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Abstract

Visual information is quite important for the task
of video captioning. However, in the video, there
are a lot of uncorrelated content, which may cause
interference to generate a correct caption. Based
on this point, we attempt to exploit the visual fea-
tures which are most correlated to the caption. In
this paper, a Multi-level Attention Model based Re-
current Neural Network (MAM-RNN) is proposed,
where MAM is utilized to encode the visual fea-
ture and RNN works as the decoder to generate the
video caption. During generation, the proposed ap-
proach is able to adaptively attend to the salient re-
gions in the frame and the frames correlated to the
caption. Practically, the experimental results on t-
wo benchmark datasets, i.e., MSVD and Charades,
have shown the excellent performance of the pro-
posed approach.

1 Introduction

The task of video captioning is to automatically generate
a sentence to describe the video content [Venugopalan et
al., 2015a]. Recently, this task has drawn increasing atten-
tion, because it enables many important applications, includ-
ing video title generation, human-robot interaction, content-
based video retrieval and so on.

Essentially, video captioning is a sequence to sequence
task, which transfers the data from frame sequence to word
sequence. Recently, benefiting from the development of deep
learning, especially Recurrent Neural Network (RNN), video
captioning has achieved inspiring results [Zeng et al., 2016;
Shetty and Laaksonen, 2015]. Practically, most of existing
RNN based approaches follow the encoder-decoder diagram.
Firstly, the video features are encoded into a fixed size vector
which is taken as the input to the RNN. Then, the RNN is
utilized as the decoder to generate the sentence.

Practically, the visual feature input to RNN is quite im-
portant for generating correct video caption. The early ap-
proach [Venugopalan et al., 2015b] simply input the average-
pooled frame features to RNN. Recently, researchers have re-
alized that there are a lot of redundant and irrelevant content
in the video, which may cause interference to generate the

A dog is running around.

Figure 1: Our multi-level attention model can not only focus
on the most correlated frames, but also attend to the most
salient regions in each frame.

correct caption. Based on this point, attention model is em-
ployed to selectively focus on only a few of the video frames
which are relevant to the target caption [Yao et al., 2015;
Yu et al., 2016]. However, there are still some irrelevant back-
ground information, especially when the described object is
small. To address this problem, a more powerful attention
model is needed to automatically attend to the most salient
regions in each frame. Ideally, as depicted in Fig. 1, to gen-
erate the caption of a dog is running around, we hope the at-
tention model can automatically focus on not only the frames
containing dogs, but also their dog regions.

Following this inspiration, we design a Multi-level Atten-
tion Model (MAM) to encode the video features. It is able to
adaptively focus on the most correlated visual features both
in frame-level and region-level. Specifically, it has two layer-
s. When generating the caption, the first layer learns to focus
on the most salient regions in each frame, while the second
layer tries to attend to the most correlated frames. Then, the
video feature is encoded into a fixed size vector, and input to
the RNN to generate the video caption word by word. Note
that the visual feature and text feature are fed to RNN jointly,
which indicates that the current word is not only determined
by the current visual feature, but also the text feature of pre-
vious word.

To our knowledge, this is the first approach that jointly ap-
ply region-level and frame-level attention to the task of video
captioning, which is capable of focusing on the most correlat-
ed visual features to generate the correct caption. Moreover,
the results on the MSVD dataset [Guadarrama et al., 2013]

and Charades dataset [Sigurdsson et al., 2016] have verified
the effectiveness of our approach.
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2 Related Works

Early works on video captioning follow a two stage pipeline
[Guadarrama et al., 2013; Krishnamoorthy et al., 2013;
Thomason et al., 2014]. The first stage trains individual clas-
sifiers to identify the semantic content, i.e., objects, actions
and scenes. Then, in the second stage, these semantic con-
tents are combined with a probabilistic graphical model to
generate a sentence. However, this kind of approach is insuf-
ficient to model the richness of visual and semantic informa-
tion in video captioning.

Recently, benefiting from the rapid development of deep
learning, video captioning has made great progress. Cur-
rent approaches usually follow the CNN-RNN architecture,
where Convolutional Neural Network (CNN) [Krizhevsky et
al., 2012; Simonyan and Zisserman, 2014; Szegedy et al.,
2015] is utilized to extract the visual feature of the video and
RNN is good at modeling the sequence information of the
caption. The baseline of CNN-RNN based approach is first
proposed in [Venugopalan et al., 2015b]. Firstly, the visu-
al feature of the video is extracted by simply average pool-
ing the CNN features of individual frames. Then, the visual
feature is input to the Long Short-Term Memory (LSTM) to
generate the sentence word by word. The main shortcom-
ing of this approach is that it fails to capture the temporal
information of video frames. Thus, it only works for short
video clips. To exploit more powerful visual feature, [Venu-
gopalan et al., 2015a] employs a LSTM to encode the CNN
feature of each frame. More recently, inspired by the suc-
cess of attention model in image captioning, [Yao et al., 2015;
Yu et al., 2016] design attention models to selectively focus
on a subset of video frames, and the visual feature is gen-
erated by the weighted sum of the attended frame features.
Actually, the CNN-RNN architecture extended with attention
model has won the state-of-the-art performance in the task of
video captioning.

3 Our Approach

As depicted in Fig. 2, our approach, MAM-RNN, can be di-
vided into two stages. The first stage is to extract the visual
feature with MAM, which is composed of the region-level at-
tention and the frame-level attention. The second stage is to
generate the video caption with RNN, i.e., LSTM in this pa-
per [Hochreiter and Schmidhuber, 1997]. For clarity, we first
provide a brief introduction about RNN, and then successive-
ly present the process of video caption generation and visual
feature extraction.

3.1 Recurrent Neural Network

Recurrent Neural Network (RNN) is extended from the feed-
forward networks with extra feedback connections, so that it
can model the sequence information. In standard RNN, giv-
en an input sequence (x1, x2, . . . , xn), the output sequence
(y1, y2, . . . , yn) can be generated iteratively by the following
equations:

ht = φ (Whxt + Uhht−1 + bh) , (1)

yt = φ (Uyht + by) , (2)

where ht denotes the hidden state at time t, φ (·) is the acti-
vation function, and W , U , b are parameters to be learned.

According to [Bengio et al., 1994], the standard RNN is
inferior at modeling long-term sequence information, mean-
while, it is hard to train due to the vanishing gradient problem.
Fortunately, LSTM can make up this drawback, which is de-
rived from the standard RNN by adding three gate layers, i.e.,
the input gate it, the forget gate ft and the output gate ot. In
LSTM, the hidden state is calculated iteratively by

it = σ (Wixxt + Uihht−1 + bi) , (3)

ft = σ (Wfxxt + Ufhht−1 + bf ) , (4)

ot = σ (Woxxt + Uohht−1 + bo) , (5)

gt = φ (Wgxxt + Ughht−1 + bg) , (6)

ct = ft ⊙ ct−1 + it ⊙ gt, (7)

ht = ot ⊙ φ (ct) , (8)

where all the W s, Us and bs are training parameters.

3.2 Video Caption Generation with RNN

In this paper, the LSTM is employed as the generator of video
captions. It can be observed from Equ. (3)–(8) that the hidden
state ht in LSTM is determined by the input xt and the pre-
vious hidden state ht−1. Thus, for simplicity, the calculation
of hidden state is denoted as:

ht = LSTM (xt, ht−1) . (9)

Specifically, the input data for the task of video captioning is
combined by:

xt = [WV Vt, et−1] , (10)

where Vt represents the input visual feature at time step t.
That is to say, different visual features are input to the LSTM
at every time step. The details about the calculation of Vt is
described in the next subsection. et−1 is the text feature of the
word at t − 1. In this paper, the one-hot feature is extracted
for each word, and embedded into a lower space. Besides,
WV is a training matrix which embeds the visual feature Vt

and text feature et−1 into the same space.
Once the hidden state ht is computed, the probability dis-

tribution over the vocabulary is calculated as:

pt = softmax (tan (Wp [Vt, et−1, ht] + bp)) , (11)

where Wp and bp are the parameters to be learned. pt denotes
the probability of each element in the vocabulary to be select-
ed as the t-th word of the caption, which is jointly determined
by the current visual feature Vt, previous text feature et−1

and all the history information encoded in ht. Practically, the
dimensionality of pt is equal to the size of the vocabulary.

Specifically, in the training procedure, the log-likelihood
function is employed,

Θ = argmax
Θ

T
∑

t=1

log Pr (gt|gt−1, Vt; Θ), (12)

where gt denotes the t-th word of the reference caption, Θ
stands for all the training parameters in our approach. T is
the total time steps of the LSTM. Practically, if the reference
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Figure 2: The architecture of our MAM-RNN. Specifically, MAM contains the region-level attention and frame-level attention,
which automatically selects the most correlated visual feature as the input to RNN. The RNN, i.e., LSTM in this paper, is
employed to generate the caption word by word.

caption is shorter than T , it is padded by zeros. Equ. (12)
illustrates that the parameters are learned by maximizing the
probability of the reference caption.

In the testing procedure, the video caption is generated
word by word with the maximum value in the vector pt, de-
picted in Equ. (11).

3.3 Visual Feature Extraction with MAM

The target of MAM is to generate the visual feature Vt at ev-
ery time step. As aforementioned, our MAM have two layers,
i.e., region-level attention layer and frame-level attention lay-
er. In the following, we introduce the two layers detailedly.

Region-level Attention Layer

Actually, this layer is employed to generate the frame feature
by emphasizing the salient regions in each frame.

Firstly, CNN is employed to extract the region features for
each frame. Thus, for a certain frame i, we get a set of feature
vector, {ri1, ri2, . . . , rim}, where m denotes the number of
regions.

Then, the frame feature is generated with the weighted sum
of the region features,

fi =
m
∑

j=1

αijrij , (13)

where αij denotes the attention weight of the j-th region of
frame i, which is computed by the following equations:

mij = wr tanh (W rrij + Urαi−1,j + br) , (14)

αij = exp {mij} /
k

∑

j=1

exp {mij}. (15)

When the parameters W r, Ur and br are learned, the salient
regions in the frame are emphasized by α, which can reduce
the influence of irrelevant and meaningless region features. It
can be observed from Equ. (14) that the attention weights of
regions in frame i are not only determined by their features,
but also by the attention weights of the previous frame. The

intuition lying behind this is that consecutive frames are quite
similar with each other, so we hope the attention weight vary
smoothly according to time.

Frame-level Attention Layer
In this layer, the final visual feature of the video is obtained by
adaptively focusing on a subset of frames which is correlated
to the video caption.

Specifically, the visual feature input to the RNN at time t,
i.e., Vt, is computed by the weighted sum of the frame fea-
tures,

Vt =
n
∑

i=1

βt
ifi, (16)

where n denotes the number of frames, βt
i is the attention

weight of frame i at time t. Ideally, if frame i is very cor-
related to the caption, its feature is much emphasized when
generating the visual feature. Note that the βt

i s are computed
at each time step, so it is a dynamic attention layer.

Practically, to capture the sequential information, βt
i

should be determined not only by the frame feature fi, but
also by all the information before time t, including the visual
feature and the text feature. Fortunately, they are encoded in
the previous hidden state ht−1 of LSTM. Actually, accord-
ing to [Yao et al., 2015], the attention weight βt

i reflects the
relevance of fi given ht−1. Specifically, in this paper, the
relevance score is calculated by

lti = wf tanh
(

W ffi + Ufht−1+bf
)

, (17)

where W f , Uf , bf are training parameters, and

ht−1 = LSTM (Vt−1, et−2, ht−2) . (18)

Then, the lti are normalized to

βt
i = exp

{

lti
}

/

n
∑

i=1

exp
{

lti
}

. (19)

With frame-level attention weight βt
i , the visual feature at

time t, i.e., Vt, can automatically attend to the most corre-
lated frame features, which can enhance the accuracy of the
generated video caption.
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Table 1: The results of various approaches on MSVD dataset. (The scores in bold indicate the best value.)

Metrics CIDEr BLEU–1 BLEU–2 BLEU–3 BLEU–4 ROUGE–L METEOR

FGM [Thomason et al., 2014] – – – – – – 0.239

Mean Pool [Venugopalan et al., 2015b] – – – – 0.372 – 0.281

S2VT [Venugopalan et al., 2015a] 0.486 0.735 0.593 0.482 0.369 0.652 0.289

SA [Yao et al., 2015] 0.481 0.741 0.589 0.482 0.366 0.647 0.294

LSTM-E [Pan et al., 2016] – 0.749 0.609 0.506 0.402 – 0.295

p-RNN [Yu et al., 2016] – 0.773 0.645 0.546 0.443 – 0.311

MAM-RNN 0.539 0.801 0.661 0.547 0.413 0.688 0.322

Non-attention:    Two men are sitting together.

Frame-level attention:    A man and a woman are sitting on the sofa.

Multi-level attention:    A man is kissing a woman on the sofa.

Non-attention:    A car is parking on the street.

Frame-level attention:    A man is driving a car.

Multi-level attention:    A man is pushing a car.

Figure 3: Example results on the MSVD dataset. The sentences above frames denote the captions generated by three variants
of our approach, i.e., non-attention, frame-level attention and multi-level attention. The histograms below frames represent the
frame-level attention when generating each word (distinguished by color). The brightness distribution in each frame reflects
the region-level attention, i.e., the brighter regions are more emphasized.

4 Experiments

4.1 Experimental Details

Datasets

The MSVD dataset [Guadarrama et al., 2013] is composed of
1970 video clips downloaded from the YouTube. Each video
clip typically describes a single activity in open domain and is
annotated with multi-lingual captions. In this paper, we only
consider the captions in English, about 41 captions for each
video and 80839 captions in total. Generally, each caption
contains about 8 words.

The Charades dataset [Sigurdsson et al., 2016] is more
challenging, which consists of 9848 videos with an average
length of 30 seconds. Different from the YouTube clips in
MSVD, the videos in Charades dataset record the daily living
activities in indoor scenes, like cooking, eating, using phone
and so on. Actually, the scenes and activities captured in the
dataset are quite diverse. Totally, the dataset provides 27847
video captions, about 3 captions for each video.

Feature Extraction

Region feature: according to previous works [Yao et al.,
2015; Fakoor et al., 2016], the region feature is extracted

from a lower convolutional layer of the CNN. Actually, to an-
alyze the influence of different features, three popular CNNs
are employed, i.e., VggNet 16 (pre-trained on ImageNet),
GoogLeNet (pre-trained on ImageNet) and C3D (pre-trained
on Sports-1M), where the pool5 layer (7*7*512), inception
5b layer (7*7*1024) and conv5b layer (7*7*1024) are uti-
lized to extract the region features, respectively. It indicates
that each frame is divided equally into 7*7 grid regions, and
each region is represented by 512, 1024, 1024 dimensionality
feature vector in the three CNNs. These region features are
widely used in video captioning. Besides, for the efficiency
of our approach, in each video, we just consider 160 frames
generated by uniform sampling. For videos with fewer than
160 frames, we pad them with zeros.

Text feature: the video captions are preprocessed by con-
verting all words to lower case, removing rare words and to-
kenizing the sentences. After preprocessing, the size of the
total vocabulary is 2743 for the MSVD dataset and 1525 for
the Charades dataset, respectively. Then, the one-hot feature
(1-of-N coding, N denotes the number of words in the vocab-
ulary) is extracted for each word and embedded into a 300-
dimensional GloVe vector [Pennington et al., 2014], which
has shown great performance in word analogy task.
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Evaluation Metrics

The task of video captioning share similar evaluation metric-
s with machine translation, such as BLEU [Papineni et al.,
2002], ROUGE–L [Lin and Och, 2004], CIDEr [Vedantam et
al., 2015], METEOR [Denkowski and Lavie, 2014], they are
widely used to evaluate the quality of video captions. To pro-
vide a comprehensive evaluation, all of the above four metrics
are employed in this paper, where BLEU has four versions,
i.e., BLEU 1–4. Practically, the metrics are calculated based
on the alignment between the predicted sentence and the ref-
erence sentence, including the word matching and semantic
similarity. Generally, the higher scores indicates the higher
quality of the generated caption.

4.2 Results and Discussion

Results on the MSVD Dataset

The MSVD dataset is split into a training set of 1200 videos,
a validation set of 100 videos, and a testing set of the remain-
ing 670 videos. Table 1 shows the performance of various
approaches on the MSVD dataset. Note that, to provide a fair
judgement, we get rid of the influence of different features.
Practically, all the approaches listed in Table 1 are constrained
to extract video feature with the same CNN, i.e., VggNet 16,
which is the most widely used CNN in video captioning.

In Table 1, all the compared approaches follow the CNN-
RNN architecture, expect for FGM. Specifically, FGM uses
a factor graph to estimate the most like words based on vi-
sual detections, which gets the state-of-the-art results in non-
RNN approaches. However, from the METEOR metric, it can
be observed that the CNN-RNN based approaches achieve
much better performance. In fact, the main difference be-
tween the compared approaches and our approach lies in the
visual feature extraction. Detailedly, Mean Pool generates the
visual feature by simply average pooling all the frame fea-
tures, S2VT encodes the visual feature by an LSTM and just
input the visual feature at the first time step. The proposed
approach, MAM-RNN, achieves better results than them, be-
cause we design attention model to emphasize the most cor-
related features in the video, and input the visual feature at
every time step. Besides, our approach also outperforms SA
and p-RNN, where SA is equipped with a frame-level atten-
tion model and p-RNN employs a region-level attention mod-
el (just focus on some frame regions), respectively. It is be-
cause that our multi-level attention model combines the ad-
vantages of the two models. Therefore, it can not only focus
on the most correlated frame features, but also the salient re-
gion features. Additionally, our approaches also gets better
results than LSTM-E, which incorporates a visual-semantic
embedding space into the LSTM.

To analyze the influence of different features to the per-
formance of our approach, the results with different features
are depicted in Table 2, where only the METEOR metric is
provided. In Table 2, three popular CNNs are considered,
i.e., VggNet 16, GoogLeNet, C3D. On one hand, it can be
observed that all the three versions of our approach perfor-
m better than the compared approaches, even better than the
approaches with combined features, e.g., S2VT combines the
VggNet 16 feature of RGB frame and optical flow frame, and
SA combines the frame feature of GoogLeNet and C3D. On

Table 2: The results with different features on MSVD dataset.
Metrics METEOR

Mean pool (GoogLeNet) 0.287

S2VT(RGB+FLOW VggNet 16) 0.297

SA(GoogLeNet+C3D) 0.296

LSTM-E(C3D) 0.299

p-RNN (C3D) 0.303

MAM-RNN (VggNet) 0.322

MAM-RNN (C3D) 0.325

MAM-RNN (GoogLeNet) 0.329

the other hand, with C3D and GoogLeNet, our approach get
better performance than VggNet 16. It is because that C3D
is a 3D convolutional neural network, it can exploit the dy-
namic information in the video. While, GoogLeNet is deeper
than VggNet 16, which indicates more powerful capability to
exploit the video information. Based on the difference among
the results of the three version approaches, it can be imagined
that our approach can get even better performance with more
powerful feature extractor.

To verify the effectiveness of our Multi-level Attention
Model (MAM), in Figure 3, we show a few examples about
the results with different attention models, i.e., non-attention
model (without attention), frame-level attention model and
multi-level attention model. It can be observed that com-
pared to the other two versions, our multi-level attention mod-
el shows obvious advantages in exploiting the accurate visual
feature, where the region-level attention layer are able to au-
tomatically focus on the most salient regions in the frame, and
the frame-level attention layer can automatically attend to the
most correlated frames. When generating the caption, it can
significantly reduce the interference caused by the irrelevant
and meaningless visual feature. That is why our our MAM
is effective in improving the accuracy of the video caption,
reflected in the generated captions in Figure 3.

Results on the Charades Dataset

The videos in Charades dataset are divided into three parts,
i.e., 7569 for training, 400 for validation and 1863 for testing.
Table 3 shows the results of various approaches on the Cha-
rades dataset. Generally, S2VT and SA have been introduced
before, MAAM is a Memory-Augmented Attention Model
which utilizes the memory of past attention when determin-
ing the attention weight of current time. Actually, this idea
is also employed in our frame-level attention layer. It can be
observed in Table 3 that this measure is effective for the task
of video captioning, since MAAM outperforms SA (a simple
attention model). However, our approach gets even better re-
sults, because our multi-level attention model considers the
feature jointly in frame-level and region-level, but MAAM
is just a frame-level attention model. Besides, the results of
our approach with three different features also indicate that
our approach is influenced by the extracted features. In other
words, given more powerful feature extractor, our approach
can get even better performance.

For a better understanding of the results, in Figure 4,
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Table 3: The results of various approaches on Charades dataset. (The scores in bold indicate the best value.)

Metrics CIDEr BLEU–1 BLEU–2 BLEU–3 BLEU–4 METEOR

S2VT [Venugopalan et al., 2015a] 0.140 0.490 0.300 0.180 0.110 0.160

SA [Yao et al., 2015] 0.181 0.403 0.247 0.155 0.076 0.143

MAAM [Fakoor et al., 2016] 0.167 0.500 0.311 0.188 0.115 0.176

MAM-RNN (VggNet) 0.177 0.530 0.307 0.185 0.130 0.179

MAM-RNN (C3D) 0.174 0.509 0.309 0.198 0.133 0.183

MAM-RNN (GoogLeNet) 0.183 0.506 0.317 0.213 0.127 0.191

MAM-RNN: A person is sitting in a chair with something in hand.

Ref: A person takes off their shoes while sitting in a chair.

MAM-RNN: A person is sitting on the sofa and watching TV.

Ref: A person sits on the floor, watching television.

MAM-RNN: A person is playing with a phone while sitting on the floor.

Ref: A person is kneeling down and playing with their phone.

MAM-RNN: A person opens the door and looking around.
Ref: A person walks to a door, opens the door, and talks on 
their phone while looking around in the doorway.

MAM-RNN: A person is dancing while watching TV. MAM-RNN: A person opens the door, then comes into room.

Ref: A woman is cooking in a frying pan on the stove. Ref: A person opens and examines a closet door then picks up
an object and walks away.

Figure 4: Example results of our MAM-RNN on the Charades dataset. Specifically, the blue sentence is generated by MAM-
RNN, while the red sentence denotes the reference caption generated by human. As aforementioned, in the Charades dataset,
each video has several reference captions. Here, only the reference most similar with the blue one is exhibited.

we provide some examples of the videos and their generat-
ed/reference captions of the Charades dataset. As aforemen-
tioned, the Charades dataset is much challenging, since each
video captures a series of activities of a person. In Figure 4,
compared with the reference sentences, we can see that the
captions generated by MAM-RNN capture most of the activ-
ities. Furthermore, according to the video frames displayed in
Figure 4, most of the captions generated by our approach can
describe the video content accurately. However, there are also
some omissions and even mistakes in the generated captions.
It is because that those activities are finished in a very short
time, or even invisible, which increases the difficulty for our
approach to capture the corresponding visual information. In
the future works, we plan to improve our approach and try to
solve this problem.

5 Conclusion

In this paper, to extract more fine-grained visual feature for
the task of video captioning, we propose a new approach,
i.e., MAM-RNN. Specifically, MAM (Multi-level Attention
Model) contains two layers, i.e., frame-level attention layer
and region-level attention layer, which is employed to encode

the most correlated visual feature as the input to the RNN.
Then, the RNN is utilized to generate the video caption word
by word. The excellent performance on two popular datasets,
i.e., MSVD and Charades, has verified that 1) our approach
can jointly attend to the salient regions in each frame and the
frames correlated to the target caption. 2) our approach can
efficiently reduce the interference caused by the irrelevant and
meaningless visual feature, and have shown great advantages
in improving the accuracy of the video caption.

Last but not least, although our Multi-level Attention Mod-
el (MAM) is proposed for video caption in this paper, it is ac-
tually a general video feature encoding approach, which can
also be used in many other video analogy tasks, such as video
classification, summarization, action recognition and so on.
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