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Abstract

Cyberattacks endanger physical, economic, social, and political security. There have been exten-

sive efforts in government, academia, and industry to anticipate, forecast, and mitigate such cyber-

attacks. A common approach is time-series forecasting of cyberattacks based on data from network

telescopes, honeypots, and automated intrusion detection/prevention systems. This research has

uncovered key insights such as systematicity in cyberattacks. Here, we propose an alternate per-

spective of this problem by performing forecasting of attacks that are “analyst-detected” and

“-verified” occurrences of malware. We call these instances of malware cyber event data.

Specifically, our dataset was analyst-detected incidents from a large operational Computer

Security Service Provider (CSSP) for the US Department of Defense, which rarely relies only on

automated systems. Our data set consists of weekly counts of cyber events over approximately

7 years. This curated dataset has characteristics that distinguish it from most datasets used in prior

research on cyberattacks. Since all cyber events were validated by analysts, our dataset is unlikely

to have false positives which are often endemic in other sources of data. Further, the higher-quality

data could be used for a number of important tasks for CSSPs such as resource allocation, estima-

tion of security resources, and the development of effective risk-management strategies. To quan-

tify bursts, we used a Markov model of state transitions. For forecasting, we used a Bayesian State

Space Model and found that events one week ahead could be predicted with reasonable accuracy,

with the exception of bursts. Our findings of systematicity in analyst-detected cyberattacks are con-

sistent with previous work using cyberattack data from other sources. The advanced information

provided by a forecast may help with threat awareness by providing a probable value and range

for future cyber events one week ahead, similar to a weather forecast. Other potential applications

for cyber event forecasting include proactive allocation of resources and capabilities for cyber de-

fense (e.g., analyst staffing and sensor configuration) in CSSPs. Enhanced threat awareness may

improve cybersecurity by helping to optimize human and technical capabilities for cyber defense.
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Introduction

Internet infrastructure plays a crucial role in a number of daily activ-

ities. The pervasive nature of cyber systems ensures far-reaching

consequences of cyberattacks. Cyberattacks threaten physical, eco-

nomic, social, and political security. The effects of cyberattacks can

disrupt, deny, and even disable the operation of critical infrastruc-

ture including power grids, communication networks, hospitals, fi-

nancial institutions, and defense and military systems. To protect its

critical infrastructure, the US Department of Defense (DoD) has

identified cyberspace (information networks for computers, commu-

nication, and other systems) as a key operational environment for

the military, one that is interdependent with the physical (air, land,

maritime, and space) environment [1]. A key component of the

DoD’s strategy and implementation plans for protecting cyberspace

is enhancing threat awareness for Computer Security Service

Providers1 [CSSPs] [2–3]. Analysts in DoD CSSPs protect DoD and

DoD affiliated computers and networks by finding, analyzing, reme-

diating, and documenting cyberattacks.

To improve threat awareness for CSSPs, we investigate whether

intrinsic, predictable patterns exist among “analyst-detected” and

“-verified” occurrences of malware, referred to here as cyber events.

This research is unique because the dataset comprises over 7 years of

cyber events from an operational DoD CSSP that rarely relies only

on automated systems (e.g., anti-virus software, firewalls, intrusion

detection systems (IDS), and intrusion protection systems which are

typically signature based) to detect and verify attacks.

In contrast, nearly all prior research on modeling cyberattacks

[4–10] lacked analyst detection and verification of computer secur-

ity incidents with the exceptions of [11, 12]. In these two exceptions,

security incidents were verified by system administrators at a large

university [11] or verified by analysts at a CSSP [12]. Thus in most

earlier research, the sources for cyberattacks were processed data

from network telescopes and honeypots [4, 6, 8–10] and alerts from

automated systems on real networks [5, 7, 13]. Compared to real

networks, the majority of traffic to network telescopes (passive

monitoring of unrequested network traffic to unused IP addresses)

and honeypots (monitored and isolated systems that are designed to

appear legitimate to attackers) can be considered suspicious.

However, the rates of false alarms and misses for cyberattacks de-

pend upon how “attacks” are determined in data processing and/or

the automated systems [14]. Cyberattacks inferred from automated

systems generate a large volume of alerts and are considered a stand-

ard measure for attacks [15]. Yet automated systems only indicate

an attack “may” have occurred because of false positives and misses

[12, 16]. Many automated systems compare information gathered

by sensors to patterns stored as signatures, looking for matches.

A signature that is too specific may miss attacks, just as one that is

not specific enough may generate false positives. Consequently,

there are multiple approaches to manage the volume of alerts by fil-

tering and combining them (e.g., flows of related alerts) [7, 13].

Other work on improving IDS detection has applied machine learn-

ing [17–18] to a widely used synthetic dataset on cyberattacks,

Knowledge Discovery and Data Mining CUP (KDDCUP) 1999 [19].

The original dataset contained a high number of duplicate records,

which inflated classification accuracy and was addressed in a new

version of the dataset, NSL-KDD [18]. Nonetheless, the KDDCUP

1999 dataset and derivatives of it are now quite old and are unlikely

to be representative of current systems.

Despite potential limitations on the data sources in the majority of

prior research, intrinsic patterns in cyberattacks have been identified.

The main finding is that cyberattack frequency can be forecast over

time using processed data from network telescopes and honeypots as

well as automated systems [4, 6–10, 20]. Similarly, the only research

using human-verified cyberattack data also found intrinsic temporal

patterns [11, 12]. Other patterns have also been found, including the

presence of bursts or extreme values [6, 9–10] and disproportionate

exploitation of specific vulnerabilities [5]. Taken together, this work

suggests that cyberattacks have a deterministic component: They are

not fully stochastic (or random point processes).

The current work is novel because little is known about the sys-

tematicity for analyst detected and verified cyberattacks protecting

critical infrastructure, in this case, US military networks, including

organizations affiliated with the US Department of Defense. The

curated analyst dataset is unlikely to suffer from false positives be-

cause cyber events are detected and verified by analysts who investi-

gate events and connect evidence to confirm or disconfirm potential

events, also see [12]. Consequently, analyst-detected and -verified

cyber events provide a potentially more direct, filtered, and inform-

ative indicator of threats for CSSPs than attack data processed from

network telescopes and honeypots and alerts from automated sys-

tems in isolation. However, in our data and other real-world data-

sets, whether with automated systems or analysts, the number of

attacks that were missed is unknown. A miss could be an attack that

was completely overlooked or delayed detection.

In this article, we make three crucial contributions. First, as pre-

viously described, we advocate for the forecasting of cyber incidents

from analysts, as it has a number of appealing properties over purely

machine-processed data using rules. Second, we describe characteris-

tics of the data: its overdispersion and extreme values or bursts in

cyber event counts. We quantify bursts using a Markov model.

Bursts are a signature of natural phenomena, including human be-

havior [21]. Last, we perform temporal prediction of cyber events

using the Bayesian State Space Model (BSSM) to predict the number

of future events one week ahead. This approach provides both a

point estimate and also an interval for the range of forecast uncer-

tainty. Predictive models of analyst-based cyber events may pro-

actively inform CSSPs on a number of important tasks such as

resource allocation (e.g., number and location of sensors on the net-

work), estimation of analyst staffing, and the development of effect-

ive risk-management strategies.

Related research

Prior work has demonstrated that cyberattacks, predominantly

using machine processed data or alerts, exhibit both deterministic

and stochastic patterns. The main finding for deterministic patterns

in cyberattacks is that they are neither independent nor random over

time. Consequently, the number of attacks in the past helps predict

the number of future attacks. The deterministic patterns can often

1 Note that CSSPs are also be referred to as Computer Defense Service

Providers, Computer Network Defense Service Providers, Computer Security

Service Providers, Cybersecurity Defense, Managed Computer Security

Service Providers, and Managed Security Service Providers. The last two

terms, which included “managed,” explicitly refer to a CSSP that protects

the networks and computers for multiple clients/customers.
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be leveraged to generate reasonably accurate predictions. When sto-

chastic patterns are present, particularly fluctuations such as ex-

treme values and bursts, temporal forecasting becomes more

challenging. The majority of time-series models for count data

(i.e., number of attacks) assume a Poisson distribution (equal rate

and variance, expressed in a single parameter) [22]. Analysis of

automated system data of cyberattacks also reveals systematicity in

the tendency of attacks to exploit a disproportionately small set of

vulnerabilities.

Forecasting and bursts

Time-series forecasting has been widely used for prediction of cyber-

attacks. Using machine-processed attack data from network tele-

scopes and honeypots, the number of cyberattacks over time at

minute and hour intervals are predictable over the time period of up

to one day [6, 8–10]. Also, cyberattacks were modeled at different

levels (attacker IP address, targeted network port[s], and victim IP

address) [10]. The use of different levels for attacks were extended

to an early warning system by modeling multiple time-series for at-

tack penetration and the number of victims [8]. Other research has

reported temporal patterns in attack, but instead used filtered and

combined alerts from automated systems [7, 13] or used publically

reported cyberattacks from the Hackmageddon database [23]. Last,

extreme values—bursts—in attack frequencies have been identified

and used to improve model prediction [6, 9–10]. While extreme val-

ues in cyberattacks pose a challenge for accurate time-series fore-

casting, such bursts also underlie human behavior [21].

Bursts in cyberattacks, however, are not a universal pattern. Using

analyst verified reports, bursts of cyberattacks were found in only three

out of five customer computers/networks protected by a CSSP [12].

Similarly, bursts were not reported for distributed denial-of-service

(DDoS) attacks, but these data were limited to one-minute intervals

over less than an hour [24]. The mixed finding for the presence of

bursts, or lack thereof, raises the question of determining conditions

for their occurrence [12]. It is possible that the absence of bursts may

be due to insufficient data, the specific method(s) of attack detection,

and/or differences in the aggregation/source of the data (e.g., single ver-

sus multiple CSSP customers, the type organization for the computers

and networks being protected). Nonetheless, when extreme values of

attacks are present, and they are not completely random, including

them in modeling improves prediction accuracy [6, 9, 10, 12].

Vulnerabilities

Non-random exploitation of vulnerabilities provides converging evi-

dence for systematicity in cyberattacks. A small number of vulner-

abilities tend to comprise the majority of exploits. For example, data

breaches can be classified with 90% accuracy using two types of ex-

ternally observable risks: a) misconfigured internal systems (e.g., not

changing the default username and password) and b) anomalous

outbound traffic (e.g., spam, port scanning) [25]. Another approach

used internal network monitoring logs to identify the probabilities

of malware using specific vulnerable vectors (e.g., network configur-

ation, unpatched software, and particular services) [5]. In addition

to vulnerability, predictability can be seen in the small number of

“attacker” IP addresses, or points of origin, which account for the

majority of cyberattacks [4].

Dataset description

The dataset here comprises 9302 cyber event reports of malware. In

general, malware includes computer viruses, worms, trojan horses,

malicious mobile code, and blended attacks (combinations of the

previous methods) [26]. Possible attack vectors for delivering mal-

ware include email attachments, web browsers (e.g., websites with

malicious javascript code or other embedded malicious code), user

installed software, and removable media (e.g., flash drives) [26].

The cyber event counts were binned by week, over a time period of

t¼366 weeks.

This dataset was obtained from a large DoD CSSP that manages

computer and network security for multiple defense agencies and

organizations working with the DoD (e.g., industry). The cyber

events are occurrences of malware that infected the CSSP customer

or clients, not against the CSSP itself. Note that this CSSP rarely

relies (<1% of cyber event reports) only on automated systems for

detecting and documenting potential threats. Human analysts exam-

ine the data generated by automated systems and collect sufficient

evidence to verify true positives; alert data alone are insufficient

without human reasoning or validation. While attack data from

automated systems generates orders of magnitude more data than

analysts, the “attacks” detected by automated systems include false

alarms and typically lack human verification and context.

Compared to most previous work on cyberattacks, we likely have

higher data quality (fewer false positives) but much lower data

quantity. For reasons previously mentioned, the quantity of missed

malware is unknown.

In addition, the specific activities performed by CSSPs are highly

varied [27–28], so the current dataset may not generalize to all

CSSPs. For example, CSSPs can differ in their reliance on automated

systems rather than analyst verification. Despite such differences,

the majority of CSSPs are responsible for reporting of computer/net-

work security incidents [28]. The generic tasks and workflow for

cyber analysts in DoD CSSPs are described in [28] and also [29].

Because the data were from an operational CSSP, we are

restricted in providing specific details such as the following:

i. Actual years for the cyber events (data are from after the year 2000)

ii. Bins smaller than one week (e.g., events per shift or per day)

iii. Specific report contents (e.g., method[s] of detection, evidence

for the cyber event [also called testimony], type of malware,

and infection vector)

iv. Names of the CSSP customers, the number of customers, and

separate analysis by CSSP customer (even if unidentified)

Therefore, the primary analysis examined the frequency of cyber

events (counts). The raw cyber event report data was binned into

counts of the number of reports generated per week. This interval

size is large enough to allow the data and results to be publically

released while still providing a large number of data points to show

variability and still minimize the number of empty intervals (no

events in a week). Use of the data was approved by the US Army

Research Laboratory’s Institutional Review Board. Only the aggre-

gated, de-identified dataset and results were approved for public re-

lease by operations security for the US Army Research Lab and by

the source of the data, the CSSP.

Cyber events

To provide more background and context for analyst detection we

define a cyber event and show a hypothetical cyber event report. A

cyber event documents a computer security event and can be shared

among other network security operations. This is formally defined

as the violation of security, acceptable use, or standard security

practices [16]. Although there are specific content requirements for

the filing of an incident within the US Federal Government, report

content for the CSSP included the date of analyst detection and a

Journal of Cybersecurity, 2018, Vol. 0, No. 0 3
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paragraph-long “testimony section” describing evidence for

the cyber event. Other information includes the location or site/cus-

tomer involved and IP addresses for the target and source of the at-

tack. Figure 1 illustrates a hypothetical example of a cyber event

report.

An explanation of each of these fields is given to provide greater

understanding to the reader.

• Report number—A unique identifier for the incident report
• Status—Indicates if the report is open or closed
• Detected—The initial time that the alert was generated
• Reported—The time that the alert was determined to be signifi-

cant enough to open a report
• End—Date the issue was resolved
• Site—Location of the attack
• Sensor—Unique identifier of the sensor that captured the alert
• Incident type—Category ranging from 1 to 9, see [30]. Category

7 (CAT-7) (see example above) refers to an incident involving

malware or malicious software. Note that we only examine

CAT-7 cyber events here.
• Hostile—IP address that issued the command, presumed attacker
• Target—IP address of the host that received the command, de-

fender or potential victim
• Text—Text description of the event(s)
• Action Taken—Describes what action the analyst has taken con-

sistent with CSSP procedures. Typically, the CSSP must notify

appropriate POCs at the customer site as well as communicate

the findings to peer and superior levels.
• Report Submitted, Analyst—Unique identifier of the analyst who

submitted the report

This CSSP has consistent policies and procedures, continuous

quality and process monitoring requirements, collaborative reviews,

and routine metrics review of how attacks are cataloged. The cyber

events that comprise our dataset are all analyst-identified. Each

event identified with an analyst report is counted as one instance.

Unfortunately, we cannot disclose further details of the counting

methodology for security reasons.

Results

We first summarize characteristics of the dataset: The data were

overdispersed and, using a Markov model of burst intensities over

time, we found bursts and bursts of bursts. Next, we describe the

forecast model. The best-fit forecast model used a BSSM to predict

the number of cyber events for a given week using the number from

a previous week (one lag model). Taken together, the main results

provide compelling evidence that analyst detected cyber events are

not point processes (i.e., random values over time). A secondary re-

sult was that the annual increase in cyber events was strongly associ-

ated with the rising number of CSSP customers each year.

Results are partially reproducible; the data on counts of weekly

cyber events, code to reproduce the figures and models, and the

Supplementary Materials are available here: https://osf.io/hjffm/.

Unfortunately, for the previously mentioned reasons we are unable

to share the raw data on cyber events with content, the code used to

clean the raw data, and the data used in the secondary result (annual

number of CSSP customers).

Dataset characteristics

We describe characteristics of the data to summarize it and illustrate

the challenges with modeling it. The counts of events were clearly

non-normal with overdispersion (Fig. 2).

To quantify the overdispersion shown in Fig. 2, we use the index

of dispersion (I), also called the variance to mean ratio, shown in

Equation (1) [e.g., 20]:

I ¼
r2

l
(1)

A dispersion index above (1) occurs in data that are overdis-

persed, because the variance ðr2Þ is greater than the mean (l) or

rate. The index of dispersion in the current data was I¼15.29, con-

firming considerable overdispersion. Many time-series models for

count data assume a Poisson distribution (equal rate and variance,

expressed in a single parameter), and thus dispersion violations may

produce incorrect results [see 23].

Bursts

The presence of bursts is strongly suggested by the overdispersion in

the data (Fig. 2 and the index of dispersion). To detect bursts, we le-

verage the work of Kleinberg [31] using the rates of cyber events

(e.g., 1 cyber event per week has a rate of 1, 10 cyber events per

week has a rate of 1/10). Using the Kleinberg model, we find bursts

in the rates of cyber events starting at the beginning of Year 3 and

Figure 1. Hypothetical example of a cyber event report.
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also detect bursts of bursts (Level 2 to Level 3), shown in Fig. 3.

Kleinberg bursts use a Markov model that can simultaneously char-

acterize both the normal and anomalous arrival times: multiple

states where each state controls the rate of activities. For our data-

set, a higher activity state will exhibit lower rates with shorter

amounts of time between attacks (more cyber events), whereas a

lower activity state will correspond to increased rates because of

longer amounts of time between attacks (fewer cyber events). The

Kleinberg model switches between the states with a fixed probability

that is independent of the state transitions for previous attack rates.

For example, bursts are only detected if there are substantial state

transitions from higher activity states to lower activity states and

vice-versa. The Kleinberg model generalizes this phenomenon by

considering all possible rates as an infinite-state Markov model

whose parameters can be learnt from the data rather than by using

simple thresholds for detecting bursts. Simpler approaches such as

models with a limited number of states and thresholding are general-

ly insufficient for burst detection.

Recall our aforementioned point that most cyberattacks exhibit

both stochastic and deterministic patterns. If the bursts have a deter-

ministic component, then explicitly modeling them is likely to im-

prove forecast accuracy as others have demonstrated [6, 9–10]. It is

important to understand the nature of bursts in the data, as effects

of bursts or extreme values may be underestimated in model fits

used in forecasting. Because reporting of cyber events was consist-

ent, it is unlikely that the burstiness was an artifact of how events

were documented.

Forecasting

Because of the overdispersion and bursts in the data, the BSSM had

better predictive accuracy than the alternative, traditional

approaches to time-series forecasting (see Supplementary Materials).

The BSSM had several additional advantages over the other

approaches to typical time-series forecasting with regression, such as

an autoregressive (AR) model, autoregressive moving average

(ARMA) model, or autoregressive integrated moving average

(ARIMA) model. First, the BSSM accommodated overdispersed data

using a negative binomial distribution rather than assuming a nor-

mal distribution. Second, it can estimate multiple sources of variabil-

ity (e.g., measurement error) [32] instead of only random model

variance [33]. Third, BSSM does not require modeling structural

breaks (changes in the forecast at specific time points) and detrend-

ing data. Fourth, BSSM can accommodate data with non-

stationarity (i.e., changes in mean, variance, and correlation struc-

ture over time). State space models have become increasingly popu-

lar for forecasting problems because of increased computing power

and a family of well-developed Markov Chain Monte Carlo

(MCMC) algorithms [34]. At a high level, this approach decom-

poses the underlying generative process into two types of variables:

a. Observation variables

b. State variables.

The model then defines a state transition equation that controls

how the process moves between states and an observation equation

that generates a noisy output based on the current state.

Forecasting was performed using a BSSM with a negative bino-

mial distribution with a one week lag (the same lag as some of the

traditional time-series forecasting methods, described in detail in the

Supplementary data). BSSM is a transparent machine-learning tech-

nique that decomposes the data into observations and the model

into simultaneously estimated states [32] (see Equations (2) and (3)

and Table 1). The BSSM was implemented in the statistical pro-

gramming language R using the “brms package” [35] as a wrapper

for the probabilistic programming language Stan [36]. Default, non-

informative Bayesian priors, also called Empirical Bayes, were used

for model estimation. That is, the priors were empirically estimated

from the data. Equation (2) is the overall forecast model for observa-

tions and Equation (3) is the state; model variables are defined in the

Table 1 (the equations and variables are from p. 288 in [37]; also see

the specification in [33]).

Forecast (observation):

yt ¼ Atxt þ vt; where yt � NBðn; pÞ (2)

Local level (state):
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Figure 2. Shows the histogram of cyber events by week. The x-axis is bins of

cyber event counts, and the y-axis depicts the number of weeks in each bin.

For example, there were 0–10 cyber events in about 90 of the 366 weeks. The

tick marks on the x-axis depict the density of cyber events in each bin and

their specific values within the bin; these were randomly jittered by 0.3 to cre-

ate unique values.
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Figure 3. The x-axis is the year. The y-axis is the burst intensity level, where

level 1 is no bursts and higher levels depict more intense bursts. The bars

represent the range of burst rates for a given burst intensity level. Note the

nesting of bursts with faster and faster rates of time to cyber events for levels

2–3 (increasing burstiness in the number of cyber events). There were a total

of 8 weeks with Level 3 bursts and 28 weeks with Level 2 bursts (36 out of 366

weeks exhibited Kleinberg bursts).
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xt ¼ /xt�1 þ w (3)

No seasonal or cyclical patterns were visually apparent in the

data, nor were they meaningful predictors in the alternative models

(see the Supplementary data). Consequently, these parameters were

omitted from the BSSM model. Including report length of a cyber

event as a parameter in the model yielded a worse fit based on the

Widely applicable Bayesian Information Criterion (WBIC) [38]. The

model with report length had WBIC¼2590.98, while the model

omitting report length had WBIC¼2586.43. Lower WBIC values

indicate a better relative model fit.

Figures 4a (weeks for Year 3) and 4b (all 366 weeks) show the one

week ahead BSSM forecast. Note that the forecast (white line) in relation

to the observed number of events (magenta line). Visible peaks in the ma-

genta line are indicative of bursts in the cyber events. While BSSM lever-

ages deterministic and stochastic patterns, bursts are underestimated in

trend lines. Despite deviations in the forecast due to these bursts, nearly

all of the observed cyber events were captured by the credible interval

(gray-scale shading). However, this assessment of coverage is inference

because we do not know the true values of cyber events which is what

credible intervals actually estimate. The credible interval (the Bayesian

equivalent of a frequentist confidence interval) estimates the probability

the true value is captured as a random variable. Formally, the credible

interval is defined as the predictive or posterior probability distribution

of the model parameters given the observed data [39].

Forecast accuracy

We quantified the trendline forecast accuracy of the BSSM using mul-

tiple measures and compared it to two typical time-series models for

all data (Table 2) and for only bursts at Level 3 (Table 3) and Level 2

(Table 4). For all data and every measure of forecast accuracy, the

BSSM outperformed the two other models with overall accuracy that

subjectively ranged from decent to excellent. The alternative models

had similar accuracy to each other for all data as well as both types of

bursts. The BSSM also had higher accuracy than alternative models

Table 1. Definitions of model variables

Variable Definition

y Estimated number of event(s)

t Time (week)

NB(n, P) NB¼ negative binomial distribution

n¼ number of failures (zero counts for cyber events)

P¼ probability of success (cyber event occurs)

/ Latent state

xt State (transformed known observations from the

previous week plus measurement error); note that xt-1
is the known observation from the previous week

A Measurement/observation matrix

v Measurement error a

w Level error a

aNote that the credible intervals, described below, incorporates both meas-

urement and level error.

Figure 4. (a) BSSM forecast for weeks in Year 3; see (b) for details. (b) BSSM forecast for all 366 weeks. The forecast trend is the white line, a one-week ahead pre-

diction, and the observed number of events is the magenta line. For the model, given the data, the 95% credible intervals depict uncertainty using gray-scale

shading. Gradients from dark to light indicate growing uncertainty in estimating the true number of cyber events, but a higher probability that the interval cap-

tures the true value.
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for the Level 3 and Level 2 bursts. Nevertheless, the trendline accuracy

for the BSSM was subjectively very poor for Level 3 bursts and also

poor for Level 2 bursts, both with the exception of single measure of

forecast accuracy. As a reminder, Kleinberg bursts were prevalent in

about 10% of the data (36 weeks out of 366 weeks). The fairly small

number of bursts is a challenge for accurate forecasting, even using a

model with a distribution for overdispersed counts. The tradeoffs

among different measures of forecast accuracy and equations for each

are described by Hyndman and Koehler [40]. Note that the measures

of forecast accuracy only reflect the trendline compared to the

observed number of cyber events, the true number of cyber events is

unknown and can only be estimated.

Increasing over time: cyber events and CSSP customers

Figure 4 indicates that the overall number of cyber events is increas-

ing over time. However, we found that this closely corresponds to

increases in the number of customers per year. Because the specific

information is sensitive, we are unable to provide details. We used

the number of events per year as the dependent variable and the

number of customers per year as the independent variable in ordin-

ary least squares regression. The regression yielded a strong positive

slope, F(1, 6)¼17.32, P<0.006,Multiple R2¼0.70.

Summary and discussion

We have shown that analyst-detected and -verified cyber events ex-

hibit sufficient systematicity for time-series forecasting, despite over

dispersion. We quantified the presence of bursts and their intensity

(�10% data). The low prevalence of bursts, across all CSSP custom-

ers, appears consistent with findings of bursts for some CSSP cus-

tomers [12]. Forecast accuracy for bursts was disappointing, even

with the BSSM. Nevertheless, the majority of the data could be fore-

cast with reasonable accuracy. The main finding, that the number of

cyberattacks from the previous week helps predict the number that

will occur one week later, was strikingly similar to other research

using human-verified cyberattacks which was from a university

network [11]. More broadly, the ability to predict cyberattacks over

time is consistent with prior research using processed data from net-

work telescopes and honeypots as well as alerts from automated sys-

tems [4, 6, 7, 9–13]. In comparison, we used cyber events detected

and verified by analysts in an operational CSSP that rarely used

automated systems alone and protects critical infrastructure. Like a

weather forecast, albeit limited to a one-week ahead prediction here,

cyber event forecasting may proactively enhance threat awareness.

This may enable CSSPs and similar organizations to better plan for

and manage attacks against their defended domains. Moving from

reactive and passive defenses to more proactive defenses may help

optimize cybersecurity for both analysts and technical systems.

Potential applications

Advance knowledge about the probable range of attack frequency

may aid threat awareness in cybersecurity. Potential applications for

CSSPs are using the forecast to proactively inform allocation of

capabilities such as the sensors and their configuration (e.g., sam-

pling rate, location of sensors) and type of monitoring (e.g., network

traffic). Additionally, a cyber event forecast is an empirical estima-

tion of risk which could be directly applied to models of cyber ana-

lyst staffing [41,42].

However, we caution that no forecast should be used as a target

or a quota for analysts or CSSPs. When a measure becomes a goal,

that measure may no longer be meaningful as an outcome [43].

The meaning of a measure can be distorted by biases such as social

and political pressure which may introduce incentives with unin-

tended consequences. Reported detection of “more” attacks may

not necessarily improve actual computer and network security.

Limitations

Because the dataset in this article is unique, analyst detection and

verification of cyber events from an operational CSSP with minimal

reliance on automated systems, it also comes with several limita-

tions. First, we have only one dataset from one CSSP. This limits the

generalizability of the results, although the central findings were

Table 2.Measures of forecast trendline accuracy: all data

Measure BSSM (one week lag) AR(1)a AR(3)

Mean Absolute Error (MAE) 5.43 cyber events 8.67 cyber events 8.60 cyber events

Mean Absolute Percentage Error (MAPE)b, c 68.17% accuracy 48.97% accuracy 49.28% accuracy

Symmetric Mean Absolute Percentage Error (SMAPE)c 86.37% accuracy 80.50% accuracy 80.50% accuracy

Root Mean Square Error (RMSE) 8.27 cyber events 13.04 cyber events 12.98 cyber events

AR(1) is a first-order autoregressive model: Time t is forecast using t-1, a one week lag. AR(3) is a third-order autoregressive model: Time t is forecast using

t-1, t-2, and t-3. See Supplementary Materials for details.
aAR(1) is equivalent to ARMA(1, 1).
bAccuracy is 1 – MAPE and 1 – SMAPE.
cMAPE is undefined with actual values of zero because dividing by zero is undefined. Therefore, we excluded the three weeks with zero cyber events and the fit-

ted trend line corresponding to those three weeks.

Table 3.Measures of forecast trendline accuracy: level 3 bursts (highest intensity level)

Measure BSSM (one week lag) AR(1) AR(3)

Mean Absolute Error (MAE) 25.46 cyber events 37.81 cyber events 38.05 cyber events

Mean Absolute Percentage Error (MAPE) 42.84% accuracy 34.75% accuracy 33.96% accuracy

Symmetric Mean Absolute Percentage Error (SMAPE) 77.84% accuracy 68.54% accuracy 68.38% accuracy

Root Mean Square Error (RMSE) 30.53 cyber events 47.01 cyber events 47.13 cyber events
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consistent with prior research. Second, even the best fit model had

poor accuracy for predicting bursts. This may be because bursts

were relatively rare. Third, we treat each cyber event as equivalent.

That is, we do not account for differences in impact among attacks

(e.g., affected number of computers and/or networks, consequences

on security and economic measures such as loss of productivity and

time). Attack severity and attack timing may be related. Recent re-

search indicates that for data breaches, there is a meaningful de-

pendency in the timing between attacks and attack severity

(magnitude of the data breach) [44]. Fourth, we could not include

the report contents (e.g., method[s] of detection, type of malware) in

modeling cyber events and were limited to weekly, rather than finer-

grained, counts of cyber events. Such information is sensitive be-

cause it could reveal how the CSSP monitors and protects systems.

While we were unable to do so here, incorporating internal and ex-

ternal variables is likely to improve the quality of the forecast and

also aid in identifying factors relevant to specific attacks.

Factors for attacks?

Although we can predict malware frequency, we lack direct empirical

evidence to explain causes for attack systematicity, as do many others.

Moreover, causal inference is a general challenge with observational

data [45]. Nonetheless, prediction without identifying causes does not

necessarily change the accuracy of prediction. Prediction accuracy

will be maintained as long as the conditions and underlying assump-

tions remain constant. A forecast may become unreliable if conditions

change, thus risk models should be frequently recalibrated and vali-

dated and should preferably use multiple sources of data [46]. This

issue is illustrated by the initial accuracy and then inaccuracy of

Google Flu Trends (GFT) [47]. GFT relied on a single source of data

(Google search terms related to the flu) and did not update assump-

tions (e.g., the introduction of suggestions for search terms, other

changes to Google search, and media reports) [47].

While we have not identified specific associated or causal factors

here, past research suggests that there are multiple causes for cyber-

attacks. Potential factors are not mutually exclusive. First, there

may be planned timing in related attacks (a series of cyberattacks

over time) by the same individual or group, or by coordination

among groups [48]. In the current work, a series of planned attacks,

if they exist, are mixed by aggregation and the absence of detailed

information about each event. Recovering separate distributions

from their mixtures is challenging [49]. Second, it is possible that

exploits are created or purchased on the dark web and deployed by

distinct individual or groups around the same time.

Last, activities in social media and events in the physical world

likely contribute to attack patterns and vice versa. Prior research has

found associations among cyberattacks on DoD networks and foreign

media reports of US military actions [50]. Also, website defacements

have been linked to a variety of events in the physical world (e.g., vio-

lence, protests, and threats) [51]. Incorporating the physical environ-

ment as well as expert insights from cybersecurity analysts and

analysts in the broader intelligence community may provide

additional predictors for cyberattacks and as well as their associa-

tions. Given cyberspace is interdependent with the physical environ-

ment, adding predictors from experts and other sources could be used

to estimate and model interconnected risks among parameters, see

[52–54].

Future directions

The forecast for analyst detection does not identify specific risk fac-

tors associated with attacks. To enhance awareness about specific

threats, it is vital to uncover associated and, ideally, causal factors

for cyberattacks. This cannot be done with the cyber environment

alone because it is inter-dependent with physical environments [1].

In the future, we seek to improve cyber forecasting and to infer the

causes for attack patterns. Because of the challenges of openly pub-

lishing details with the current dataset, we may use openly available

datasets, where attackers sometimes self-identify and even provide

the motivation for their attack, such as website defacements (see

[51]). Potential variables include events in the physical world as well

as more detailed information about the attacks (e.g., the type of mal-

ware, exploits/vulnerabilities used, source[s] of the attack, and mal-

ware and other cyberattack pricing on the dark web described in

[55]). Also, empirically assessing cybersecurity analysts’ understand-

ing of the cyber event forecasts could improve its effectiveness for

threat awareness. Research on human understanding of uncertainty

in visualization of forecast models is surprisingly limited [56].

Another future direction is combining log and automated

defenses and prior knowledge of common vulnerabilities with ana-

lyst detection. This could advance understanding how layers of de-

fense are coupled, or not, and how particular attacks pass through

layers of defense. Network topology is also relevant to attack fore-

casting: using log and network topology, an early warning system

for mitigating attacks has been developed by modeling probable at-

tack penetration and victims [8].

An additional possibility for future research is using the current

forecast models and measures of their accuracy as baselines. We are

optimistic that others could develop models that have better accur-

acy than the BSSM forecast accuracy, especially for bursts. Also, our

forecast predictions and assessments of their accuracy were limited

to one-week ahead. Future work could evaluate the forecast accur-

acy of h-step ahead (out of sample) using a variety of models.

A final line of future research is to evaluate alternative loss func-

tions. Most time-series forecasting methods assume the squared loss

functions for optimization. However, in the security context, espe-

cially for critical infrastructure, investigation of other loss functions

is a technical gap. For example, a negative forecast error (i.e., under-

estimate) could be far more expensive than a positive one (i.e., over-

estimate). The squared loss function treats both scenarios

equivalently. Another line of research is to design forecasting models

that can produce richer outputs such as range of forecasts along

with the confidence interval or other estimation of uncertainty.

Additionally, an interactive forecast model that can output the con-

fidence over a human-specified range is often useful from a risk-

Table 4.Measures of forecast trendline accuracy: level 2 bursts

Measure BSSM (one week lag) AR(1) AR(3)

Mean Absolute Error (MAE) 12.20 cyber events 13.72 cyber events 13.59 cyber events

Mean Absolute Percentage Error (MAPE) 57.01% accuracy 54.80% accuracy 55.97% accuracy

Symmetric Mean Absolute Percentage Error (SMAPE) 83.41% accuracy 81.71% accuracy 81.75% accuracy

Root Mean Square Error (RMSE) 16.67 cyber events 21.64 cyber events 24.61 cyber events
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aware resource allocation perspective. We also plan to evaluate

ensembles of forecasting models so that we can combine the advan-

tages of various forecasting models (e.g., ARIMA, state space-based,

and techniques for modeling complex dependencies in the data such

as [8]) to produce a superior output.
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