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BACKGROUND

An essential step in the process of mammalian fertiliza-
tion is the recognition and binding between spermatozoa
and the egg's extracellular coat, the zona pellucida (ZP).
Sperm-zona binding, at least in the mouse, is believed to
take place in two stages. In the first stage, the capacitated
spermatozoa loosely and reversibly attach to the surface of
ZP; in a second stage, irreversible binding occurs [1, 2].
Most researchers agree that complementary molecules pres-
ent on the surface of opposite gametes are involved in
sperm-egg interaction. Although the chemical nature of the
complementary molecules is poorly understood, growing
evidence suggests that several steps in the fertilization pro-
cess are mediated by carbohydrates. There is a vast litera-
ture on the functional significance of the glycoproteins of
the reproductive system. The glycan portion of several gly-
cocomponents is believed to modulate cell-cell adhesion
including sperm-egg recognition and binding [2], sperm-
oviductal adhesion [3], and implantation of the embryo [4,
5]. Several types of glycans, including high-mannose/hy-
brid-type [6], sialylated [7], glucosaminylated [8], fucosy-
lated [9], and galactosylated [10] glycoproteins, have been
implicated in various events during fertilization. Thus de-
pending on the reproductive event under study, modifica-
tion of the bioactive glycan will be expected to influence
the fertilization event.

Since fertilization takes place in a complex microenviron-
ment within the oviduct [1], one would expect that specific
glycocomponents (glycoproteins/complex carbohydrates), or
the enzymes of oviductal lumen that can modify these gly-
cocomponents, would have an effect on the regulation of
events leading to fertilization. Many excellent reviews on
mammalian fertilization have appeared in the last decade [11-
16]. However, most of these reviews do not discuss the func-
tional significance of female reproductive tract secretions, es-
pecially the oviductal secretions, in the regulation of fertiliza-
tion events. The present review will discuss their potential
significance in the modification of existing glycocomponents
of sperm plasma membrane and/or ZP

There has been a longstanding interest in the basic bi-
ology of the fertilization processes. The success of in vitro
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fertilization in domestic animals and humans is a result of
our knowledge of the events in animal models. These
events are best understood in the mouse, although there is
some information in other species, including the pig, guinea
pig, and hamster [1, 2]. Successful fertilization in the mouse
involves several sequential steps. These are 1) sperm ca-
pacitation in the female genital tract, 2) binding of the ca-
pacitated sperm to the ZP, 3) induction of sperm acrosome
reaction, 4) penetration of ZP, and 5) fusion of the sper-
matozoon with the egg vitelline membrane. Because of
space limitations, this minireview will focus primarily on
the importance of carbohydrate residues in the first two
steps of fertilization.

1. SPERM CAPACITATION

The sperm plasma membrane, a vital component during
the early events in fertilization, undergoes extensive bio-
chemical changes as spermatozoa transit from the proximal
to the distal region of epididymis [1, 17-20]. In addition to
maturation in the epididymis, mammalian spermatozoa
must undergo functional changes between the events of
mating and fertilization. The ejaculated spermatozoa cannot
immediately fertilize an oocyte. During residence in the
female genital tract they undergo a series of biochemical
and functional modifications collectively referred to as ca-
pacitation [1]. These functional changes, including removal
of seminal plasma proteins adsorbed to sperm plasma mem-
brane and modification and/or reorganization of sperm sur-
face molecules, are necessary before spermatozoa can bind
to the ZP and penetrate it.

Much of the current knowledge on capacitation has been
provided by the pioneering studies by Yanagimachi and
Chang [21, 22]. These investigators were the first to report
successful fertilization of hamster eggs in vitro by the use
of spermatozoa recovered from the female reproductive
tract after mating or the use of epididymal spermatozoa
preincubated with oviductal secretions. These studies sug-
gested the presence of one or more factors in the female
genital tract responsible for the induction of capacitation.
The precise site of capacitation may be different in different
species; however, several studies suggest that capacitation
is most efficient when the spermatozoa pass through the
uterus and oviduct. The secretions collected from the ovi-
duct of estrous females have been demonstrated to be most
efficient in rendering the functional changes in spermato-
zoa.

Although the importance of capacitation has been known
for several decades, the molecular mechanisms underlying
these changes are not fully understood. Most researchers
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agree that capacitation results from multiple molecular
changes in sperm plasma membrane proteins/glycoproteins
and lipid components that likely modify ion channels in the
plasmalemma of spermatozoa [20, 23]. These modifications
allow the transmembrane flux of ions that are believed to
be important in initiating the events of capacitation, hyper-
activation, and acrosome reaction [1, 23]. The former two
events take place before sperm-zona (oocyte) interaction,
and the latter event, at least in the mouse, is initiated after
sperm-egg interaction [2]. It is therefore reasonable to as-
sume that these events are independent and likely to in-
volve region-specific changes in sperm plasma membrane.

In most mammalian species studied, spermatozoa be-
come hyperactive in the isthmus region of the oviduct, and
the hyperactivated spermatozoa move to the ampullary en-
vironment [24, 25], the site of in vivo fertilization. A pos-
sible functional significance of hyperactivation could be
that the hyperactivated beat pattern of a spermatozoon will
definitely enhance its thrust at the site of its binding to ZP
[26]. The enhanced thrust, in part, is likely to be important
in order for the spermatozoon to penetrate ZP and fuse with
the egg plasma membrane. Interestingly, a recent study
showed that capacitated spermatozoa penetrated ovarian
eggs incubated in the presence of an ovarian-specific gly-
coprotein (OGP) at a rate 3-fold higher than in eggs incu-
bated in the absence of the OGP [27]. This and other [28]
studies imply that the OGP has an important role in sperm
capacitation and hyperactivation.

All mammalian spermatozoa studied thus far undergo
capacitation after residing in the female genital tract for a
certain period of time. Similarly, spermatozoa recovered
from the female tract after mating, or cauda epididymal
spermatozoa following incubation with the oocyte-cumulus
masses and oviductal secretions, are able to fertilize an egg
in vitro [28]. Mammalian sperm can also be capacitated in
vitro in a chemically defined medium containing BSA and
energy substrates, such as glucose and pyruvate, as well as
components used in Krebs-Ringer bicarbonate medium
[29]. It is important to point out that albumin is the major
protein in the female genital tract secretions and is an im-
portant component during in vitro and in vivo capacitation
[30]. The protein is believed to facilitate capacitation by
altering (removing) fatty acids and/or cholesterol from
sperm plasma membrane.

As capacitation proceeds, a number of biochemical
changes occur on spermatozoa. The known changes include
1) increased adenylate cyclase and cAMP [31, 32], 2) in-
crease in intracellular pH [33], 3) calcium influx [34], 4)
loss of surface components [35], 5) modification/alteration
of sperm plasma membrane [36], and 6) changes in the
lectin-binding pattern of spermatozoa [37-39]. It is impor-
tant to mention that the reported changes in the lectin-bind-
ing properties are indicative that the terminally exposed
carbohydrate moieties on sperm surface glycoproteins are
altered during capacitation. A possible explanation for these
changes could be the association of an OGP secreted from
epithelial cells of oviduct in several species [40-45]. In-
terestingly, investigators recently reported the binding of
the glycoprotein to the posterial region of the sperm head,
midpiece, and flagellum [46]. Alternatively, the existing
sperm plasma membrane glycoproteins could be modified
by glycosyltransferases present in the uterus and oviduct
secretions. The synthetic enzymes show a temporal surge
in their activities in the genital tract during the estrous cycle
[47]. The potential modification of the endogenous sperm
plasma membrane glycoproteins through addition of sugar

residues to the terminally exposed glycans will be expected
to alter their lectin-binding properties.

Since in vivo sperm capacitation takes place in the fe-
male genital tract, the OGP could have a direct role in
sperm capacitation. Indeed, recent observations suggested
that twice as many bovine sperm were capacitated in the
presence of bovine OGP as in its absence [28]. In addition,
spermatozoa capacitated in the presence of OGP showed
increased ability to fertilize homologous oocytes, a result
consistent with the suggestion that the oviduct and its se-
cretions play an important role in sperm function [46].

Finally, it is of interest that several studies have appeared
in the last decade implicating proteoglycans and glycosa-
minoglycans in the induction of capacitation [48]. Heparin,
the most effective glycosaminoglycan, binds to spermato-
zoa from several species, including man [48]. The binding
is said to be dependent on pH, ionic strength, and temper-
ature, and thus has characteristics resembling those of a
typical receptor-ligand interaction. However, the molecular
mechanisms responsible for these interactions are not
known.

From the preceding discussion, it is obvious that capac-
itation reflects multiple changes in the plasma membrane
of mature spermatozoa. Although molecular details of these
changes vary among species, the net result is the devel-
opment of hyperactivated motility and responsiveness of
spermatozoa to undergo acrosome reaction.

2. SPERM-EGG INTERACTION

As stated above, the capacitated spermatozoon interacts
with the ZP in a highly precise manner. Extensive studies
in the mouse seem to suggest that binding of capacitated
spermatozoa to the ZP is a two-step process. First, sper-
matozoa loosely and reversibly adhere to the egg's extra-
cellular coat by means of the plasma membrane overlying
the acrosome. The second stage is a strong and irreversible
binding. Many sperm can bind to the egg surface (Fig. IA).
However, usually only one sperm will penetrate the ZP and
fuse with the egg plasma membrane. The fertilized oocyte
usually has no bound sperm (Fig. lB).

The ZP in the mouse [49], rat [50], and several other
species is composed of three glycoproteins designated ZPI,
ZP2, and ZP3, and the pig has a fourth form as well (Table
1; [50-68]). The three glycoproteins, at least in the mouse,
are synthesized and secreted by the growing oocytes during
oogenesis [51]. During the period of oocyte growth, the
secreted zona glycoproteins interact noncovalently to form
a three-dimensional network of cross-linked filaments
forming extracellular matrix. Such a structure may explain
the elasticity of ZP and the relative ease of its penetration
by the acrosome-reacted spermatozoa. Many events are me-
diated by this extracellular matrix, including 1) relative spe-
cies-specific sperm-egg recognition and binding of capaci-
tated sperm, 2) sperm activation (induction of acrosome
reaction), 3) block to polyspermy, and 4) protection of the
growing embryo from fertilization to implantation [1].

In recent years, considerable progress has been made in
the identification and characterization of complementary
molecules on ZP and sperm plasma membrane that are be-
lieved to be responsible for gamete interaction. In particu-
lar, work on mouse ZP (mZP) has resulted in the identifi-
cation of primary (mZP3) and secondary (mZP2) binding
sites for homologous spermatozoa [2]. Targeted disruption
of the mZP3 gene resulted in the production of oocytes
lacking ZP and of infertile female mice [69]. Both mZP2
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and mZP3 as well as these two glycoproteins in hamsters,
pigs, and rats are highly glycosylated and, like other gly-
coconjugates, show extensive microheterogeneity. Evidence
presented by Shimizu et al. [52] suggests that mZP2 and
mZP3 glycoproteins are sulfated. Thus it appears that the
microheterogeneity and acidic nature of these glycoproteins
are due to differential glycosylation of the polypeptide
backbone and sulfation of glycan chains.

Inclusion of relatively low concentrations of mZP3 (but
not mZP1 or mZP2) in an in vitro sperm-egg binding assay
decreased the number of sperm bound per egg in a dose-
dependent manner [2]. The observed inhibition is appar-
ently caused by competition of the added mZP3 for com-
plementary binding site(s) on the plasma membrane over-
lying the sperm head. Moreover, when the radioiodinated
mZP2 or mZP3 was incubated with the mouse spermatozoa,
the latter glycoprotein showed higher binding to the sperm
head. Combined, these data are consistent with the pro-
posed ligand-like role for mZP3.

Several lines of evidence strongly suggest that the glycan
portion of ZP is responsible for the ligand activity: 1) ex-
posure of the purified mZP3 to denaturants or high tem-
peratures (which would alter the polypeptide backbone)
does not abolish their ability to inhibit sperm-egg binding
[2]; 2) various lectins, a class of proteins that bind to car-
bohydrate moieties with high affinity and specificity, inhibit
or abolish binding of sperm to zona-intact eggs [70]; 3)
inclusion of specific monosaccharides, disaccharides, oli-
gosaccharides, and glycoproteins in an in vitro sperm-egg
binding assay mixture inhibits or prevents binding of the
gametes [6, 7, 71-73]; 4) treatment of zona-intact eggs with
exoglycosidases inhibits or prevents sperm-egg binding [8];
5) after digestion of mZP3 with pronase, the resulting gly-
copeptides (ranging in size from 1.5-6.0 kDa) retain sperm-
binding activity [2]; and 6) sperm-binding activity is sen-
sitive to trifluoromethane sulfonic acid treatment, an acid
treatment known to break the glycosidic bonds between the
monosaccharide residues of N-linked and O-linked oligo-
saccharides [2]. Taken together, these studies provide strong
evidence that the glycan portion of the glycoproteins is the
ligand for spermatozoa.

Despite numerous advances, considerable controversy
remains regarding the precise identity of the sugar resi-
due(s) responsible for the ligand activity of mZP3. For in-
stance, Florman and Wassarman [11, 74] have reported that
sperm-binding activity is associated with an O-linked oli-
gosaccharide chain of an apparent molecular mass of 3.9
kDa, and more precisely with an -linked galactosyl resi-
due(s) at the nonreducing terminus of the O-linked oligo-
saccharide unit. Indeed, the gene encoding murine ctl,3-
galactosyltransferase, an enzyme that adds nonreducing ter-
minal ct-galactosyl residues to glycoproteins, is expressed
in female (but not male) germ cells [75].

Three recent studies suggest that a-linked galactosyl res-
idue(s) may not be important for sperm adhesion to the ZP.
First, Shur and coworkers [8] have presented evidence sug-
gesting that N-acetylglucosaminyl (rather than ot-galacto-
syl) residues on mZP3 are recognized by galactosyltrans-
ferase (GalTase) present on mouse spermatozoa. The sperm
(enzyme)-zona (substrate) complex remains stable until the
next event in fertilization is triggered. Several lines of ev-
idence listed in a review article are consistent with this
conclusion [76]. Second, our recent studies suggest that
mZP3 contains 2-3 kDa of O-linked glycans [54]. Treat-
ment of de-N-glycosylated mZP3 with mild alkali in the
presence of 1 M NaB3H4 released a radiolabeled glycan,

FIG. 1. Capacitated rat sperm bound to the ZP of rat oocyte. Many sperm
bind to the zona-intact unfertilized egg in vitro (A); sperm do not bind to
the fertilized egg (B). The photographs were taken following in vitro
sperm-egg binding assay and washings to remove loosely bound sper-
matozoa.

identified as a trisaccharide with the structure GlcNAc-
Galpl,3GalNAcol [54]. The deduced O-linked oligosac-
charide has a molecular mass of 586, suggesting that mZP3
contains 4-5 O-linked sugar chains. Interestingly, a recent
study showed the presence of five O-glycosylation sites
(serine sites) on mZP3 [77]. If the terminal N-acetylglu-
cosaminyl residues of the O-linked trisaccharides are rec-
ognized by the mouse sperm GalTase, the trisaccharide
could be a ligand (substrate) for the sperm enzyme [8].
Third, Thall et al. [78] used a gene disruption approach to
address the role of Galotl,3Gal containing oligosaccharides
in fertilization in the mouse. The authors generated mice
that were deficient in the gene (l,3GT) encoding the UDP-
Gal;3-D-Gala 1 ,3Gal-galactosyltransferase enzyme respon-
sible for Galotl,3Gal synthesis and expression. Female ao,3
GT (-/-) mice yielded oocytes that were devoid of
Galal,3Gal epitopes. However, these mice were fully fer-
tile, a result consistent with the investigators' conclusion
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TABLE 1. Characteristics of mammalian ZP components.

Molecular Isoelectric No. of N- No. of N-gly- Molecular mass of
Zona mass (kDa) point (pl) linked oligo- cosylation consen- O-linked oligosac-

Species components [Ref] [Ref] saccharides sus sequence [Ref] charides (kDa) [Ref]

ZP1 200 [511 4.1 + 6 [51]
185 [52]

ZP2 120 [51] 5.2 (4.9-5.6) 6 7 [53] + [541
140 [52]

ZP3 83 [511 4.7 (4.2 5.2) 3/4 6 [55] 2-3 [54]
Mouse 83 [52]

ZP1 205 [50] 41
ZP2 119 [50] 8 0 [501

Rat ZP3 115 [50] 6 [56] 2 [50]

ZP1 103 (dimer) [57]
ZP2 208 158]

Hamster ZP3 56 [581 4 [57]

ZP1 90-110 [581 4.4-4.5 [581
ZP2 64-78 [58] 4.5-4.6 [581 6 [591

Human ZP3 57-73 [58] 4.2-4.4 [581 4 [601

rc85 [61]
rc75 [61] 7 [621

Rabbit rc55 [611 6 [61]

ZP1 82 163]
90 [64] 5.3 (4.3-6.4) [64] 7 [65]

ZP2 61 [63]
65 [641 5.4 (4.3-6.6) [64]

ZP3 55 (aY, 3) [63] 4.7 [64] ZP3ca 5 [661
55 (a, 3) [65] 5.2 (3.8 6.7) [64] ZP313 5 [67]

ZP4 21 [631
Porcine 25 [641 5.6 (3.8-6.5) [641 2 [68]

, Akatsuka K, Yoshida-Komiya H, Tulsiani DRP, Orgebin-Crist M-C, Hiroi M, Araki Y. Molecular characterization of the rat
zona pellucida glycoproteins ZP1 and ZP2 (unpublished results).

that Galatl,3Gal epitopes are not required for fertilization
in the mouse.

Moreover, in an earlier study from another laboratory,
treatment of zona-intact mouse eggs with almond glyco-
peptidase, an endoenzyme that hydrolyzes 3-aspartyl-glu-
cosamine of all classes of N-linked glycans, greatly reduced
sperm-egg binding [79]. This last study implies that N-
linked oligosaccharide units may have a role in sperm-egg
binding. We recently reported the presence of N-linked
high-mannose/hybrid oligosaccharide chains on mZP2 and
mZP3 [80], and we have presented evidence suggesting that
these oligosaccharide units may be a part of the recognition/
binding site(s) for mannosidase present on sperm plasma
membranes [6, 16, 81, 82]. This enzyme is a glycosidase
and belongs to a class of enzymes responsible for hydro-
lytic cleavage of glycosidic bonds. It is generally accepted
that the catalytic mechanism of action of these enzymes
follows the model advanced for lysozyme [83]. In such a
model, there are two important carboxylic acid moieties in
the active site: one ionized and the other protonated (see
scheme 18 in Ichikawa et al. [83]). The former moiety sta-
bilizes the resulting oxocarbonium ion, either by ion pair
interaction or by covalent bonding, whereas the latter moi-
ety facilitates departure of the cleaving group. Thus all hy-
drolytic enzymes have a common catalytic mechanism. The
common feature of this mechanism is the formation of an
enzyme:substrate (sugar) intermediate before cleavage of
sugar residues. Because of this interaction between the en-
zyme and substrate, it has been proposed that the cell sur-
face glycosidases have a role in cell-cell adhesion [84].
Since purified sperm surface mannosidase cleaves negligi-
ble amounts of [3H]mannosyl residues from [3 H]mannose-
containing glycoproteins after 4 h of incubation [85], it is

surmised that an intermediate complex of sperm enzyme:
zona substrate is formed that leads to the next step in fer-
tilization before a significant amount of mannosyl residues
is cleaved.

In addition, we have demonstrated the occurrence of as-
paragine-linked (N-linked) poly-N-acetyllactosaminyl glycans
on mZP2 and mZP3 [54]. A recent report has confirmed the
existence of these glycans on mZP3 [77]. In other cells, N-
linked polylactosaminyl chains have a variety of terminal se-
quences including Galaol,3Gal31 ,4GlcNAc 1,3Gal-R. This
oa-linked galactosyl terminal sequence has been reported in a
number of well-defined N-linked glycoconjugates, including
cell-surface components. If this sequence is also present on
mZP3, it may have a role in sperm-egg binding. Furthermore,
several studies from other laboratories have implicated other
sugar residues in sperm-egg interactions. These include sialyl
[7] and mannosyl [6] in addition to -galactosyl [10] and
N-acetylglucosaminyl [8] residues.

It is interesting that like mZP3, the porcine ZP glyco-
protein (pZP3) has been found to contain sperm receptor
activity. The pZP3 (Mr 55 000) is also highly glycosylated,
containing N-linked and O-linked oligosaccharides, and
poly-N-acetyllactosaminyl glycans [63]. A recent study pre-
sented a structural analysis of N-linked glycan chains of
pZP3 released and labeled following hydrazinolysis [86].
The labeled oligosaccharide chains were separated into neu-
tral (28%) and acidic (72%) chains by anion-exchange
HPLC. Evidence that the mixture of neutral N-linked gly-
cans caused an inhibition of sperm-egg binding in vitro is
consistent with the authors suggestion that N-linked glycans
of pZP3 have a significant role in sperm recognition and
binding [87].

It is important to point out that the mZP3 and pZP3, as
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TABLE 2. Potential receptors for ZP that have been suggested to have a role in sperm-egg
interaction.

Species Proposed Receptors References

Mouse 3-1, 4-galactocyltransferase Shur [761
Fucosyltransferase Ram et al. [90]
56-kDa galactose-binding protein (sp56) Cheng et al. [92]
95-kDa protein Leyton and Saling [931
a-D-mannosidase Cornwall et al. [6]
Protease-sensitive site Benau and Storey [91]
Sulfoglycolipid immobilizing protein Tanphaichitr et al. [96]

Rat c(-D-mannosidase Tulsiani et al. [81, 85]

Hamster Fucose-binding protein Huang et al. [9]

Human PH-20 Lin et al. [97]
a-D-mannosidase Tulsiani et al. [821
Mannose-binding protein Benoff et al. [98]
FA-1 Naz et al. [99]
Selectin-like molecule Dell et al. [100]

Macaque PH-20 Cherr et al. [101]

Porcine Fucose-binding protein Topfer-Petersen et al. [102]
Proacrosin Jones et al. [103]
Sperm protein 38 (sp38) Mori et al. [104]
150-kDa protein (zonadhesin) Hardy and Garbers [105]
APz Peterson and Hunt [106]

Rabbit RSA O'Rand et al. [107]
Sperm protein 17 (spl 7) Richardson et al. [108]

Guinea pig PH-20 Primakoff et al. [109]

well as the glycans used for the in vitro sperm-egg binding
inhibition (see above), were purified from ovarian ZP rather
than from eggs collected from the oviduct. Although it has
been reported that mZP3 purified from ovarian and oviduc-
tal oocytes are chemically and functionally comparable
[88], other reports suggest structural changes on the surface
of eggs exposed to the oviductal environment [89]. The
reported structural changes could be explained by the bind-
ing of an OGP or of other glycoproteins such as glycosyl-
transferases discussed above. It is also possible that the gly-
cosyltransferase activities present in the oviductal fluid are
involved in modification of the terminally exposed glycan
chains on the surface of the ZP. Any alteration in the sugar
residues of the ZP glycoproteins in the oviduct will be ex-
pected to have an effect on the sperm receptor's ability to
recognize and bind to these altered glycan units. These
studies point out the possibility that the glycan and its com-
plementary receptor in the microenvironment of the oviduct
may be different from those identified by in vitro sperm-
egg binding studies.

Several sperm surface proteins from various species
have been proposed to function as receptor molecules on
spermatozoa (Table 2). Extensive studies in the mouse have
resulted in the identification of several putative receptors.
Among the antigens that investigators have suggested may
serve as receptors on mouse spermatozoa are sperm surface
galactosyltransferase [76], fucosyltransferase [90], a trypsin
inhibitor-sensitive site [91], a ZP3-binding 56-kDa sperm
protein [92], a 95-kDa sperm plasma membrane protein
[93] that has been suggested to be a unique hexokinase
[94], and a 115-kDa a-D-mannosidase present on the plas-
ma membrane of spermatozoa from several species [16]. A
trypsin-like serine protease (acrosin/proacrosin) present in
the sperm acrosome as well as on the surface of sperma-
tozoa has long been believed to have a receptor-like role in
the mouse and pig. However, a recent study showed that
sperm from mice carrying a targeted mutation of the ac-
rosin gene can bind to and penetrate mouse oocytes [95].

This result suggests that acrosin/proacrosin is not essential
for fertilization in the mouse.

Human spermatozoa are known to possess a-D-mannos-
idase [82] and a mannose-binding protein [98]. It has been
suggested that each of these macromolecules has a receptor-
like role in binding to mannose-containing oligosaccharide
on ZP. Interestingly, mZP2 and mZP3 have been shown to
contain high-mannose/hybrid-type oligosaccharides [80]. It
has also been suggested that a human sperm antigen des-
ignated FA-1 [99] and a selectin-like molecule [100] bind
to homologous ZP

Although the pZP has been the subject of numerous
studies, very few studies have been directed toward iden-
tifying pig sperm proteins that interact with the zona-intact
egg in a species-specific manner [102-104]. Using immo-
bilized pZP as an affinity medium, Hardy and Garbers
[105] have recently reported the presence of an antigen,
named zonadhesin, on porcine spermatozoa. The purified
sperm protein has a molecular mass of 150 kDa and con-
sists of two nonidentical subunits of 105 and 45 kDa. Zon-
adhesin, expressed by the haploid spermatids, is homolo-
gous to both von Willebrand factor and mucins. Receptor-
like roles have been proposed for other porcine sperm plas-
ma membrane proteins, including a fucose-binding protein
[102], a 53-kDa fucosylated protein that interacted with the
carbohydrate moiety of ZP glycoprotein [103], sperm pro-
tein 38 [104], and adhesion protein (APz) [106].

An integral membrane protein, PH-20, with a molecular
mass of 64 kDa, has been reported on both the plasma
membrane and inner acrosomal membrane of guinea pig
[109] and macaque [101] sperm. The antigen, localized on
the posterior head region of sperm, is thought to be essen-
tial in sperm adhesion to ZP. However, its complementary
molecule on ZP has not yet been identified, and it is not
known whether the guinea pig and macaque sperm adhe-
sion to ZP is a carbohydrate-mediated event.

This brief summary of the research of numerous inves-
tigators strongly suggests that a carbohydrate recognition
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mechanism is involved in sperm-zona binding. The mech-
anism underlying the interaction of the opposite gametes
remains one of the principal unresolved issues in reproduc-
tive biology. Most investigators agree that complementary
molecules initiate sperm-egg recognition by a receptor-li-
gand mechanism. However, the identity and chemical na-
ture of the receptor (on sperm) and ligand (on ZP) are not
yet known. Also not known are 1) whether sperm-egg in-
teraction is a net result of a single or of multiple recep-
tor-ligand interactions and 2) whether the complementary
molecules identified based on in vitro sperm-egg binding
assay will be the same in the microenvironment of the ovi-
duct.

CONCLUSIONS

This minireview clearly supports a role for carbohydrate
on the surface of ZP, and complementary carbohydrate-
binding enzymes or lectin-like molecules on sperm plasma
membranes in sperm-egg interaction. Although the se-
quence of events during fertilization varies among species,
the mechanisms underlying sperm capacitation, sperm-egg
interaction, and induction of the acrosome reaction show
many similarities. Despite its enormous importance, the de-
tailed mechanism regulating these events during the fertil-
ization process continues to be one of the principal unre-
solved issues in reproductive biology. In most cases, the
identity and chemical nature of the receptor (on sperm) and
ligand (on zona) remain uncertain. The evidence for the
presence of a large diversity in the structure of glycans on
ZP suggests that perhaps several ligand (glycan)-receptor
interactions are involved before gamete interaction and suc-
cessful fertilization. A recent report [110] strongly suggests
that the initial molecular interaction between sperm and ZP
is a complex binding event and that it may reflect multiple
sperm proteins with multivalent ZP3. Understanding the
mechanisms underlying capacitation, sperm-egg interac-
tion, and the acrosome reaction in fertilization awaits new
approaches and development of new and more sensitive
methods for the characterization of carbohydrate residues
and their complementary molecules.
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