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Abstract
New Zealand’s endemic reptile fauna  is highly threatened and pathogens causing infectious diseases may be a signifi-
cant risk to already endangered species. Here, we investigate Cryptosporidium infection in captive endemic New Zealand 
reptiles. We found two mammal-related Cryptosporidium species (C. hominis and C. parvum) and six subtypes from three 
gp60 families (Ib, Ig and IIa) in 12 individuals of captive endemic Tuatara, Otago and Grand skinks, and Jewelled and Rough 
geckos. Cryptosporidium serpentis was identified in two Jewelled geckos using 18S. In New Zealand, C. hominis and C. 
parvum are associated with infections in humans and introduced domestic animals but have also been recently found in 
wildlife. Our finding of Cryptosporidium infection in endemic reptiles can help inform strategies to monitor the conservation 
of species and manage potential introductions of pathogens to in-situ and ex-situ populations.
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Introduction

New Zealand has a diverse endemic terrestrial reptile fauna 
consisting of about 124 described species of lizards (geckos 
and skinks) and the Tuatara (Chapple et al. 2009; Hay et al. 
2010; Hitchmough et al. 2021; Nielsen et al. 2011; O’Neill 
et al. 2008; Tingley et al. 2013; Towns et al. 2001). A signifi-
cant majority of New Zealand’s reptile taxa are threatened 
with extinction (Hitchmough et al. 2010). Introduced mam-
mal predators are the major driver of species declines and 
endangerment (Doherty et al. 2016; Tingley et al. 2013). 
However, there are other factors, including diseases, that can 
contribute to increasing the risk of extinction.

Gastrointestinal tract infections by protozoans can cause 
diarrhea, emaciation, anorexia, weight loss, and even death 
in some reptiles (Alley and Gartrell 2019; Gartrell 2016; 

Gartrell and Hare 2005; Scullion and Scullion 2009; Terrell 
et al. 2003). Cryptosporidiosis, for instance, can be chronic 
and sometimes lethal. Chronic cases show regurgitation, ano-
rexia, and weight loss (Fayer et al. 1997; Fayer and Xiao 2008; 
Koudela and Modrý 1998). Cryptosporidiosis is caused by 
Cryptosporidium species, protozoal parasites that were first 
confirmed to infect reptiles in the 1970s (Brownstein et al. 
1977) and currently recognized as a cause of gastrointes-
tinal disease in a wide range of reptiles (Kváč et al. 2014; 
O'Donoghue 1995; Upton et al. 1989; Xiao et al. 2004).

The modes of transmission of Cryptosporidium in rep-
tiles are the faecal-oral route including via direct contact 
between animals or through contact with contaminated 
objects (Graczyk et al. 1997; Xiao et al. 2004). The two most 
common species infecting reptiles are C. varanii (syn. C. 
saurophilum) (Pavlasek and Ryan 2008) and C. serpentis, 
both found in snakes and lizards (Fayer et al. 2000; Morgan 
et al. 1999; Ryan et al. 2021b; Xiao et al. 2004). Reptiles 
infected with C. serpentis may show symptoms of mild to 
severe gastritis with frequent regurgitation, particularly after 
feeding, while C. varanii causes enteritis and diarrhea. Other 
species, C. ducismarci, and C. testudines have been iden-
tified causing intestinal disease in tortoises (Ježková et al. 
2016; Traversa 2010). A few other Cryptosporidium spe-
cies and undescribed genotypes (e.g., mouse and tortoise 
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genotypes) reported in reptiles were likely ingested through 
infected prey (Alves et al. 2005; Pedraza-Díaz et al. 2009; 
Richter et al. 2011; Rinaldi et al. 2012; Traversa et al. 2008; 
Xiao et al. 2004), including species associated with mam-
malian hosts, such as C. parvum, C. tyzzeri, and C. muris 
(Zahedi et al. 2016b).

The identification of Cryptosporidium species, and 
especially species associated with mammal infections, in 
endemic New Zealand reptiles is unknown. Here, we carry 
out a molecular epidemiological investigation to identify the 
species and subtypes infecting captive endemic reptiles of 
New Zealand.

Methods

Sampling

Between November 2018 and July 2021, we received 22 
samples (faeces, intestinal tissue, and gastric or cloacal 
washes) from the Auckland Zoo (n = 17), Wellington Zoo 
(n = 2), the Wildbase at Massey University (n = 2) and Inver-
cargill City Council (n = 1) from five New Zealand endemic 
reptile species including Otago skink (n = 9), Grand skink 
(n = 5), Jewelled gecko (n = 4), Tuatara (n = 3) and Rough 
gecko (n = 1) (Table S1). Samples were sent to the mEpiLab 
at Hopkirk Research Institute (Massey University) for DNA 
extraction, PCR amplification, and sequencing. Histology 
diagnosis by a veterinary pathology laboratory (Gribbles 
Veterinary, Auckland) in tissues collected from only two 
clinically ill and dead Jewelled geckos in the Auckland Zoo 
(Lab IDs 16,911 and 16,912) suggested that gastritis and/or 
stomach inflammation was likely caused by Cryptosporid-
ium (Fig. 1). All other samples were taken from animals that 
had no clinical signs of disease.

DNA extraction, PCR, and sequencing

DNA was extracted as previously described (Garcia-R et al. 
2017, 2020b; Garcia-R and Hayman 2017) using the Iso-
late faecal DNA (Zymo) kit following the manufacturer’s 
instruction. DNA extractions from reptile samples were 
carried out separately from human samples that our labora-
tory receives regularly. DNA extraction required physical 
disruption of the oocyst using a beadbeater (Tissue Lyser 
II, Qiagen) at 30 Hz for 5 min. The species and subtype 
of the isolates were identified by nested PCRs of the gp60 
and 18S using a combination of external and internal prim-
ers (Table S2) (Glaberman et al. 2002; Johnson et al. 1995; 
Learmonth et al. 2004; Waldron et al. 2009; Xiao et al. 2000; 
Xiao et al. 1999) and sequencing of the secondary PCR 
products in both directions on an ABI 3730XL automated 
DNA sequencer (Applied Biosystems). Positive (consisting 

of human-derived C. parvum) and negative (consisting of 
all reagents minus template, which was replaced by nucle-
ase free water) controls were included in each PCR run. All 
our PCR positive and negative controls were positive and 
negative, respectively. Consensus sequences were assem-
bled from forward and reverse reads and edited manually 
using Geneious v.10.1.3 (Kearse et al. 2012). The sequences 
derived were used to identify species and subtypes by align-
ing to sequence entries in nucleotide databases using the 
program BLAST (http:// www. ncbi. nlm. nih. gov/ blast/; last 
accessed October 25, 2022) and checked by their corre-
sponding subtype by maximum % identity. The sequences 
of the partial gp60 and 18S genes were deposited in the 
GenBank database under accession numbers OP778244-
OP778255 and OQ457495- OQ457496, respectively.

Results

Sequence analysis of the gp60 gene identified C. parvum 
and C. hominis subtypes in 12 of the 22 samples (Table 1). 
The remaining ten samples were gp60 PCR negative. Most 
reptiles were found with both Cryptosporidium species. 
The sequences obtained from isolates in endemic captive 
reptiles were found with a > 99% identity and an e-value of 
0.0 to sequence data reported in GenBank. The subtypes 
are common in human infections (IbA10G2, IgA17, and 
IIaA18G3R1), however, we found subtypes of C. parvum 
with shorter (IIaA17G3R1) or similar (21 short tandem 
repeat region) but uncommon (IIaA17G4R1) repeats of 
the serine-coding trinucleotide. Only two samples from 
Jewelled geckos were successfully amplified using 18S 
primers (Table 1). These samples were ~ 99% identical to 

Fig. 1  Optical images of the H&E stained tissue section diagnosed 
by pathology from the Jewelled gecko (Naultinus gemmeus) Lab ID 
16,912. The arrows indicate oocyst of C. serpentis. Photo by courtesy 
of Cathy Harvey (Gribbles Veterinary NZ)
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C. serpentis (accession number AF093499). One of these 
geckos was also C. hominis positive by gp60 PCR (Table 1). 
Three other samples were amplified using 18S primers, but 
sequencing results ruled them out as fungi (~ 99% identity 
to Tremellomycetes or Basidiomycota).

Discussion

Cryptosporidium infections have been recorded in several 
reptile species (Carmel and Groves 1993; Graczyk et al. 
1997; Jacobson 2007; Ladds 2009; Orós et al. 1998; Upton 
et al. 1989) but mammal-related Cryptosporidium species 
infecting reptiles are rare (Xiao et al. 2004). Our results 
indicate that mammal-related Cryptosporidium species, the 
main causative agents of disease in humans, non-human pri-
mates, and livestock in New Zealand (Garcia-R et al. 2017, 
2020b) can infect captive reptiles. The clinical relevance of 
these findings is unknown.

New Zealand has a long history of isolation (Valente et al. 
2019) and absence of native mammals (with exception of 
two bat species) may suggest that endemic reptiles have not 
been previously exposed to these pathogens. Cryptosporid-
ium species adapted to mammals found infecting endemic 
reptiles may trigger clinical disease due to the recent coexist-
ence and host-parasite relationship (Garcia-R et al. 2020a; 
Garcia-R and Hayman 2016). Importantly, these infections 
can act together with other stressors (e.g., habitat fragmenta-
tion or invasive species) and increase reptile mortality and 
extinction risk (Fey et al. 2015; Smith et al. 2009) of threat-
ened taxa.

Cryptosporidium parvum and C. hominis have been pre-
viously reported in livestock and humans in New Zealand 
(Garcia-R et al. 2017). However, there is an increase in the 
detection of these pathogens in animal hosts worldwide. 

For instance, evidence of C. hominis in wildlife (kanga-
roos and other marsupials) and livestock (cattle and deer) 
residing in water catchments following its introduction by 
humans has been reported in Australia (Koehler et al. 2016; 
Ng et al. 2011; Zahedi et al. 2016a, 2016b, Zahedi et al. 
2018). Cryptosporidium hominis is also widely recognised 
in equine populations in South America, Africa and Asia 
(Widmer et al. 2020). Likewise, C. parvum has been recently 
found in a wide variety of hosts including wildlife (Hailu 
et al. 2022; Karim et al. 2014; Ryan et al. 2021a).

To our knowledge there are no published cases of Crypto-
sporidium infections in endemic reptiles from New Zealand 
and this is the first report in captive endemic reptiles. We 
were careful to avoid cross-contamination and aimed to con-
firm all results by multiple methods. However, we were only 
able to amplify gp60 products from 12 animals and only two 
from 18S. We think that this may be due to the low concen-
tration of oocyst/sporozoites and the possibility of primers 
amplifying numerous stretches of other organisms (including 
fungi or 16S rRNA bacteria) leading to reduced specificity 
(Xiao et al. 2000). Future studies should aim to confirm our 
findings and determine the source of infection and potential 
transmission pathways.

Reporting infections in endemic reptiles caused by 
Cryptosporidium has several implications for the health 
and conservation of wild native and endemic fauna of New 
Zealand. First, the reservoirs for C. hominis and C. parvum 
include widespread hosts, such as people and domestic ani-
mals, making the risk of infection more frequent through 
direct and indirect contact (Garcia-R et al. 2017, 2020b; 
Garcia-R and Hayman 2017). Second, Cryptosporidium 
oocysts are resilient and ubiquitous in the environment (Phiri 
et al. 2020) generating more opportunities for infections. 
And third, captive animals as part of breeding programmes 
must be carefully managed and screened before being 

Table 1  Cryptosporidium parvum and C. hominis genotypes found in endemic New Zealand reptiles

Lab ID Host Scientific name Species (gp60/18S) gp60 subtype Accession numbers (gp60/18S)

18,421 Tuatara Sphenodon punctatus C. hominis IbA10G2 OP778255/-
16,342 C. parvum IIaA18G3R1 OP778244/-
17,008 Otago skink Oligosoma otagense C. hominis IbA10G2 OP778246/-
17,294 C. hominis IgA17 OP778249/-
17,295 C. hominis IgA17 OP778250/-
17,290 C. parvum IIaA18G3R1 OP778247/-
17,292 C. parvum IIaA17G3R1 OP778248/-
17,298 Grand skink Oligosoma grande C. hominis IgA17 OP778251/-
16,911 Jewelled gecko Naultinus gemmeus -/C. serpentis - -/ OQ457495
16,912 C. hominis/C. serpentis IbA10G2 OP778245/ OQ457496
19,249 C. parvum IIaA17G4R1 OP778253/-
19,252 C. parvum IIaA18G3R1 OP778252/-
19,250 Rough gecko Naultinus rudis C. parvum IIaA18G3R1 OP778254/-
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released into areas free of the parasites. Our understand-
ing of the Cryptosporidium species and subtypes infecting 
endemic New Zealand reptiles can help decision-making on 
conservation, testing protocols, and biosecurity during trans-
locations of individuals to the wild. Hence, regular popula-
tion and health monitoring of the captive and wild endemic 
reptiles will be important for timely management responses 
to threats such as gastrointestinal diseases.
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