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ABSTRACT  The zona pellucida (ZP) is a specialized extracellular coat that surrounds the plasma

membrane of mammalian eggs. Its presence is essential for successful completion of oogenesis,

fertilization and preimplantation development. The ZP is composed of only a few glycoproteins

which are organized into long crosslinked fibrils that constitute the extracellular coat. A hallmark

of ZP glycoproteins is the presence of a ZP domain, a region of polypeptide responsible for

polymerization of the glycoproteins into a network of interconnected fibrils. The mouse egg ZP

consists of only three glycoproteins, called ZP1, ZP2, and ZP3, that are synthesized and secreted

exclusively by growing oocytes. One of the glycoproteins, ZP3, serves as both a binding partner

for sperm and inducer of sperm exocytosis, the acrosome reaction. Female mice lacking ZP3 fail

to assemble a ZP around growing oocytes and are completely infertile. Sperm bind to the carboxy-

terminal region of ZP3 polypeptide encoded by ZP3 exon-7 and binding is sufficient to induce

sperm to complete the acrosome reaction. Whether sperm recognize and bind to ZP3 polypeptide,

oligosaccharide, or both remains an unresolved issue. Purified ZP3 self-assembles into long

homomeric fibrils under non-denaturing conditions. Apparently, sperm added to ZP3 bind to the

fibrils and are prevented from binding to ovulated eggs in vitro. These, as well as other aspects

of ZP structure and function are addressed in this article.
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«No theory of fertilization which fails to include the

factor of specificity as one of the prime elements

can be true.» Frank Lillie, 1919

Introduction

The plasma membrane of eggs from eutherian mammals,
including those from monotremes and marsupials, is surrounded
by a relatively thick extracellular coat called the zona pellucida
(ZP), a name derived from the Latin, meaning transparent (pellu-

cida) belt or girdle (zona) (Fig. 1). The ZP is an elastic structure
composed of only a few glycoproteins (Wassarman et al., 1985;
Wassarman 1987, 1988, 1999; Conner et al., 2005) each of which
contains a relatively large conserved region called the ZP domain
(Bork and Sander, 1992; Jovine et al., 2002a, 2005). In addition,
the ZP is a porous structure that is permeable to relatively large
macromolecules such as antibodies and small viruses (Gwatkin,
1977; Wassarman, 1988).

The structural characteristics of ZP glycoproteins are related to
those of extracellular coat proteins of eggs from non-mammalian
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species that are separated from mammals by as much as 400
million years of evolution (Breed et al., 2002; Monne et al., 2006;
Litscher and Wassarman, 2007). In general, the ZP consists of
long, interconnected fibrils or filaments that exhibit a structural
repeat (Greve and Wassarman, 1985; Wassarman and Mortillo,
1991; Wassarman et al., 1996; Green, 1997). There is evidence
to suggest that ZP1, a dimer of identical polypeptides, each with
a trefoil or P domain (Bork, 1993), serves as a crosslinker for ZP
fibrils (Greve and Wassarman, 1985; Wassarman and Mortillo,
1991; Rankin et al., 1999). For many years it has been known that
the ZP can be dissolved by exposure to conditions that do not
disrupt covalent bonds, such as low pH, elevated temperature, or
low ionic strength buffers (Wassarman, 1988).

The ZP performs a variety of roles before, during, and after
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fertilization of eggs. The ZP is laid down during late stages of
oogenesis when non-growing oocytes begin to grow, and it
increases in thickness as oocytes increase in diameter
(Wassarman and Albertini, 1994). Results of targeted mutagen-
esis experiments on genes encoding ZP glycoproteins strongly
suggest that successful completion of oocyte growth and follicle
development is largely dependent on production of a ZP (Liu et al.,
1996; Rankin et al., 1996, 2001; Wassarman et al., 1998).
Females that fail to produce a ZP during oogenesis are infertile.
During fertilization of eggs, sperm bind in a species-restricted
manner to the ZP, complete the acrosome reaction (AR), and
penetrate through the ZP to reach and fuse with the plasma
membrane (Florman and Ducibella, 2006). The AR involves
multiple fusions between the sperm’s outer acrosomal membrane
and plasma membrane overlying the anterior region of the sperm
head, formation of hybrid vesicles, and exposure of the inner
acrosomal membrane and acrosomal contents. Only acrosome-
reacted sperm can penetrate the ZP and fuse with egg plasma
membrane to form a zygote. Removal of the ZP from unfertilized
eggs virtually eliminates the barrier to fertilization between spe-
cies in vitro.

Several lines of evidence strongly suggest that sperm recog-
nize and bind to a ZP glycoprotein and are therby induced to
complete the AR (Wassarman, 1990, 1995, 1999, 2005;
Wassarman et al., 2001; Florman and Ducibella, 2006). Following
fusion of sperm and egg to form a zygote, the structure of the ZP
is changed such that it no longer permits binding of free-swimming
sperm and contributes to the prevention of fertilization by more
than one sperm (polyspermy) (Gardner et al., 2007). Finally,
results of experiments strongly suggest that preimplantation
development (McLaren, 1969; Bronson and McLaren, 1970),
including specification of a blastocyst axis (Kurotaki et al., 2007),
is dependent on the presence of a ZP. Embryos hatch from the ZP
just prior to implantation in the uterus. Therefore, the ZP is present
only transiently, from initiation of oocyte growth to implantation of
the embryo; in mice a period of approximately 4 weeks.

Here we review more than 25 years of research from our

laboratory that leads us to conclude that a mouse ZP glycoprotein,
called ZP3, is responsible for species-restricted binding of sperm
to eggs, as well as for inducing bound sperm to complete the AR.
In the interest of brevity and clarity not all experimental evidence
available is presented here. However, it should be noted that from
the 1970s until today a great many laboratories world-wide have
contributed significantly to the conclusions about ZP3 presented
here.

Early observations

Identification of ZP glycoproteins

In the mid-1970’s Jeffrey Bleil joined our laboratory as a
graduate student and set out to identify the proteins of the mouse
egg’s ZP. Using ZP removed individually from isolated oocytes or
eggs by mouth-pipetting, three proteins were identified and char-
acterized that we named ZP1, 2, and 3 (Bleil and Wassarman,
1980a) (Fig. 2). ZP2 (~120 kDa Mr) and ZP3 (~83 kDa Mr)
behaved as monomers on SDS-PAGE, whereas ZP1 (~200 kDa
Mr) behaved as a dimer of polypeptides connected by intermo-
lecular disulfides. All three proteins migrated as relatively broad
bands on SDS-PAGE and as multiple spots on two-dimensional
gel electrophoresis, suggesting to us early on that ZP1-3 were
glycosylated proteins. ZP2 and ZP3 are present in roughly equimo-
lar amounts and represent the majority of the mass of the ZP (~3.5
ng). Comparisons of ZP from fertilized and unfertilized eggs in the
presence and absence of reducing agent revealed that ZP2 was
subjected to limited proteolysis as a consequence of fertilization
and was converted to a species we called ZP2f (Bleil et al., 1981).
Subsequent experiments suggested that the proteolytic conver-
sion of ZP2 to ZP2f was responsible for the so-called hardening
of the ZP following fertilization (Moller and Wassarman, 1989). It
is likely that hardening of the ZP is attributable to an increase in
interactions between the fibrils that constitute the extracellular
coat.

In time it was found that mouse ZP1, 2, and 3 are encoded by
single-copy genes located on chromosomes 19 (12 exons), 7 (18
exons), and 5 (8 exons), respectively (Epifano et al., 1995).
Analyses of the human genome suggest that genes encoding
ZP1, 2, and 3 are located on chromosomes 11, 16, and 7,
respectively (Chamberlin and Dean, 1990; Van Duin et al., 1992;
Liang and Dean, 1993; Hughes and Barratt, 1999). Furthermore,
it is now known that the human ZP contains an additional glyco-
protein, called ZPB/ZP4 (Lefievre et al., 2004). The polypeptide
sequences of ZP2 and ZP3 from mice and humans, two species
separated by more than 108 years of evolution, are 56% and 67%
identical, respectively. The primary structures of ZP2- and ZP3-
related ZP glycoproteins from different mammals are relatively
well conserved (~65-98% identity), whereas ZP1-related glyco-
proteins, possessing a trefoil (P) domain, are conserved to a
lesser degree (~40% identity). It is also apparent that ZP1-3 have
regions of polypeptide in common, suggesting that these regions
may be derived from a common ancestral gene (Spargo and
Hope, 2003).

Synthesis of ZP glycoproteins

Having identified ZP1-3, we set out to determine where they
were synthesized. Using intact follicles (oocyte-follicle cell com-
plexes), oocytes, and follicle cells isolated from juvenile mice 5-
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Fig.1. Binding of free-swimming mouse sperm to the zona pellucida

(ZP) of an ovulated mouse egg. The light micrograph was taken using

Nomarski differential interference contrast optics.



Fertilization and the ZP    667

21 days-of-age (the source of growing oocytes; Sorensen and
Wassarman, 1976) it became clear that only growing oocytes
synthesized the three ZP glycoproteins (Bleil and Wassarman,
1980b). Subsequent work from our own (Greve et al., 1982;
Salzmann et al., 1983; Roller et al., 1989; Lira et al., 1990, 1993;
Schickler et al., 1992) and another (Philpott et al., 1987; Liang et
al., 1990; Millar et al., 1991; Epifano et al., 1995) laboratory
confirmed that, indeed, mouse ZP glycoproteins are synthesized
exclusively by growing oocytes during a 2-to-3 week period and
the synthesis is regulated by an oocyte-specific promoter located
close to the transcription start-site (i.e., within the proximal 153
nucleotides of the gene’s 5'-flanking region) (Lira et al., 1990,
1993). Interestingly, the ZP3 promoter has proven to be extremely
useful to control site-specific DNA recombinase Cre in transgenic
mice (ZP3-Cre) and thereby target specific gene expression
(activation/inactivation) in mouse oocytes (Lewandoski et al.,

1997; deVries et al., 2000; Kemler et al., 2004; Lan et al., 2004).

Functions of ZP glycoproteins

At this point, we decided to address the potential function(s) of
individual ZP glycoproteins. This decision was based in large part
on a few publications in the 1970s from Ralph Gwatkin, John
Hartmann, and their colleagues. Principally, they had found that
when hamster sperm were exposed to solubilized ZP from un-
fertilized hamster eggs binding of sperm to ovulated eggs was
inhibited in vitro (Gwatkin and Williams, 1976). Furthermore,
solubilized ZP preparations from mouse eggs partially inhibited
fertilization of hamster eggs in vitro (Gwatkin, 1977). These
observations suggested to them and to us that solubilized ZP
preparations contained a so-called «sperm receptor» that sperm

recognized, bound to, and prevented them from binding to ovu-
lated eggs in vitro.

With the results just described in mind, we purified each mouse
egg ZP glycoprotein to homogeneity and tested its ability to inhibit
binding of mouse sperm to ovulated eggs in vitro (a so-called
«competition assay»). Surprisingly, of the three glycoproteins,
only ZP3 inhibited binding of sperm to eggs at nanomolar concen-
trations (Fig. 3); results comparable to those of Gwatkin and co-
workers with solubilized ZP (Bleil and Wassarman, 1980c). Fur-
thermore, ZP3 purified from fertilized egg or embryo ZP (called
ZP3f) failed to inhibit binding of sperm to eggs at equivalent
concentrations. These observations first suggested to us that ZP3
was the so-called mouse sperm receptor.

Consistent with the results just described, we found that ZP3
purified from unfertilized egg ZP, but not from fertilized egg ZP
(ZP3f), could induce sperm to complete the AR in vitro (Bleil and
Wassarman, 1983). This reaction involves multiple fusions be-
tween sperm plasma and outer acrosomal membranes and expo-
sure of the inner acrosomal membrane (Fig. 4). Bayard Storey
and co-workers had reported previously that only acrosome-
intact mouse sperm bind to ovulated eggs (Saling et al., 1979) and
that solubilized mouse ZP could induce sperm to complete the AR
in vitro (Florman and Storey, 1982). In view of our results we
concluded that ZP3 was the active agent in their preparations of
solubilized ZP.

Many later studies provided support for our conclusions about
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Fig. 2. Schematic representation of the overall architecture of mouse

ZP glycoproteins ZP1, ZP2, and ZP3. The polypeptide of each ZP

glycoprotein is drawn to scale, with the N- and C-termini indicated. Key

features of the polypeptide, including the N-terminal signal peptide

(green), P or trefoil domain (yellow), ZP domain (red), CFCS (X), TMD

(black), and C-terminal propeptide region (blue bar) are depicted. Only

putative N-linked glycosylation sites, conforming to the strict pattern Asn-

X-Ser/Thr-X, where X can be any amino acid other than Pro, are shown.

The number of amino acids in the polypeptide of each ZP glycoprotein is

indicated.

Fig. 3. Inhibition of binding of mouse sperm to eggs in the presence

of purified mouse ZP glycoproteins. In these experiments capacitated

sperm were incubated in the presence of different concentrations of

purified ZP glycoproteins, ovulated eggs were added, and binding of

sperm to eggs was determined. The concentration of individual ZP

glycoproteins is expressed as ZP equivalents per µl (calculated assuming

that each ZP contains ~4 ng protein and that ZP3 represents ~40% of ZP

protein). The range of values for percent sperm binding obtained at

different concentrations of ZP glycoproteins is indicated by the height of

the bar. Only ZP3 inhibited binding of sperm to eggs. For experimental

details see Litscher and Wassarman (1996) and Williams et al. (2006).
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ZP3 and mammalian sperm-egg interactions. For example, in the
early 1990s Barry Shur’s laboratory reported that β-1,4-
galactosyltransferase (GalTase) on the surface of mouse sperm
bound to egg coat ZP3 specifically by recognizing ZP3 oligosac-
charides and that aggregation of the enzyme induced bound
sperm to complete the AR (Macek et al., 1991; Miller et al., 1992).
In related studies it was demonstrated that GalTase expressed by
Xenopus  oocytes functions as a ZP3 receptor (ZP2 does not bind)
and following aggregation is capable of activating pertussis toxin-
sensitive G proteins leading to cellular exocytosis (Shi et al.,
2001). Furthermore, Harvey Florman’s and Greg Kopf’s laborato-
ries went on to establish that the same signaling pathways in

Fig. 4. Features of the mammalian sperm acrosome reaction (AR). The AR is

shown diagramatically (top) and some of the signal-transducing components are

listed (bottom).

sperm bound to eggs that lead to induction of the AR are
activated by either solubilized ZP or purified egg ZP3
(Wilde et al., 1992; Ward et al., 1992, 1994; Arnoult et al.,

1996; O’Toole et al., 2000; Jungnickel et al., 2001; Florman
et al., 2003). The signal-transducing components involved
include G proteins, inositol-3,4,5-triphosphate (IP3) and
IP3 receptors, phospholipase C, and Ca2+ and voltage-
sensitive Ca2+ channels. For example, it was recently
found that purified ZP3 stimulates production of IP3 in
sperm membranes (Jungnickel et al., 2007).

Collectively, these results strongly suggest that ZP3 is
a binding partner for acrosome-intact sperm and that once
bound to ZP3 sperm undergo, or at least complete, the AR.
In this context, there is now evidence to suggest that the AR
actually is initiated, but not completed, during the process
of sperm capacitation (Kim and Gerton, 2003). Although
sperm that bind to the ZP appear to be acrosome-intact
(e.g., by microscopic examination and/or staining with
antibodies or dyes) they probably represent a transitional
or intermediate state between acrosome-intact and
acrosome-reacted. Consequently, proteins that comprise
the acrosomal matrix of acrosome-intact sperm (e.g., sp56
and zonadhesin; Bleil and Wassarman, 1990; Cohen and
Wassarman, 2001; Hardy and Garbers, 1995; Bi et al.,

2003) may become available at the sperm surface to
interact with the egg ZP following capacitation.

Characteristics of ZP3

Mouse ZP3 is synthesized as a 424-aa polypeptide to
which both asparagine- (N-) and serine/threonine- (O-)
linked oligosaccharides are added (Wassarman, 1988;
Jovine et al., 2007) (Fig. 2). ZP3 has a low isoelectric point

Fig. 5. Sequence of the C-terminal

propeptide of mouse ZP3. Polypep-

tide boundaries are marked by gray

bars, with the signal peptide (SP) in red;

the ZP domain, CFCS, charged peptide

(CP), EHP, and TMD are depicted as

pink, orange, green, cyan, and blue

rectangles, respectively; the conserved

Cys413 is circled in red.

(~4.7) due largely to the presence of sialylated and sulfated
oligosaccharides (Liu et al., 1997). A 22-aa signal-sequence at
the N-terminus and a 71-aa propeptide at the C-terminus (follows
a consensus furin cleavage-site; CFCS) of nascent ZP3 are
proteolytically removed prior to secretion of mature ZP3 (~37 kDa
Mr polypeptide; ~83 kDa Mr glycoprotein) (Litscher et al., 1999;
Williams and Wassarman, 2001). The propeptide (Fig. 5) pos-
sesses a 22-aa transmembrane domain (TMD) and a conserved
7-aa external hydrophobic patch (EHP; aa-363 to aa-369). We
proposed that the TMD anchors ZP3 in oocyte secretory vesicles
and plasma membrane (Qi et al., 2002), and the EHP prevents
incorporation of ZP3 into fibrils in oocyte cytoplasm by interacting
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domains of ZP1 and ZP2 more homologous to each
other (~34% identity) than to ZP3 (~19% identity). ZP
domains have been identified in polypeptides from
virtually all organisms, from jelly fish (Matveev et al.,

2007) to human beings (Jovine et al., 2002a, 2005),
and are often glycosylated, modular structures consist-
ing of multiple types of domains (Jovine et al., 2005).
For example, the ZP domain is a feature of all ZP
glycoproteins and all egg extracellular coat proteins,
from echinoderm to human eggs (Jovine et al., 2005).

Several lines of evidence from our laboratory sug-
gest that the ZP domain of ZP glycoproteins, and of
many other extracellular proteins, functions as a poly-
merization module (Jovine et al., 2002b). Apparently,
the ZP domain consists of two subdomains, called ZP-
N (4 Cys residues) and ZP-C (4 Cys residues), sepa-
rated by a protease sensitive linker (Jovine et al., 2004;
Llorca et al., 2007). Subdomain ZP-N (ZP3 aa-42 to aa-
143) on its own forms homodimers that are able to
polymerize into fibrils (Jovine et al., 2006, 2007). Fur-
thermore, a recent report suggests that N-terminal
extensions of ZP polypeptides consist of single or
multiple copies of a domain related to ZP-N (Callebaut
et al., 2007). The mechanism used to prevent polymer-
ization of ZP glycoproteins in oocytes (Fig. 6) probably
applies to all ZP domain proteins since it relies on
sequence elements, EHP and IHP, and events, cou-
pling between proteolytic processing and polymeriza-
tion, conserved in all ZP domain proteins (Jovine et al.,

2005). A similar proteolytic processing mechanism that
regulates polymerization has been reported for several
other proteins as well (Taylor et al., 1997; Bourne et al.,
2000; Handford et al., 2000; Mosesson et al., 2001).

Targeted mutagenesis of the ZP3 gene

 As pointed out in the Introduction, female mice
lacking ZP3 have been produced by targeted mutagen-
esis (homologous recombination) of the ZP3 gene.
Results from our own (Liu et al., 1996) and another
(Rankin et al., 1996) laboratory revealed that homozy-
gous null females for ZP3 (ZP3-/-) fail to have a ZP
around their growing oocytes (Fig. 7) and are infertile.
That is, although oocytes from ZP3-/- females continue
to synthesize ZP1 and ZP2, in the absence of ZP3 the
glycoproteins are not assembled into a ZP. This finding
is consistent with the suggestion that ZP2 and ZP3
form heterodimers and the dimers then polymerize into
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Fig. 6. A general mechanism for assembly of ZP domain proteins. In all ZP domain

precursors, the ZP domain is followed by a C-terminal propeptide (CTP) that contains

a basic cleavage site (such as a CFCS), and EHP, and, in most cases, a TMD or GPI-

anchor (top panel). Precursors do not polymerize within the cell either as a result of

direct interaction between the EHP and IHP or because they adopt an inactive

conformation dependent on the presence of both patches (middle left panel). C-

Terminal processing at the CFCS by a proprotein convertase (middle right panel)

would lead to dissociation of mature proteins from the EHP (bottom left panel),

activating them for assembly into filaments and matrices (bottom right panel). For

experimental details that led to this mechanism see Jovine et al. (2004).

with a conserved 7-aa internal hydrophobic patch (IHP; aa-166 to
aa-172) (Jovine et al., 2004) (Fig. 6). Nascent ZP3 (and ZP2) is
incorporated into only the innermost layer of the ZP as it thickens
around growing oocytes (Qi et al., 2002). This suggests that ZP
glycoproteins secreted and assembled at early stages of oocyte
growth should be found in the outside layer of the ZP of fully-grown
oocytes.

ZP3 also has a large region (~80% of the polypeptide) called
the ZP domain (Bork and Sander, 1992) that extends from aa-45
to aa-304 (~260-aa) and contains 8 conserved Cys residues (Fig.
2). All ZP glycoproteins possess a ZP domain, with the ZP

ZP fibrils (Wassarman et al., 1985; Wassarman, 1987, 1990). The
absence of a ZP has deliterious effects on both oocyte growth and
follicle development, such that ZP3-/- females produce very few,
if any, ovulated eggs (Wassarman et al., 1998). This is manifested
as reduced ovarian weights, reduced numbers of Graafian fol-
licles, and reduced numbers of fully-grown oocytes. Oocytes from
ZP3-/- females can undergo meiotic maturation in vitro and emit a
first polar body (Fig. 7); ovulated eggs lacking a ZP can be
fertilized in vitro and divide (E.S. Litscher and P.M. Wassarman,
unpublished observations).

Heterozygous null female mice (ZP3+/-) are as fertile as wild-
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type animals, but their eggs have a thin ZP (~2.7 µm) as compared
to the ZP (~6.2 µm) of eggs from wild-type animals (Wassarman
et al., 1997). These findings suggest that even when the amount
of ZP3 is limiting (approximately one-half wild-type levels) it can
still participate in ZP assembly with ZP1 and ZP2, yielding a
functional, but thinner than normal ZP. In this context, it should be
noted that the thickness of the ZP of wild-type eggs varies
considerably (6.2 ± 1.9 µm; range 4.3-8.1 µm) and that capaci-
tated sperm bind to growing oocytes (~40-70 µm in diameter) that
have ZP of variable widths (Bleil and Wassarman, 1980c). Collec-
tively, these observations suggest that the presence of a ZP of
any width can support binding of sperm to eggs.

Interaction of ZP3 with sperm

As mentioned earlier, mouse egg ZP3 inhibits binding of sperm
to eggs and induces sperm to complete the AR in vitro. These
observations suggest that ZP3 binds selectively to the heads of
acrosome-intact sperm. To test this possibility, we examined the
binding of either radiolabeled or gold-labeled ZP3 to sperm by
either light or electron microscopy, respectively. Whole-mount
autoradiography of sperm incubated with radiolabeled ZP3 re-
vealed that ZP3 was localized to the acrosomal cap region of
heads of acrosome-intact sperm, but not to the heads of acrosome-
reacted sperm (Bleil and Wassarman, 1986). Similarly, transmis-
sion electron microscopy of thin sections of sperm incubated with
gold-labeled ZP3 revealed that ZP3 was localized preferentially to
plasma membrane overlying the acrosomal and post-acrosomal
regions of acrosome-intact sperm (Mortillo and Wassarman,
1991). Approximately 4- to 5-times more gold-labeled ZP3 was
bound to acrosome-intact than to acrosome-reacted sperm. Re-
sults of analogous experimental approaches also suggested that
the characteristics of ZP3 binding to sperm were consistent with

results suggested that sperm bound to
ZP3 oligosaccharides, rather than to
polypeptide, and inhibited binding of sperm
to eggs, but that polypeptide was impor-
tant for inducing sperm to complete the
AR. The findings also suggested that the
two effects of ZP3 on fertlization were
dependent on different molecular features
of the glycoprotein. In this context, binding
and induction of the AR proved to be
distinguishable from one another because
of their distinctive time courses (Florman
and Storey, 1982; Bleil and Wassarman,
1983), sensitivity to inhibitors (Florman
and Storey, 1982), and dependence upon
ZP3 concentration (Bleil and Wassarman,
1983), suggesting that they were indeed
separate processes.

Direct evidence for participation of oli-
gosaccharides in binding of sperm to ZP3
was obtained by our laboratory when pu-
rified ZP3 was exposed to N-glycanase (to
remove N-linked oligosaccharides), mild
alkaline hydrolysis (to remove O-linked
oligosaccharides), or trifluoromethane-
sulfonic acid (to remove all oligosaccha-

the proposed biology of sperm-ZP3 interactions (Kerr et al.,

2002).
We also carried out solid-phase assays and found that sperm

with an intact acrosome (assayed microscopically) could bind to
silica beads to which ZP3 was covalently linked (Fig. 8) (Vazquez
et al., 1989). The extent of binding of sperm to ZP3-beads was
dependent on ZP3 and sperm concentrations, as well as incuba-
tion time and temperature. However, it was clear that only
acrosome-intact sperm bound to ZP3-beads, not to empty beads
or to beads bearing other proteins (e.g., ZP2, fetuin, or BSA), and
once bound the sperm could complete the AR and be released
from the beads. In addition, sperm bind to EC cells transfected
with ZP3 and organized into  aggregates about the size of
ovulated eggs (Kinloch et al., 1991). Collectively, these results
provided direct evidence that ZP3 bound to plasma membrane
surrounding heads of apparently acrosome-intact sperm in vitro.

Sperm combining-site of ZP3

Our investigation of the sperm combining-site of ZP3 has been
ongoing since the early 1980s. By using a variety of experimental
approaches we have attempted to identify the nature and location
of the ZP3 region (i.e., polypeptide, oligosaccharide, or both) to
which sperm bind, the so-called sperm combining-site.

Nature of the ZP3 sperm combining-site

The investigations began by extensively degrading purified
ZP3 with insoluble Pronase, producing variously sized fragments
of the glycoprotein, and assaying the fragments for their ability to
inhibit binding of sperm to eggs in vitro (Florman et al., 1984).
These experiments revealed that small glycopeptides of ZP3
(~1.5-6 kDa Mr) were capable of inhibiting binding of sperm to
eggs, however, they did not induce sperm to complete the AR. Our

Fig. 7 (Above). Light micrograph of ovulated

eggs from wild-type and ZP3-/- female mice.

Ovulated eggs were obtained from oviducts

excised from ~6 week-old superovulated mice.

Shown are 6 ovulated eggs recovered from

ZP3-/- mice (arrowheads; lacking a ZP) and 10

ovulated eggs recovered from wild-type mice. Micrographs were taken using Nomarski differential

interference contrast microscopy. For experimental details see Liu et al. (1996).

Fig. 8 (Right). Scanning electron micrograph of mouse sperm bound to a silica bead containing

covalently linked mouse egg ZP3. For experimental details see Vazquez et al. (1989).
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rides) (Florman and Wassarman, 1985). The latter two treatments
destroyed the ability of ZP3 to inhibit binding of sperm to eggs in
vitro suggesting that sperm bound to ZP3 O-linked oligosaccha-
rides. Furthermore, it was demonstrated directly that a specific
size-class of O-linked oligosaccharides released from ZP3 by
mild alkaline digestion inhibited binding of sperm to eggs and
could be significantly enriched by incubation with sperm. Results
of these experiments provided further evidence that mouse sperm
recognized and bound to ZP3 oligosaccharides and, in particular,
to O-linked oligosaccharides. Subsequently, it was found that
digestion of ZP3 by certain glycosidases destroyed its ability to
inhibit binding of sperm to eggs (Bleil and Wassarman, 1988) and
that incubation of sperm with certain oligosaccharides of defined
structure (Seppo et al., 1995) at micromolar concentrations inhib-
ited their binding to eggs, but did not induce sperm to complete the
AR (Litscher et al., 1995). For example, in the presence of 10 µM
tetraantennary octadecasaccharide with galactose in α-linkage at
the nonreducing termini, binding of sperm to eggs was signifi-
cantly inhibited (~75 %). The latter results were extended in
studies of the effects of Lewis X-containing glycans and
neoglycoproteins on binding of sperm to eggs and induction of the
AR (Kerr et al., 2004; Hanna et al., 2004). Furthermore, a role for
ZP3 oligosaccharides in sperm binding is consistent with the
unusual stabiltity of the glycoprotein’s inhibitory effects following
treatment with extremes of temperature or pH, proteases, dena-
turants, detergents, or fixatives. It is relevant to note that binding
of bacteria, animal viruses, parasites, and other pathogens to
their cellular hosts, binding of bacteria to plants, binding of pollen
to the plant stigma, sexual agglutination in yeast, and binding of
amphibian and marine sperm to eggs are all considered to be
carbohydrate-mediated events (Varki et al., 1999).

Location of the ZP3 sperm combining-site

To locate the sperm combining-site of ZP3, purified glycopro-
tein was digested with either papain or V8 protease and the
glycopeptides produced were fractionated and assayed for their
ability to inhibit binding of sperm to eggs and to induce sperm to
complete the AR (Rosiere and Wassarman, 1992; Litscher and
Wassarman, 1996a). Each proteolytic digest of ZP3 contained a
heavily glycosylated ~55 kDa Mr peptide that was reduced to ~21
kDa Mr after treatment with N-glycanase to remove N-linked
oligosaccharides. The ~55 kDa Mr glycopeptide was derived from
the carboxy-terminal half of ZP3, possessed 4 or 5 potential N-
linked glycosylation sites, and after removal of N-linked oligosac-
charides remained quite heterogeneous with respect to both its
charge and molecular weight. Both untreated and N-glycanase
treated glycopeptide inhibited binding of sperm to eggs and
induced sperm to complete the AR in vitro to about the same
extent as intact ZP3. These findings suggested that the sperm
combining-site of ZP3 is located in the carboxy-terminal half of
ZP3 and does not involve N-linked oligosaccharides.

In addition to the biochemical approach just described, several
molecular genetic approaches were taken by our laboratory to
identify the location of the sperm combining-site of ZP3. These
approaches were made possible by the successful cloning and
sequencing of the mouse ZP3 gene and polypeptide in the late
1980s (Kinloch et al., 1988; Ringuette et al., 1988; Kinloch and
Wassarman, 1989). For example, exon swapping and site-di-
rected mutagenesis were carried out on ZP3 (Kinloch et al., 1995;

Chen et al., 1998) using stably transfected embryonal carcinoma
(EC) cell lines that synthesized and secreted recombinant ZP3
(Kinloch et al., 1991). Results of such experiments revealed that
the sperm combining-site is located in the carboxy-terminal re-
gion of ZP3 polypeptide encoded by exon-7 of the ZP3 gene;
results consistent with those of the biochemical approach de-
scribed above. It was noted by us (Kinloch et al., 1995; Wassarman
and Litscher, 1995), and later by others (Swanson et al., 2001),
that this region of ZP3 polypeptide exhibited considerable se-
quence divergence during evolution, consistent with a role in
species-restricted fertilization.

In a recent study of the sperm combining-site of ZP3, exon-
swapping and an IgG(Fc) fusion construct were used to further
evaluate whether mouse ZP3 exon-7 is essential for binding of
sperm to mouse ZP3 (Williams et al., 2006). In one set of
experiments, hamster ZP3 exon-6, -7, and -8 (Kinloch et al., 1990)
were individually replaced with the corresponding exon of mouse
ZP3. These experiments were possible because, although ham-
ster ZP3 purified from hamster egg ZP inhibits binding of mouse
sperm to eggs in vitro, recombinant hamster ZP3 made by EC
cells has no effect on binding of mouse gametes (Kinloch et al.,

1991; Litscher and Wassarman, 1996b). A similar situation (i.e.,
a shift in sperm binding specificity) has been described by
Yonezawa et al. (2005) for native and recombinant porcine ZP
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Fig. 9. Inhibition of binding of mouse sperm to eggs in the presence

of wild-type and recombinant mouse and hamster ZP3. Shown is the

average percent inhibition ±  SD of sperm binding to eggs for wild-type

and hybrid ZP3. In a control sample sperm were pre-incubated in the

presence of M199-M alone (0 % inhibition). In all samples wild-type and

recombinant glycoproteins were present at ~5 ng/µl. The values repre-

sent the average of 3 or 4 separate experiments with each sample. EC,

embryonal carcinoma; m, mouse; h, hamster; m6, mouse exon-6; m7,

mouse exon-7; m8, mouse exon-8. For experimental details see Williams

et al. (2006).
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glycoproteins and their interaction with porcine and bovine sperm.
Stably transfected EC cell lines carrying the recombinant genes
were produced and secreted recombinant glycoprotein was puri-
fied and assayed for the ability to inhibit binding of sperm to eggs.
While EC-hamster ZP3, a recombinant form of hamster ZP3, is
unable to inhibit binding of mouse sperm to eggs in vitro, the
results suggest that substitution of mouse ZP3 exon-7 for hamster
ZP3 exon-7, but not mouse ZP3 exon-6 or –8, can impart inhibi-
tory activity to EC-hamster ZP3 with mouse gametes (Fig. 9). In
this context, a fusion construct consisting of human IgG(Fc) and
mouse ZP3 exon-7 and –8 was prepared, an EC cell line carrying
the recombinant gene was produced, and secreted chimeric
glycoprotein, called EC-huIgG(Fc)/mouse ZP3(7), was purified
and assayed. It was found that the chimeric glycoprotein bound
specifically to plasma membrane overlying sperm heads to a
similar extent as egg mouse ZP3 and, at nanomolar concentra-
tions, inhibited binding of mouse sperm to eggs in vitro.

Collectively, these observations provide further evidence that
sperm recognize and bind to a region of mouse ZP3 polypeptide
that is encoded by exon-7 and is immediately downstream of its
ZP domain. This conclusion is supported by another recent report
on the inhibitory effects of the carboxy-terminal region of recom-
binant mouse ZP3 in vitro (Li et al., 2007). Furthermore, mice
immunized with a 16 amino acid peptide from this region of mouse
ZP3 polypeptide produced antibodies that recognized a 7 amino
acid epitope (aa 336-342 encoded by exon-7) and that bound to
egg ZP in vivo resulting in long-lasting infertility (Millar et al.,

1989). Similarly, exposure of eggs to polyclonal antibodies raised
against the region of ZP3 polypeptide encoded by exon-7 also
inhibited binding of sperm to eggs in vitro (Rosiere and Wassarman,
1992). It is of interest that ZP3 is among the 10% most different
proteins between rodents and humans (Makalowski and Boguski,
1998; Aagaard et al., 2006). As indicated above, the region of ZP3

polypeptide encoded by exon-7 has undergone a relatively large
number of changes during evolution, as compared with the
remainder of the polypeptide (Wassarman and Litscher, 1995),
and is a proposed site of positive Darwinian selection (Swanson
et al., 2001, 2003).

Inspection of the region just upstream of the ZP domain of ZP3
from mammals and related vitelline envelope (VE) proteins from
non-mammals, reveals a great deal of conservation. This is
especially true of the arrangement of the four closely spaced Cys
residues in this region (Fig. 10). For mammals, amphibians, and
birds this region has the signature sequence Cys-X-Cys-Cys-X-
X-X-X-Cys, whereas for fish the sequence is Cys-X-Cys-Cys-X-
X-X-Cys. For the mammalian ZP3 sequences shown (Fig. 10), the
first Cys residue is preceeded by an acidic (Asp/Glu) and a
hydrophobic (Ileu/Val) residue. Since these Cys residues are
present as intramolecular disulfides, this portion of ZP3 exon-7
may be termed a «disulfide knot» that precedes a sequence
proposed to participate in species-restricted binding of sperm to
eggs. It is possible that this knot may be a structural feature
essential for the presentation of the ZP3 combining-site (i.e.,
polypeptide encoded by exon-7) to sperm.

Polymerization of ZP3 into fibrils

Binding of sperm to eggs is carried out under cell culture
conditions in Earle’s medium 199 in the presence or absence of
purified ZP3. In an effort to determine the state of mouse ZP3
when acrosome-intact sperm bind to it, purified ZP3 was analyzed
in the absence of either detergents or denaturants by blue native-
polyacrylamide gel electrophoresis (BN-PAGE) (Litscher et al.,

2008). This technique separates proteins and multiprotein com-
plexes on the basis of molecular weight due to external negative
charge provided to proteins by coomassie brilliant blue binding to

Bufo 

Xenopus 

Bufo 

Xenopus 

Fig. 10. Sequences of the region of ZP3-like proteins just upstream of the ZP domain.

Shown are sequences for mammals, amphibians, birds, and fish using the single letter

amino acid code. Boxes surround the 4 conserved Cys residues and the potential furin-like

cleavage site.

hydrophobic domains on the surface of proteins
(Schagger and von Jagow, 1991; Swamy et al.,

2006). Under these conditions, ZP3 migrated,
not as a single band, but as several discrete
oligomers that gave rise to larger structures that
remained at the origin of the gel (Fig. 11). To
visualize directly the state of ZP3 under compa-
rable conditions, purified ZP3 was dissolved in
water, negatively stained, and subjected to trans-
mission electron microscopy. Relatively large
aggregates of long interconnected fibrils com-
posed of contiguous beads, ~13.5 nm in diam-
eter, were observed.

These results suggest that the biological ef-
fects of ZP3, inhibition of binding of sperm to
eggs and induction of the AR in vitro, are due to
binding of sperm to homomeric fibrils of ZP3.
While the loss of the ability of ZP3 to form long
fibrils (e.g., by extensive proteolysis of ZP3)
does not interfere with sperm binding, it may
result in the failure of ZP3 to induce the AR
(Florman et al., 1984; Wassarman et al., 1985;
Leyton and Saling, 1989; Litscher and
Wassarman, 1996a). It should be noted that,
although purified ZP2 also assembles into
homomeric fibrils under non-denaturing condi-
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tions (Fig. 11), unlike ZP3, ZP2 has no effect on binding of
acrosome-intact sperm to eggs. This suggests that ZP2 lacks
features present on ZP3 that are recognized by acrosome-intact
sperm.

Summary and final comments

During the past 25 years or so, ZP genes and glycoproteins
from a wide variety of mammalian species, ranging from mar-
supials to human beings, have been sequenced and character-
ized. A comparison of ZP polypeptides with those of egg VE
proteins from a wide variety of non-mammalian species has
revealed a surprisingly high degree of conservation over sev-
eral hundred million years of evolution (Litscher and Wassarman,
2007). Some of this conservation is attributable to the retention
of a ~260 amino acid ZP domain, a feature common to all ZP
and VE polypeptides that is responsible for polymerization of
the proteins into long fibrils (Jovine et al., 2002b, 2005).

Results of several different experimental approaches in vitro

strongly suggest that acrosome-intact mouse sperm recognize
and bind to ZP3, one of three glycoproteins that constitute the
mouse egg ZP (Wassarman, 1990, 1999, 2005; Wassarman et

al., 2001). Once bound to ZP3, sperm complete the AR and are
only then able to penetrate the ZP and fuse with egg plasma
membrane. Acrosome-intact sperm (or sperm in a transitional
state between acrosome-intact and acrosome-reacted) appar-
ently recognize the region of ZP3 encoded by exon-7 of the ZP3

gene (i.e., the C-terminal region of the polypeptide), but it
remains to be resolved definitively whether sperm recognize
polypeptide, oligosaccharide, or both at the sperm combining-
site of ZP3. Although there is ample evidence to suggest that
sperm recognize ZP3 oligosaccharides, there is no consensus
among investigators as to the nature and location of these
particular oligosaccharides on ZP3 polypeptide. In this context,
a recent report suggests that neither terminal galactose nor N-
acetylglucosamine on ZP glycoproteins is required for fertiliza-
tion in mice (Williams et al., 2007). On the other hand, polypep-
tide encoded by exon-7 of the ZP3 gene is considered to have
undergone positive Darwinian selection during evolution
(Swanson et al., 2001), certainly consistent with its proposed
role in species-restricted binding of sperm to eggs.

An extensive literature compiled by many independent labo-
ratories over more than two decades supports the conclusions
about ZP3 reported here. However, the role of ZP3 in sperm-
egg binding and induction of the AR has been questioned
recently and alternative mechanisms not directly involving ZP3
have been proposed to account for mammalian sperm-egg
interactions (Rankin et al., 2003; Baibakov et al., 2007). Whether
or not these proposals have any merit remains to be deter-
mined.

The ZP of mammalian eggs is a rather unique organelle that
combines the properties of both the thick jelly coat (AR-inducer)
and thin VE (site of sperm receptors) of non-mammalian eggs.
In part, it serves to restrict fertilization of eggs to sperm of the
same species and to prevent fertilization by more than one
sperm (polyspermy). In addition, both egg and preimplantation
embryonic development are dependent on the presence of a
ZP. Therefore, whatever the specifics of sperm-egg interaction
in mammals, the importance of the egg ZP in the successful

completion of mammalian oogenesis, fertilization, and preim-
plantation development cannot be overestimated.
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