcodes and system calls were used in a study by Darabian et al. [27]. The total
collected dataset contains 1500 executable samples, and the CNN-LSTM model was trained
using this dataset. The opcodes-based collected records achieved a detection accuracy of
99%, while the system calls achieved only a 95% detection rate.

Hwang et al. [28] proposed a malware detection system based on a malware dataset
consisting of 10,000 malware records and 10,000 benign files. The DNN is trained using this
dataset (80% for training and 20% for testing). Their proposed system achieved 94% accuracy.

Ban et al. [29] used convolutional neural networks (CNN) for the Android malware
detection process. They used a malware dataset consisting of 28,179 records of the most
malware activities that appeared from 2018 to 2020. The experiments showed that their
approach achieved 98% accuracy and a 0.82 F1-score.

The “wrapping feature selection” (WFS) method was proposed in a study by
Smmarwar et al. [30]. They used random forests, decision trees, and SVM classifiers.
Those classifiers are trained using the optimal number of selected features from the CIC-
InvesAndMal2019 malware dataset. The experiments showed that the SVM, RF, and DT
models achieved 82.33%, 91.32%, and 91.8% accuracy, respectively.

Toan et al. [31] used the static opcode features of the MIPS ELF malware dataset,
consisting of 4511 malware and 4393 benign activities. They used the machine learning
models on the Internet of Things (IoT) platforms for malware detection. Their models
achieved an accuracy of 99.8% using only 20 opcodes.

Our study will use the feature selection approach to minimize the number of features
(columns), reducing the next computational time. Besides, the proposed correlation-based
approach helps selecting the best features, improving performance. The combination
of deep learning, high performance, and feature selection will result in a robust, low
computational, and powerful malware detection model that was not introduced by any of
the previous studies.
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2. Materials and Methods
2.1. Datasets

Two different datasets are used in the current study. In the first dataset, the main
feature is the large number of records, while the main feature of the second dataset is the
high dimensionality (large number of attributes).

2.1.1. First Dataset (Malware Detection)

The network traffic of a virtual machine on a Unix/Linux-based platform was used
to build this dataset. The dataset includes the harmless actions of malware software for
Android devices. It consists of 35 attributes (features) and 100,000 records (50,000 malware
records and 50,000 benign ones). The dataset was created for classification and malware
detection purposes. Table 1 includes detailed information about the attributes of this
dataset. The dataset is available on the Kaggle site [32].

Table 1. First malware dataset description.

No. Attribute/Type Description Type

1. Hash APK/ SHA256 file name Text

2. Millisecond/ number Time number

3. Classification Malware or benign Text

4. State State of the tasks (non-runnable, runnable or stopped) number

5. usage_counter task structure usage counter number

6. prio Holds the dynamic priority of a task Number

7. Static_prio Static priority of a task Number

8. normal_prio Normal Priority (without taking into account the
RT-inheritance) Number

9. Policy Task planning policy Number

10. vm_pgoff Offset of the area in the file (in pages) Number

11. vm_truncate_count used to mark a vma as now dealt with Number

12. task_size Current task size Number

13. cached_hole_size Free address space hole size Number

14. free_area_cache First address of space hole Number

15. mm_users Space users Number

16. map_count Count of memory areas Number

17. hiwater_rss Peak of resident set size Number

18. total_vm Total number of pages Number

19. shared_vm shared pages count Number

20. exec_vm Executable pages count Number

21. reserved_vm Reserved pages count Number

22. nr_ptes Page table entries count Number

23. end_data End address of code component Number

24. last_interval Last interval time before thrashing Number

25. Nvcsw Volunteer context switches count Number

26. Nivcsw in-volunteer context switches count Number

27. min_flt Minor faults (page faults) Number

28. maj_flt Major faults (page faults) Number
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Table 1. Cont.

No. Attribute/Type Description Type

29. fs_excl_counter Count of file system exclusive resources Number

30. Lock Read-write synchronization lock which is used for file
system access Number

31. Utime User time Number

32. Stime System time Number

33. Gtime Guest time Number

34. Cgtime Cumulative group time Number

35. signal_nvcsw Cumulative resource counter Number

2.1.2. Second Dataset (Android Malware Dataset for Machine Learning)

This dataset is available on the Kaggle site [33]. It is made up of 215 distinct attributes
gathered from over 15,000 Android applications (9476 benign and 5560 malicious) [34].
Figure 1 shows the distribution of the benign and malware classes through this dataset.
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2.2. Proposed Methodology

In this study, many DL methods are proposed and used. In order to train the DL
models using the two selected datasets, these datasets need a preprocessing step in which
the classification (target) columns are encoded (numbered) and the special characters or
missed values are processed. Since the two datasets differ in their nature, the preprocessing
steps will be somehow different.

After preprocessing the datasets, they are split into training and test sets. In some
training scenarios, the feature selection process is performed before the training process in
order to minimize the data dimensionality (computational time).

After that, the DL models will be built and trained based on many training scenarios,
including different splitting criteria, different DL architectures, and with or without feature
selection. Figure 2 illustrates the proposed methodology for both datasets.

2.2.1. Correlation-Based Feature Selection

The goal of feature selection is to select the best features of the studied problem in
order to reduce computational time. However, in our study, a correlation-based approach
is proposed in order to minimize the high dimensionality, reduce the computational time,
and select the best combinations of features so that the performance of the training and
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evaluation process will be increased. Figure 3 illustrates the correlation-based feature
selection approach.
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For the first dataset, the correlations between all columns and the target column are
computed using Equation (1).

Corrx,y =
∑(xi − x) (yi − y)√
∑(xi − x)2(yi − y)2

(1)

where, Corrxy is the correlation between feature xi and target feature y. x and y are the mean
value of x and y, respectively.

Then a list of potential dropped columns is prepared. Different selection scenarios can
be made since the correlation ranges between 0 and 1. The selection step is based on the
number of desired columns, so we will obtain the K number of required features and drop
the rest. For the second dataset, the same approach will be applied except for the selection
step. Specific correlation thresholds (T) will be used to eliminate columns since the number
of columns in the second dataset is 214. So, in the second dataset, the number of selected
features depends on the chosen threshold, which is not defined as in the first dataset.

2.2.2. Dense Layers Model

In the current study, we suggest using the dense-based architecture with hidden layers
of 50 neurons for the first dataset scenarios and 100 neurons for the second dataset scenarios
(since the second dataset has 214 attributes while the first one has only 33). The first dense
layer is the input layer, with an input size equal to the number of selected features (this
number varies depending on each scenario). The activation function of the first layer is the
“relu” non-linear function. The next five layers are the hidden dense layers, with 50 cells
each and a “relu” activation function. The last dense layer is the output layer, with two
outputs and a “softmax” activation function. The “softmax” function is necessary for the
last layer since we need an activation function that produces probabilities for all possible
outputs (malware and benign), and then the class with the highest probability is chosen as
the final prediction.

We chose five hidden layers after applying many experiments to find the best number
of hidden layers. After five hidden layers, the performance stops getting better, so we
choose “five” as the right number of hidden layers.

Our proposed model is very simple in order to minimize the number of learnable
parameters. Unlike in previous studies, experiments are used to figure out the number
of neurons and the number of hidden layers in order to find the best combination for the
problem being studied.

2.2.3. LSTM Model

For the LSTM proposed model, the first dense layer is replaced by an LSTM layer
“relu” activation function. The rest of the dense and output layers are left the same as
the previous dense model. By replacing the dense layer with the LSTM layer, the number
of parameters that can be learned will increase by a lot. As a result, the training time
will increase.

2.2.4. Evaluation Criteria

The evaluation step is the last part in which the performance evaluation is done using
many metrics. In this study, the validation accuracy, test accuracy, training time, precision,
recall, and F1-score are used for the performance evaluation step.

The validation accuracy is computed through the training process by testing the
trained model using the validation set. On the other hand, the test accuracy is calculated
after the training, and it is used to test the trained model’s ability to tell the difference
between new malware and harmless samples.

Four different calculations are used to figure out the precision, recall, and F1-score.
(TP stands for true positives, TN for true negatives, FP for false positives, and FN for
false negatives.)
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These four statistics are computed as follows:
TP is the number of correctly classified malware samples among all malware sam-

ples. FN, on the other hand, is the opposite concept of TP and represents the number of
incorrectly rejected malware samples that are predicted as benign samples. The number of
correctly rejected benign samples (that are actually benign samples and correctly predicted
as benign) is denoted by TN. On the other hand, FP is the opposite concept of TN and is
calculated as the number of incorrectly accepted benign samples that must be rejected and
considered benign samples (benign samples incorrectly classified as malware). The best
performance is registered when the TP and TN have the highest values or when the FP and
FN have the lowest values. Precision, recall, and F1-score are calculated as Equations (2)–(4)
show [35].

Precision = TP/(TP + FP) (2)

Recall = TP/(TP + FN) (3)

F1-score= 2 × Precision × Recall/(Precision + Recall) (4)

The precision concept represents the positive predictive value of the trained model,
while the recall expresses its sensitivity. A high precision value means that the trained
model can predict the positive class samples well (the malware samples are predicted very
well, and the incorrectly accepted benign samples are low). The high recall value means
that the sensitivity of the trained model to correctly reject the benign samples is very high.
The high rates of precision and recall result in a high F1-score value, which expresses a
mixed concept of precision and recall. To judge a trained model and see how well it works,
the above statistics need to be calculated.

3. Results and Discussion
3.1. Dataset Preprocessing

The preprocessing step includes the following tasks:

• Handle the special characters by replacing them with “NaN” values.
• Check for the missing values and “NaN” values and replace them.
• Label the target class (classification column) using 0 for benign and 1 for malware.
• Drop column “hash” in the malware dataset.

3.2. Dataset Split

Split the dataset into training and testing using three splitting scenarios:
80% for training and 20% for test sets.
75% for training and 25% for test sets.
70% for training and 30% for test sets.

3.3. Feature Selection

For the first dataset, there are 35 attributes (including the target). The correlation
between the target attribute “classification” and other attributes is computed in order to
define the degree of importance of these attributes in the final prediction. Table 2 includes
the correlation results of the first malware dataset (in decreasing order).

Table 2 shows that there are many columns that can be excluded since their correlations
with the target column (the prediction column) are very weak.

In our study, for the first malware dataset, we will apply experiments based on four
different scenarios. All these proposed scenarios are derived from the dropping of some
columns (features). The dropping approach is based on the correlation between each of the
columns (features) and the target column (class). Those correlations are placed in Table 2
for dataset 1 and Table 3 for dataset 2.

1- First selected group (Dropping the following columns): ‘vm_truncate_count’, ‘shared_vm’,
‘exec_vm’, ‘nvcsw’, ‘maj_flt’, and ‘utime’, getting in only 27 attributes (since ‘classifi-
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cation’ and ‘Hash’ columns are already removed. The dropped columns are chosen
from the columns whose correlation with the target column is low.

2- Second selected group (Dropping the following columns): ‘vm_truncate_count’,
‘shared_vm’, ‘exec_vm’, ‘nvcsw’, ‘maj_flt’, ‘utime’, ‘static_prio’, ‘map_count’, and
‘end_data’, getting in only 24 attributes. Three new columns with low correlation to
the target column are also dropped in addition to the previous dropping list of the
first scenario.

3- Third selected group (Dropping the following columns): ‘vm_truncate_count’, ‘shared_vm’,
‘exec_vm’, ‘nvcsw’, ‘maj_flt’, ‘utime’, ‘static_prio’, ‘map_count’, ‘end_data’, ‘nivcsw’,
‘fs_excl_counter’, and ‘reserved_vm’, getting in only 21 attributes. Again, in this
scenario, three columns with low correlation are dropped.

4- Forth selected group (Dropping the following columns): ‘vm_truncate_count’, ‘shared_vm’,
‘exec_vm’, ‘nvcsw’, ‘maj_flt’, ‘utime’, ‘static_prio’, ‘map_count’, ‘end_data’, ‘nivcsw’,
‘fs_excl_counter’, ‘reserved_vm’, ‘mm_users’, ‘state’, ‘total_vm’, ‘free_area_cache’,
‘stime’, ‘gtime’, and ‘millisecond’ getting in only 14 attributes.

Table 2. Correlation between target column (classification) and the closest 20 columns of the
malware dataset.

Attribute/Type Correlation with Target Column

Prio 0.100359

last_interval 0.006952

min_flt 0.003069595

Millisecond −2.479903 × 10−17

Gtime −1.441608 × 10−2

Stime −4.203713 × 10−2

free_area_cache −5.123678 × 10−2

total_vm −5.929110 × 10−2

State −6.470178 × 10−2

mm_users −9.364091 × 10−2

reserved_vm −1.186078 × 10−1

fs_excl_counter −1.378830 × 10−1

Nivcsw −1.437912 × 10−1

exec_vm −2.551234 × 10−1

map_count −2.712274 × 10−1

static_prio −3.179406 × 10−1

end_data −3.249535 × 10−1

maj_flt −3.249535 × 10−1

shared_vm −3.249535 × 10−1

vm_truncate_count −3.548607 × 10−1

Utime −3.699309 × 10−1

Nvcsw −3.868893 × 10−1
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Table 3. Correlation between second malware dataset columns and the target column using a
correlation-threshold of 0.1.

Attribute (Column) Correlation Threshold = 0.1 Exist with Threshold = 0.2?

send_sms 0.546075 Yes

android.telephony.smsmanager 0.435190 Yes

read_phone_state 0.409344 Yes

receive_sms 0.388328 Yes

read_sms 0.370336 Yes

android.intent.action.boot_completed 0.314303 Yes

telephonymanager.getline1number 0.305944 Yes

write_sms 0.267501 Yes

write_history_bookmarks 0.242250 Yes

telephonymanager.getsubscriberid 0.241551 Yes

android.telephony.gsm.smsmanager 0.241038 Yes

install_packages 0.235660 Yes

read_history_bookmarks 0.231044 Yes

Internet 0.204219 Yes

access_location_extra_commands 0.197165 No

write_apn_settings 0.193827 No

Abortbroadcast 0.191727 No

Createsubprocess 0.185971 No

telephonymanager.getdeviceid 0.179910 No

receive_boot_completed 0.159870 No

restart_packages 0.157646 No

Chmod 0.146465 No

telephonymanager.getsimserialnumber 0.135075 No

Packageinstaller 0.113861 No

Remount 0.112943 No

Senddatamessage 0.110062 No

Chownz 0.107540 No

While for the second “Android malware dataset,” the correlation between the target
column and the other attributes of the dataset was also computed. Because of the large
number of attributes in the second dataset, we followed a feature selection technique based
on various correlation thresholds [36].

Using a correlation threshold of 0.1, the selected attributes are only 27 columns out
of 214 (after removing the classification column). Table 3 shows the 27 selected attributes
(columns) with their corresponding correlations. While using a correlation threshold of 0.2,
the number of selected columns will be 14. As shown in Table 3, almost half of the columns
are dropped at a threshold of 0.2. Using a threshold of 0.5 will result in only 39 features
with a selection rate of 18.22%.

3.4. Training Scenarios

In the training step, many training scenarios are suggested based on many concepts
(with or without feature selection, with or without an LSTM layer, using different feature
selection thresholds, using different splitting criteria, etc.).
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The training scenarios of the first malware dataset are:

- Train a dense layer-based DL model using the original dataset and different selected
groups of dataset features (there are four groups and the original dataset, which means
five different scenarios).

- Train the DL model that has been modified (an LSTM layer has been added) using the
first set of features that were chosen.

- Train the DL model using three different splitting criteria (two new scenarios).

The training scenarios of the second malware dataset are:

- Train a dense layer-based DL model with the original dataset and the three groups of
selected features (four different scenarios).

- Train the modified DL model (added LSTM layer) using the main dataset.
- Train the DL model using different spitting criteria (two new scenarios).

A total of 12 different training scenarios are done in order to identify the effects of
using different datasets, different feature selection options, different splitting criteria, and
different DL architectures.

3.5. Experimental Results

In this section, all training scenarios will be evaluated, and the results will be intro-
duced and discussed.

3.5.1. Results of the First Six Training Scenario of the First Malware Dataset

In these six scenarios, the training will be performed using 20 epochs, with a patch size
of 100 and using the “Adam” optimization algorithm. The spare categorical cross-entropy
loss function will be used, and the validation set will be selected from the training set
(20% of the training set will be chosen as a validation set). This validation set will be used
throughout the training process to validate the trained model and ensure that the training
process is going the right way. Table 4 includes the detailed results of the first six scenarios
of the first malware dataset.

Table 4. The evaluation results of the first six scenarios of the first malware dataset.

Scenario V.acc% T.acc% Precision % Recall % F1-Score% T.Time (S/Ep)

First original dataset (33 features) 99.99 100 100 100 100 2.15

Using 27 out of 33 features 99.92 99.54 100 100 100 2.05

Using 27 out of 33 features (Adding
LSTM layer) 99.97 99.98 100 100 100 3

Using 24 out of 33 features 99.95 99.91 99.9 99.9 99.9 2

Using 21 out of 33 features 99.75 99.79 99.8 99.8 99.8 2

Using 14 out of 33 features 94.15 93.79 93.9 93.8 93.8 2.15

V.acc: validation accuracy, T.acc: Test accuracy, T.Time: Training time (second per epoch).

Table 4 illustrates the fact that removing some features will not affect the performance
of the dataset. Reducing the features from 33 to 27 (a reducing rate of 18.18%) decreases the
validation accuracy by 0.07% and the test accuracy by 0.45%, while the precision, recall,
and F1-score remain the same. The training time is minimized by 0.1 s/ep. By using
a reduction rate of 27.27%, the validation and training accuracy are minimized by only
0.04% and 0.09%, respectively. Going on and reducing the features into 21 features (36.63%
reducing rate), the validation accuracy is reduced by 0.24%, while the test accuracy is
reduced by 0.21%. The highest reduction rate is 42.42% (by removing 19 features), which
reduced the validation accuracy and the test accuracy by 5.84% and 6.21%, respectively.
The computational training time is also reduced by 0.1 S/Ep.
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Using LSTM as the first layer of the dense-based DL model enhanced the performance
by 0.05% and 0.44% for validation and test accuracies, respectively. However, the computa-
tional time is also increased by 0.95 s per epoch. The training and validation accuracy and
loss curves of the first six scenarios are shown in Figure 4.
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3.5.2. Results of the First Five Training Scenario of the First Malware Dataset

For the second dataset, the feature selection scenarios are also performed with the
same DL model and the same training parameters as for the first malware dataset. The
results are illustrated in Table 5.

Table 5. The evaluation results of the first six scenarios of the second malware dataset.

Scenario V.acc% T.acc% Precision % Recall % F1-Score% T.Time (S/Ep)

First original dataset (214 features) 98.38 98.93 98.9 98.8 98.9 2.1

Adding LSTM layer 98.67 98.3 98.1 98.3 98.2 7.8

Using 39 out of 214 features (Th = 0.05) 94.59 95.34 95.9 94.1 94.9 1.1

Using 27 out of 214 features (Th = 0.1) 93.56 93.28 93.6 92.1 92.8 1.1

Using 14 out of 214 features (Th = 0.2) 88.94 88.95 88 88.1 88.1 1.1

Table 5 shows that adding an extra LSTM layer won’t change the performance, but it
will take more time to train the computer.

Reducing the features of the second malware dataset into only 39 features (using only
18.22% of the entire dataset with an 81.77% reduction rate) will only minimize the validation
accuracy by 3.79% and the test accuracy by 3.59%. Other metrics like precision, recall, and
F1-score will be minimized by 3%, 4.7%, and 4%, respectively. All metrics demonstrate that
large feature space minimization (dimension reduction) has no effect on performance at
the same minimization rate. This means that some features are not actually essential and
can be dropped.

By reducing the features expensively (using only 6.54% of the second dataset’s fea-
tures), the validation and test accuracies are minimized by 9.44% and 9.98%, respectively
(i.e., main features are dropped). Figure 5 shows the accuracy and loss curves of the training
and validation sets for the five scenarios of the second dataset.

The first two curves (Figure 5A,B) show the best performance, which is related to the orig-
inal dataset features and LSTM scenarios. The third curve is related to the 39-feature-selected
scenario, which shows some degradation compared to the previous two curves. Figure 5C,D
include further degradation in performance (these curves correspond with the final two
scenarios, which correspond to the 27 and 14 selected out of 214 features, respectively).

3.5.3. Results of Using Many Split Criteria for Both Malware Datasets

In these scenarios, the split rate of the malware dataset into training and testing will
be evaluated. For the first malware dataset, we will use the “12 features-selected” scenario
as a basis for three experiments in which the splitting is changed from 20% to 25% and then
30% of the test set, and the results are shown in Table 6.

Table 6. The split evaluation results of the first six scenarios of the first malware test dataset.

Scenario V.acc% T.acc% Precision % Recall % F1-Score% T.Time (S/Ep)

21 features with 20% for test set 99.75 99.79 99.8 99.8 99.8 2.1

21 features with 25% for test set 99.65 99.62 91.6 89.9 89.9 2.3

21 features with 30% for test set 99.67 99.62 87.5 83.1 82.7 2.1

Table 6 shows that increasing the test set percentage will decrease the performance.
The main problem of using more test samples appears with the recall of “0-class” samples
(the benign samples) and the precision of the “1-class” samples for 25% splitting scenarios,
as shown in Figure 6a. The same results are concluded for the 30% split scenario (as shown
in Figure 6b). To conclude, the best splitting scenario is using 20% of the test set, and any
further increase in test samples will affect either the acceptance rate or the rejection rate
(recall and precision).
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For the second dataset, the same splitting scenarios will be used based on the “39 features
selected” scenario. Table 7 illustrates the results of these splitting scenarios.

Table 7. The evaluation results of the first six scenarios of the second malware test dataset.

Scenario V.acc% T.acc% Precision % Recall % F1-Score% T.Time (S/Ep)

39 features with 20% for test set 94.59 95.34 95.9 94.1 94.9 1.1

39 features with 25% for test set 95.03 94.86 94.9 94 94.4 1.1

39 features with 30% for test set 94.49 94.43 94.3 93.7 94 1.1
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Changing the splitting criteria of the second dataset shows less performance instability
than in the first dataset splitting scenarios. This is due to the different nature of both datasets.
The first dataset has a large number of samples with a small number of features, while the
second dataset has a small number of samples with a large number of features. The second
reason is that the feature selection techniques have different effects on both datasets.

Several feature selection approaches were used in previous studies. Gumaa [37], for
example, divided their dataset into three categories based on graph-based feature selection,
getting 110 features (51.4%) for permission-only types, 73 features (33.95%) for API calls,
and 182 features (85%) for permissions and API calls. Their approach achieved recall values
of 95%, 96%, and 97.3%, respectively. In our study, using the same dataset, we applied
three different scenarios, getting into 39, 27, and 14 features, respectively (18.22%, 12.61%,
and 6.54% of the entire dataset). Our proposed methodology is more effective in selecting
the appropriate features of the dataset. Moreover, the recall value of our models using the
proposed feature selection approach on the second dataset was 94.1% (very close to the [37]
study recall of 95%, although their approach selected more features than our algorithm did).

In the study of Smmarwar et al. [30], the wrapping feature selection (WFS) method
was proposed. The study applied the proposed approach to the CIC-InvesAndMal2019
malware dataset. The SVM, RF, and DT models were trained using the selected features
and achieved 82.33%, 91.32%, and 91.8% accuracy, respectively.

In a recent publication, Smmarwar et al. [38] used the Binary Grey Wolf Optimization
(BGWO)-based meta-heuristic feature selection algorithm to select the best combination
of features in a malware dataset. However, the heuristic algorithm takes too much com-
putational time. Our methodology is very easy and takes less than a second to compute
the correlations. The study [38] approach is powerful but time-consuming. They achieved
accuracies of 70.64%, 65.44%, 59.93%, and 83.49% on the features-selected version of the
malware dataset.

A detailed comparison between the current research and previous ones is listed in
Table 8, and another detailed comparison between our methodology and previous ML ones
that worked on the same dataset is listed in Table 9.

Table 8. Comparison between the current research and related work.

Study Methodology Dataset Results

Xiao et al. [39] LSTM 3536 benign 3567 malware Acc = 93%

Vinayakumar et al. [3] KNN, SVM, RF, LR, NB, DNN 70,140 benign and 69,869 malware recodes Acc = 98.9%

Vinod et al. [40] RF 100 benign 100 malware records Acc = 91.7%

Jeon and Moon [25] CNN encoder and RNN 1000 benign and 1000 malware files Acc = 96%, Recall = 95%

Yazdinejad et al. [26] LSTM 200 benign and 500 malware records Acc = 98%

Darabian et al. [27] CNN-LSTM 1500 executable samples Acc = 99%

Hwang et al. [28] DNN 10,000 malware records and 10,000
benign files Acc = 94%

Ban et al. [29] CNN 28,179 records Acc = 98%, F1-score = 82%

Current study Dense Model, LSTM model

50,000 malware and 50,000 benign records
(35 attributes)

Acc = 99.99%, F1-score = 100% (no
feature selection)

Acc = 99.75%, F1-score = 99.8%
(63.63 selected features)

9476 benign and 5560 malware records
(215 attributes)

Acc = 98.38%, F1-score = 98.9% (no
feature selection)

Acc = 94.59%, F1-score = 94.9%
(18.22% selected features)

Table 8 shows that the current study’s performance exceeds most other related works’
results. The used dataset size is also larger than most other studies’ datasets. The variety
of using two datasets with different specifications and under different feature selection
scenarios is also introduced in our study.
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Compared to the previous studies, our study used a very large dataset. Other studies
used small (Yazdinejad et al. [26], Vinod et al. [40]) or medium datasets (Xiao et al. [39],
Jeon and Moon [25], Darabian et al. [27]). Besides that, two different datasets with a variety
of features were used in our study to evaluate high dimensionality and big data size.

From a methodology point of view, not only machine learning but also different deep
learning models were used in our study. Previous studies applied only one type of ML and DL.

The evaluation process in previous studies used the accuracy metric (Xiao et al. [39],
Vinayakumar et al. [3], Vinod et al. [40], Darabian et al. [27], Hwang et al. [28]). Some other
studies (Jeon and Moon [25] and Ban et al. [29]) used accuracy, F1-score, and recall. In our
study, other metrics like accuracy, F1-score, recall, and precision were also used.

Our study discussion also applied feature selection and different splitting scenarios,
which were not taken into account in all previous studies.

Table 9. Comparison between the current research and previous machine learning approaches on the
same dataset.

Study Methodology Dataset Results

Taha and Barukab [41]

SVM, logistic regression (LR),
gradient boosting (GB), decision

tree (DT), and AdaBoost,
Ensemble Learning

Second Dataset

Acc=
DT: 93.75%
LR: 92.86%
GB: 93.53%

AdaBoost: 90.96%
Ensemble Learning: 94.15%

Masum and Shahriar [42] DT, SVM, LR Second Dataset

Acc=
DT: 97.83%

SVM: 97.29%
LR: 97.77%

Gumaa [37] DT, RF, K-NN, LOG Second Dataset

Acc=
RF: 97%
LR: 95%

DT: 96.5%
LOG: 95.5%

Current study Dense Model, LSTM model First Dataset

Acc = 99.99%, F1-score = 100%
(no feature selection)

Acc = 99.75%, F1-score = 99.8%
(63.63% selected features)

Current study Dense Model, LSTM model Second Dataset

Acc = 98.38%, F1-score =
98.9% (no feature selection)

Acc = 94.59%, F1-score = 94.9%
(18.22% selected features)

Table 9 shows that the proposed deep learning LSTM and Dense model exceed the
performance of all previous machine learning approaches. The best accuracy score of all
previous studies in Table 9 is 97.77% for the logistic regression model (Gumaa study [37]),
which is less than our score by 0.61%.

4. Conclusions

In this research, two different malware datasets were used to train and test deep
learning models. The first dataset has a large number of records with a low number
of attributes. In contrast, the second dataset has a low number of records but a high
number of attributes (high dimensionality and complexity). The main purpose of this
difference was to evaluate the effect of feature selection on the performance of low- and
high-dimensional datasets. For each dataset, many training scenarios were applied. Some
of them corresponded with the different selected features, while others were based on
various splitting criteria.
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The feature selection step was done using the correlation degree between each attribute
and the target column (classification column). The most correlated features were selected
in 4 different scenarios of the first dataset, starting with dropping six features, nine features,
12 features, and ending with dropping 19 features. With 27 selected features out of 33, the
validation accuracy was minimized only by 0.07%, while in the final scenario (with a 42.42%
reduction rate), the validation accuracy was reduced by 5.84% and the computational time
was also reduced by 0.1 S/Ep.

For the second dataset, the dimension reduction process affected the performance
since it has only 15,036 records but 214 attributes (predictors). Another cause of this effect
is the high dimensionality of the second dataset, so that the correlation values between the
classification column and other columns (predictors) are very close, making a threshold-
based feature selection process drop more columns compared to the first dataset (with a
small number of columns). The results indicated that by using only 18.22% of the total
columns (81.77% reduction rate), the validation accuracy would be reduced by 3.79%, and
by using only 6.5% of the total columns, the validation accuracy was reduced by 9.44%.
The experiments on both datasets proved that some of the malware dataset’s columns are
not actually involved in the final prediction and could be moved out. In the scenarios of the
first dataset, the LSTM-added layer enhanced the validation and test accuracies by 0.05%
and 0.44%, respectively. The LSTM layer, on the other hand, preserved performance with
increased time complexity in the second dataset of scenarios.

Different splitting scenarios were also applied to both datasets. However, in all
experiments, the results proved that using 20% as a test set was the best option.

The main limitation of our study was that we focused on the general malware detection
task without going deep into the types of malware. In future work, the different malware
types can be involved and studied to determine the effect of feature selection on the final
prediction of such malware types.
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