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Abstract

The production of spermatozoa relies on a pool of spermatogonial stem cells (SSCs), formed in infancy from the differentiation of their

precursor cells, the gonocytes. Throughout adult life, SSCs will either self-renew or differentiate, in order to maintain a stem cell reserve

while providing cells to the spermatogenic cycle. By contrast, gonocytes represent a transient and finite phase of development leading

to the formation of SSCs or spermatogonia of the first spermatogenic wave. Gonocyte development involves phases of quiescence,

cell proliferation, migration, and differentiation. Spermatogonia, on the other hand, remain located at the basement membrane of

the seminiferous tubules throughout their successive phases of proliferation and differentiation. Apoptosis is an integral part of both

developmental phases, allowing for the removal of defective cells and the maintenance of proper germ–Sertoli cell ratios. While

gonocytes and spermatogonia mitosis are regulated by distinct factors, they both undergo differentiation in response to retinoic acid.

In contrast to postpubertal spermatogenesis, the early steps of germ cell development have only recently attracted attention, unveiling

genes and pathways regulating SSC self-renewal and proliferation. Yet, less is known on the mechanisms regulating differentiation.

The processes leading from gonocytes to spermatogonia have been seldom investigated. While the formation of abnormal gonocytes or

SSCs could lead to infertility, defective gonocyte differentiation might be at the origin of testicular germ cell tumors. Thus, it is important

to better understand the molecular mechanisms regulating these processes. This review summarizes and compares the present

knowledge on the mechanisms regulating mammalian gonocyte and spermatogonial differentiation.
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Introduction

Spermatogenesis is the process that allows for the
continuous formation of spermatozoa throughout adult
male life, and for the transfer of genetic material from
one generation to the next. It includes two phases
separated in humans by a few years of relative testicular
quiescence, contrasting with the uninterrupted develop-
ment of rodent spermatogenesis. The first phase takes
place from embryonic ages to infancy. It consists of
successive phases of primordial germ cells (PGCs) and
gonocytes (also known as pre- or pro-spermatogonia)
that can be distinguished by unique features, leading
to the formation of the first spermatogonia, including
spermatogonial stem cells (SSCs) (Culty 2009). The
second phase, starting at prepuberty and extending
throughout male adult life, comprises spermatogenic
cycles that are initiated by the commitment of sperma-
togonia to differentiate, progressing through meiosis and
spermiogenesis to end with the formation of immature
spermatozoa (Hermo et al. 2010). Spermatogenesis
occurs within the seminiferous tubules, a group of well
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organized, long convoluted tubules connecting at both
ends to the rete testis, which assure sperm transport to
the efferent duct, the initial part of the epididymis
(Hermo et al. 2010). The seminiferous tubules are made
up of supporting Sertoli cells and germ cells (Bellve et al.
1977), and are surrounded by peritubular myoid cells.
The other critical cells of the testis are the interstitial
Leydig cells, responsible for androgen production, a key
factor in the regulation of male reproductive tract
development and spermatogenesis (Christensen 1975,
Steinberger & Steinberger 1975). Although there are
differences in the number of days it takes for a
spermatogenic cycle to be completed between species,
the process itself is similar between humans and rodents,
and thus, rodents are commonly used animal models to
study this process (Adler 1996).

Male germ cells represent a highly specialized type
of cells that undergo considerable morphological,
biochemical, and molecular changes throughout their
development, starting from the most primitive type, the
diploid fetal PGCs, and ending with the formation of
haploid flagellated gametes (Setchell et al. 2003).
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The rodent spermatogenic cycle includes three main
phases: a mitotic phase that takes place in SSCs,
undifferentiated (Asingle, Apair, and Aaligned), differentiating
(A1 to A4, intermediate), and differentiated (type B)
spermatogonia at various phases of maturation, followed
by a lengthy meiotic phase including successive types of
primary spermatocytes, secondary spermatocytes and
the formation of haploid spermatids (round, elongated),
which undergo spermiogenesis to become spermatozoa
that will further achieve maturation in the epididymis
(Hermo et al. 2010). The human cycle is very similar,
despite presenting stages spread over much longer
periods (days instead of hours) and with the exception
of having only three types of spermatogonia, Adark, Apale,
and B. This continuous and dynamic process results in
the production, in humans, of millions of mature sperm
per gram of testis weight each day (Amman & Howards
1980). Numerous studies have added to the ever-growing
understanding of mechanisms underlying sperm
formation. Over the last decade, an increasing number
of studies have broadened our knowledge of the
genes critical for SSC self-renewal and proliferation.
In comparison, few studies have focused on the fetal
to perinatal phases of germ cell development at the
origin of SSCs.

The germ cell lineage is initiated by the specification
of embryonic cells to adopt the germ cell fate under the
control of bone morphogenic protein 4 (BMP4) and
BMP8b, starting with the formation of PGC precursors
expressing PRDM1 (BLIMP1) and PRDM14, detected
around embryonic day (E) 6.25 in the proximal epiblast,
which further evolves to alkaline phosphatase and
Stella-expressing PGCs at E7.25 (Kurimoto et al. 2008;
review in Saitou (2009)). At E7.5, these sexually
undifferentiated PGCs start migrating toward the genital
ridge, involving the interactions of the membrane
receptors KIT (c-Kit/CD117) and CXCR4 with their
respective ligands SCF and SDF1, where they will
become resident and enclosed by Sertoli cells, forming
testicular cords at E12.5dpc in rodents (reviewed in Jan
et al. (2012)). During their migration, PGCs undergo
genome-wide DNA demethylation, leading to the
erasure of parental imprints (Reik et al. 2001, Seki
et al. 2005). Sex determination is established at E12.5
in both germ and supporting somatic cells, based in
part on the expression of the Sry gene in male somatic
cells (Jameson et al. 2012). Once the testicular cords
have formed, the germ cells present in the cord are
referred to as gonocytes (Zhao & Garbers 2002,
Rouillier-Fabre et al. 2003, Culty 2009, 2013).

Gonocytes are the sole source of a functional reservoir
of SSCs necessary to ensure life-long production of
sperm (Culty 2009, 2013). Gonocytes encompass a
succession of cell types with distinct behaviors that are
associated with different fetal and neonatal periods,
including a period of fetal mitosis, a phase of quiescence
starting around E17.5 in rats and ending at postnatal
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day 3 (PND3), at which point gonocytes re-enter mitosis
and start migrating toward the basement membrane of
the seminiferous cords, where they undergo differen-
tiation into SSCs or type A spermatogonia of the first
spermatogenic wave (Culty 2009). These events, which
occur 1–2 days earlier in mice, are not precisely
synchronized, resulting in the co-existence of quiescent
and proliferative gonocytes in neonatal testes (Culty
2013). One common characteristic of fetal and postnatal
gonocytes is that they are the site of intense DNA
remethylation, required for the acquisition of paternal
imprints and transposon silencing (Trasler 2009). While
platelet-derived growth factor-BB (PDGF-BB) and 17b-
estradiol were shown to induce neonatal gonocyte
proliferation via MAPK activation (Li et al. 1997,
Basciani et al. 2008, Thuillier et al. 2010), the factors
inducing fetal gonocyte proliferation have not been fully
identified. The difference between mitotic fetal and
neonatal rat gonocytes was clearly illustrated by their
different responses to all-trans retinoic acid (RA) in organ
culture studies. In E14.5 gonocytes, RA was found to
increase fetal gonocyte proliferation, while inducing
apoptosis at a greater rate, leading to an overall loss
of cells (Livera et al. 2000). However, in the same study,
RA was reported to slightly increase PND3 gonocyte
numbers and have no effect on apoptosis. Moreover,
activin A and androgen were reported to be negative
regulators of fetal gonocyte proliferation, whereas we did
not find any effect of testosterone on PND3 gonocyte
proliferation in vitro (Merlet et al. 2007, Thuillier et al.
2010, Mendis et al. 2011).

Studies have demonstrated that the timing of events
is as critical as their amplitude to adequately regulate
gonocyte development. For example, it has been
recently shown that the constitutive activation of the
Notch pathway in fetal Sertoli cells led to premature
changes in the behavior of fetal gonocyte, including
premature exit from quiescence, migration, and differ-
entiation, resulting in the loss of germ cells before
birth (Garcia & Hofmann 2013, Garcia et al. 2013).
Interestingly, based on morphological and gene
expression similarities, it has been suggested that
improper gonocyte differentiation could lead to the
formation of carcinoma in situ, the precursor pathology
to testicular germ cell tumors (TGCTs; Skakkebaek et al.
1987, Sonne et al. 2009). Notably, the incidence of
TGCTs has steadily been increasing over the past
decades, for reasons that remain unknown (Huyghe
et al. 2003). Although the increased exposure to
endocrine-disrupting compounds is often blamed
(Skakkebaek et al. 2001), the underlying mechanisms
through which these tumors are developing are yet to
be elucidated. Hence, a better understanding of normal
gonocyte development could allow for a better compre-
hension of the origins of testicular tumors. Therefore, the
goal of this review is to survey the available literature
on gonocyte differentiation and to compare it with what
www.reproduction-online.org
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is known of SSC and spermatogonial differentiation in
rodents, concluding with some information about these
processes in human, primates, and other species. This
will allow for a better understanding of the differences
between these two critical but often over-looked phases
of germ cell development.
Transitional gonocyte differentiation in rodents

Owing to the multiple changes occurring in the last
phase of gonocyte development, it has been proposed
to refer to them as ‘transitional’ gonocytes (Culty 2013).
In the remainder of the review, which focuses on this
specific phase of gonocyte development, we will refer to
these cells as either ‘transitional’, or simply as ‘gono-
cytes’. Of all of the processes involved in gonocyte
development, transitional gonocyte differentiation is the
least studied. This is surprising in light of the fact that
gonocytes differentiate into SSCs, which are essential
for the production of spermatozoa throughout the
lifetime of a male. Morphologically, gonocytes and
spermatogonia do not look similar. Fetal and neonatal
gonocytes are large round cells with prominent nuclei,
located at the centre of the seminiferous cords (Clermont
& Perey 1957), whereas spermatogonia are semicircular
in shape and are located at the periphery of the
seminiferous tubules, with the flattest edge in apposition
to the basement membrane. However, despite these
differences and presence at different ages, it is during the
transitional phase, especially at PND5 and PND6 in rat,
when some perfectly round gonocytes still have not yet
undergone differentiation but are already located at the
basement membrane, that uncertainty can occur regard-
ing the identity of the cell. At such times, morphology
and location within the tubule alone are not sufficient to
characterize the cells as being still gonocytes and not
already transitioned to spermatogonia (Culty 2009).
Owing to the lack of synchronization in gonocyte
development, the absence of a marker exclusively
expressed in gonocytes, and the several day-long
transition time frame in rodents (weeks to months in
humans), it is impossible to clearly determine a day at
which gonocyte differentiation has ended and sperma-
togonial self-renewal has started, making the study of
gonocyte differentiation a challenging topic.

Yet, over the last years, several genes have been
characterized as indicators of gonocyte differentiation,
simplifying the study of factors and pathways regulating
this process. One of these markers is stimulated by RA8
(STRA8), first identified as a target gene of RA in P19
mouse embryonal carcinoma cells, and later, in F9
mouse embryonal teratocarcinoma cells, undifferen-
tiated spermatogonia, and premeiotic male germ cells
(Bouillet et al. 1995, Oulad-Abdelghani et al. 1996,
Giuili et al. 2002, Zhou et al. 2008a). Since then, the role
of STRA8 as an essential initiator of meiosis in male and
female germ cells has been clearly demonstrated in Stra8
www.reproduction-online.org
knockout mice that were infertile, due to disrupted
meiosis and premature chromosome condensation
(Baltus et al. 2006, Anderson et al. 2008, Mark et al.
2008). Although the exact mechanism through which
STRA8 induces meiosis is not well understood, the
protein has been shown to shuttle between the
cytoplasm and the nucleus in different types of germ
cells, and to display transcriptional activity in cell lines
when it is expressed in the nucleus (Tedesco et al. 2009).
Several groups, including ours, have used STRA8,
alongside KIT (another marker of differentiating sperma-
togonia), as a marker for differentiating gonocytes (Wang
& Culty 2007, Zhou et al. 2008b). As mentioned before
(Culty 2009), transcript and protein expression changes
in these markers of differentiation are convenient
surrogates for determining whether a gonocyte has
initiated differentiation, but these changes reflect only
some aspects of the alterations in the complexes taking
place during the transition from gonocyte to spermato-
gonia. Indeed, it is likely that RA-treated gonocytes do
not recapitulate the entire differentiation process,
especially considering that differentiation to spermato-
gonia is achieved only when the cells establish close
contact with the basement membrane. Nonetheless, this
is a convenient tool that allows dissecting some of the
signaling pathways and molecular changes occurring
in response to RA, which remains, as far as we know,
the only demonstrated inducer of differentiation
in gonocytes.

Our work has shown that PND3 rat gonocyte
differentiation is induced in vitro by RA (Wang & Culty
2007). Although in vivo and freshly isolated gonocytes
express little STRA8 mRNA and protein at PND3, the
addition of RA, an active metabolite of vitamin A (Collins
& Mao 1999), to isolated gonocytes induces a strong
and consistent increase in Stra8 mRNA (Wang & Culty
2007). This is followed by an increase in protein
expression, mainly located in the cytoplasm, suggesting
that STRA8 is maintained as an inactive form in
gonocytes (Sarkar and Culty, unpublished observations).
Similar to our findings in rats, studies have shown that
mouse PND2 gonocytes also differentiate in response
to RA, as indicated by increased Stra8 mRNA levels
(Zhou et al. 2008b). The importance of vitamin A and
RA in spermatogenesis has been known for many years
due to the use of a vitamin A-deficient mouse model
(VAD mice). Studies have demonstrated that in VAD
adult mice, all differentiated germ cells are lost from
the seminiferous tubules and the only cells remaining
are undifferentiated type A spermatogonia and Sertoli
cells (Mitranond et al. 1979, Van Pelt & de Rooij 1990).
However, once these rats are administered vitamin A,
normal spermatogenesis can be rescued (Morales &
Griswold 1987, Griswold et al. 1989). At first, studies
demonstrated that normal spermatogenesis could only
resume if vitamin A (retinol) was given to the deficient
mice and that the same results were not observed upon
Reproduction (2015) 149 R139–R157

Downloaded from Bioscientifica.com at 08/24/2022 03:06:37PM
via free access



R142 G Manku and M Culty
RA administration (Ahluwalia & Bieri 1971, Huang et al.
1983). However, later studies demonstrated that RA
could also stimulate normal spermatogenesis in these
deficient mice, but at a much higher dose than retinol,
probably due to differences in the levels of binding
proteins for each of these retinoids in Sertoli cells (Van
Pelt & de Rooij 1991).

In order to induce differentiation, retinol is delivered
to the gonocyte via the retinol-binding protein (RBP)
from Sertoli cells or the serum (Hogarth & Griswold
2010, 2013). Retinol is then internalized after binding to
a membrane receptor, STRA6 (Kawaguchi et al. 2007,
Hogarth & Griswold 2010). Inside the cell, retinol then
undergoes the two-step oxidation process in order to
become RA (Theodosiou et al. 2010). It is also possible
that RA is directly transported to the gonocytes from the
serum (via the vasculature) or Sertoli cells (Hogarth &
Griswold 2010, 2013). Although spermatids and testi-
cular and epididymal sperm are known to be able to
store retinoids, Sertoli cells are the main site of RA
synthesis in the testis, which is then passed onto the germ
cells (Livera et al. 2002). Interestingly, RA was shown to
be present in patches along the seminiferous cords of
neonatal mice, while CYP26B1, the enzyme degrading
RA, was expressed in a non-uniform manner in germ
cells along the tubules (Snyder et al. 2010). Although
these studies were carried out using PND2 mice, this
developmental period is similar to that of PND3–PND4
in rats. Thus, it is likely that these factors also play a role
in the lack of synchronization of gonocyte progression to
spermatogonia, within the few days encompassing this
process. It is not known whether, in vivo, RA induces
differentiation by acting directly on the germ cells or if it
is an indirect process involving Sertoli cells, as both cell
types express RA receptors (RARs) and retinoid X
receptors (RXRs) at varying levels (Akmal et al. 1997,
de Rooij & Russell 2000). It has been shown that at
PND3, gonocytes express all isoforms of RARs and RXRs,
mainly high levels of RARA and RXRA, whereas Sertoli
cells express mainly RXRG (Boulogne et al. 1999). Other
groups have reported that PND3 gonocytes do not
express RARA and that, at PND3, this receptor isoform is
expressed solely in Sertoli cells, while gonocytes express
RARG (Vernet et al. 2006a,b). However, differences in
expression levels could also be attributed to the different
affinities of the antibodies used for their respective
targets. In our own studies, we have found that rat PND3
gonocytes express high levels of both Rara and Rarg
(Manku et al. 2014).

Although both mice and rat gonocytes are stimulated
by RA to undergo differentiation, the signaling pathways
in mouse gonocytes have not been identified yet. In rats,
we have found that the PDGF receptor (PDGFR)
signaling pathway probably plays an important role in
gonocyte differentiation (Wang & Culty 2007, Manku
et al. 2014). It is already known that PDGFR expression
begins to steadily increase at 18 dpc and continues to
Reproduction (2015) 149 R139–R157
increase until PND5, at which time this expression
begins to decline (Loveland et al. 1993). We have found
that rat spermatogonia at PND7 have significantly lower
PDGFR expression compared with PND3 gonocytes,
indicating a possible preferential role of these receptors
in gonocyte development (Li et al. 1997). In studies on
isolated PND3 rat gonocytes, we found that RA induced
the formation of variant forms of PDGFRa (v-PDGFRA)
and PDGFRb (V1-PDGFRB), concomitant with the
increases in Stra8 expression (Wang & Culty 2007,
Manku et al. 2014). We have previously shown that the
variant V1-PDGFRB form has retained its tyrosine kinase
domain, while lacking the ligand-binding domain, and
thus, it is ligand independent (Wang & Culty 2007). We
have recently found that the variant v-PDGFRA includes
exons 12–23, corresponding to the C-terminal portion
of the protein, but it has yet to be fully characterized
(Manku et al. 2014). Moreover, the inhibition of the
tyrosine kinase activity of PDGFR using tyrphostin
compounds alongside RA treatment led to a significant
reduction in the RA-induced Stra8 mRNA expression,
indicating that PDGFR activation is required for
RA-dependent induction of gonocyte differentiation.
The analysis of downstream pathways commonly
activated upon PDGFR activation showed that activation
of the SRC family of kinases and the JAK2/STAT5
signaling pathways were both involved in RA-induced
gonocyte differentiation (Manku et al. 2014). Consider-
ing that STAT5 is a possible downstream target of SRC
(Drayer et al. 2005), it will be important to determine
whether it is activated via JAK2, SRC, or another pathway
in gonocytes. The presence of a variant PDGFRA form in
gonocytes is interesting in view of the existence of a
similar variant transcript identified in seminomas, the
most common type of TGCTs (Palumbo et al. 2002), and
because of the possible relationship between improper
gonocyte development and TGCT formation (Rajpert-De
Meyts & Hoei-Hansen 2007).

Another system that plays a role in gonocyte
differentiation is the ubiquitin–proteasome system
(UPS), as revealed by studies where we have demon-
strated that inhibiting proteasome activation with the
specific inhibitors lactacystin and bortezomib signi-
ficantly decreased the RA-driven induction of Stra8
expression in rat gonocytes (Manku et al. 2012). In this
study, we also identified several UPS proteins preferen-
tially expressed in gonocytes, such as the E3 ligase
RNF149, that might have a role in gonocyte develop-
ment. Several UPS proteins have been implicated in the
regulation of spermatogenesis, including the E3 ligase
Huwe1 (Liu et al. 2007). The involvement of the
ubiquitin–proteasome system in gonocyte differentia-
tion is not surprising considering the large amount of
remodeling taking place during gonocyte development,
but further studies are needed to identify the functional
enzyme–substrate partners and their respective roles in
gonocyte development.
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Several hormones have been examined for their
potential role in gonocyte differentiation. For example,
Zhou & Hutson (1995) have shown that human
chorionic gonadotropin (hCG) does not have any effect
on gonocyte differentiation in neonatal mouse testis
organ cultures, refuting the hypothesis that this process
was under the control of the hypothalamic–pituitary–
gonadal axis. By contrast, this study showed that the
addition of Mullerian inhibiting substance (MIS; also
known as anti-Mullerian hormone (AMH)), a protein
produced by fetal to juvenile Sertoli cells, significantly
increased the number of gonocytes undergoing differen-
tiation into type A spermatogonia, suggesting a role of
this protein in the regulation of gonocyte fate (Zhou &
Hutson 1995).

More recent studies have demonstrated the importance
of NOTCH signaling in the timing of gonocyte differen-
tiation. The NOTCH pathway has been shown to be
involved in a multitude of processes, including cell
proliferation, cell differentiation, and cell–cell communi-
cation. Furthermore, various components of the NOTCH
pathwayare expressed in neonatal and adult testes in both
rodents and humans (Dirami et al. 2001). Recent studies
have demonstrated that NOTCH signaling in fetal Sertoli
cells is critical for the maintenance of fetal gonocytes in
a quiescent state and to exert a brake on the ability of
fetal gonocytes to undergo differentiation (Garcia &
Hofmann 2013). Using a Sertoli cell-specific NOTCH
gain-of-function mouse model (Amh-cre;RosaNICD/C),
in which the Notch intracellular domain NICD is
constitutively activated, leading to the conversion of the
transcriptional repressor RBPJ (recombining binding
protein suppressor of hairless) to an activator, this study
demonstrated that the constitutive activation of NOTCH
signaling in Sertoli cells at E13.5 induced gonocyte exit
from quiescence, and premature migration and differen-
tiation. At the molecular level, there was a decrease in
Sertoli-specific factors that generally help maintain germ
cells in an undifferentiated state (i.e. glial-cell-derived
neurotropic factor (GDNF)) and, in POU5F1/OCT4, a
transcription factor used as a marker of undifferentiated
spermatogonia. Concurrent with these decreases, there
was increased expression of markers of differentiating
spermatogonia, such as KIT and spermatogenesis- and
oogenesis-specific bHLH transcription factor 2
(SOHLH2), indicating that these gonocytes had acquired
properties of differentiating spermatogonia (Garcia
et al. 2013). Given their findings, the authors concluded
that NOTCH signaling in Sertoli cells is important for
germ cell development and that, when over-activated,
NOTCH signaling is able to inhibit quiescence and push
germ cell toward differentiation and meiosis (Garcia et al.
2013). Interestingly, adult mice in which a Stra8-icre
transgene was used to induce NOTCH1 gain of function
in germ cells also do not have proper spermatogenesis
as witnessed by decreased sperm count, decreased
testis weight, and abnormal seminiferous tubules
www.reproduction-online.org
(Huang et al. 2013). These defects were presumably due
to the failed differentiation of SSCs presenting abnormal
activation of NOTCH1, further highlighting the impor-
tance of having proper levels of NOTCH1 activation not
only in Sertoli cells but also in germ cells.

Interestingly, microRNAs (miRNAs), short untranslated
RNA molecules of w22 nucleotides that regulate the
expression of specific mRNA targets, have also been
shown to be involved in gonocyte differentiation.
Although studies on testicular miRNAs are limited, it is
known that there are miRNAs preferentially or speci-
fically expressed within the testis (McIver et al. 2012).
Using miRNA microarray analysis of isolated gonocytes
and spermatogonia from mice, the authors identified
miRNAs that were differentially expressed between
gonocytes and spermatogonia. In particular, miR-126,
miR-743a, and miR-463 were higher in spermatogonia,
whereas miR-293, miR-291a-5p, miR-290-5p, and
miR-294 were lower in spermatogonia. One of the
miRNA clusters downregulated during the transition
from gonocytes to spermatogonia, including miR-293,
miR-294, miR-291, and miR-290-5p, has been
previously shown to play a role in the maintenance of
embryonic stem cell (ESC) pluripotency. Functional
analysis of these miRNAs indicated a variety of different
pathways to which these miRNAs belonged. Of those
pathways, it was the PTEN and Wnt/b-catenin signaling
pathways that were associated with the majority of
miRNAs, pinpointing to the cell cycle regulator cyclin
D1 as a common target of both pathways. Given the
known role of Cyclin D1 in promoting cell progression to
S phase, the authors proposed that the observed miRNA
changes between gonocyte and spermatogonia might be
related to their role in gonocyte differentiation (McIver
et al. 2012). However, exactly what role these signaling
pathways are playing in gonocyte differentiation remains
yet to be determined.

Finally, what determines which gonocytes will
undergo differentiation, including SSCs or first-wave
fates, and which ones are destined for apoptosis are not
known. Using isolated rat gonocytes from PND0–PND4,
phase-contrast microscopy, Annexin V staining, and
transplantation studies, Orwig et al. (2002) have
determined that gonocytes with pseudopods were
probably destined to undergo migration and differen-
tiation, whereas gonocytes without pseudopods were
destined to undergo apoptosis and be eliminated. Thus,
it might be possible to distinguish functional subsets of
gonocytes according to their in vitro morphology.
Different subsets of isolated neonatal rat gonocytes can
also be distinguished according to their size, including a
group of very large cells (O12 mm diameter) and a group
of medium size (10–12 mm diameter), both populations
being much larger than the somatic cells (5–8 mm
diameter) isolated from the same testes (Culty,
unpublished data). Moreover, we have observed that
mitotic gonocytes present daughter cells with different
Reproduction (2015) 149 R139–R157
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immunoreactions for a number of proteins, suggesting
that gonocyte division is asymmetrical (Culty, unpub-
lished data). Similarly, studies have shown that there is
asymmetrical division in SSCs as well (Luo et al. 2009).
Further studies will be required to determine whether
these differences correspond to cells with distinct fates
and/or functions within the transitional gonocyte
population.

In summary, various signaling pathways, such as those
involving TGFb superfamily ligands, RA, variant forms of
PDGFRs, WNTs, and PTEN, have emerged as potential
regulators of transitional gonocyte differentiation.
However, more work is required to determine the target
molecules of these pathways, and how these different
pathways communicate with each other in order to fine
tune gonocyte differentiation.
Spermatogonia and SSC differentiation

Although more commonly studied than gonocytes, most
work carried out on SSCs have focused on the regulation
of their self-renewal potential, a process required for
maintaining an adequate pool of stem cells. One major
challenge in studying the regulation of SSC differentiation
has been the lack of means to isolate this specific
subpopulation from other undifferentiated sperma-
togonia. A protein that has been instrumental over the
last decade for the characterization of genes preferen-
tially or highly expressed in SSCs is THY1 (CD90), a
glycoprotein expressed at the surface of undifferentiated
spermatogonia, including SSCs (Ryu et al. 2004). Indeed,
Thy1 immunosorting has allowed for the preparation
of spermatogonial populations enriched in SSCs. Yet, the
gold standard for identifying true SSCs remains the
functional transplantation assay carried out in germ-
cell-depleted mice, which allows assessing whether
transplanted cells can re-initiate spermatogenesis. This
approach has been used to determine the impact of
chemical or physical insults, such as chemotherapy and
radiotherapy cancer treatments, as well as the role of
genes following their silencing in germ cells (Brinster &
Avarbock 1994, Brinster & Zimmermann 1994, McLean
et al. 2003). However, it is a delicate and time-consuming
method, impractical for the performance of large-scale
assays. Moreover, transplantation studies provide only
indirect information regarding the stemness nature of
cells, as the presence of SSCs is deduced from the
numbers of colonies formed over a period of 2–3 months
in recipient testes. Thus, there is still limited information
on the mechanisms behind SSC differentiation.

The identification of genes highly expressed in SSCs
has also been critical in the study of SSC differentiation.
Thus, genes involved in SSC self-renewal will be briefly
mentioned below, because of their use in isolating SSC-
enriched spermatogonia and characterizing SSCs, and
because some of their gene products were shown to
actively repress spermatogonial differentiation. Among
Reproduction (2015) 149 R139–R157
the most frequently cited SSC markers are the GDNF
receptors GFRa1 and RET, alongside OCT4 (POU5-
F1/OCT3/4), PLZF (promyelocytic leukemia zinc finger;
ZBTB16/ZFP145), LIN28A, BCL6B, NGN3, ID4, CDH1,
UTF1, and SALL4 (reviewed by Nagano & Yeh (2013)
and Song & Wilkinson (2014)). In contrast to the
regulation of SSC maintenance, there are fewer proteins
that have been implicated in the process of sperma-
togonial differentiation, such as the RA receptor RARg,
and the RA-induced proteins STRA8 and KIT, SOHLH1
and SOHLH2, shown to be upregulated during SSC
differentiation (Oatley & Brinster 2012). Moreover, the
exact mechanisms through which these proteins act and
their respective roles during differentiation remain yet
to be determined.

It is known that RA is an upstream regulator of KIT
and STRA8 expression during the transition from
undifferentiated to differentiated spermatogonia, making
them convenient markers in the distinction of these
two germ cell phases (Schrans-Stassen et al. 1999,
Zhou et al. 2008a,b). Similarly, we have shown that RA
treatment upregulates Stra8 and Kit mRNA expression in
neonatal rat gonocytes (Wang & Culty 2007). As RA also
stimulates the differentiation of PND5–PND6 mouse
spermatogonia, it is presumed that it is inducing SSC
differentiation. However, the definitive demonstration
of this fact would require the ability to distinguish SSCs
from first-wave spermatogonia during the first postnatal
week in rodents, which, as explained above, still remains
a challenge, due to the lack of a marker restricted to
SSCs. Thus far, it is not clear whether predetermined
subsets of gonocytes are destined to either the first wave
or SSCs, or if specific combinations of factors, probably
including RA, combined with differential intratubular
locations, will dictate which gonocytes become SSCs
or enter the first-wave process. Similarly, there is no
information on whether the progression of the first-wave
germ cells from type A to B spermatogonia involves the
same factors as in subsequent postpubertal spermato-
genic waves. However, several studies have described
conditions, either knockout models or toxicant
exposures, in which the germ cells of the first wave
were spared and progressed through part or all of the first
spermatogenic cycle, whereas subsequent cycles were
impaired, leading to the inability to further generate
differentiated germ cells. Rather than identifying
mechanisms involved in the differentiation of first-wave
spermatogonia, these studies provided information on
molecules that are not required for this process, but are
involved either in a later step of spermatogenesis or in
SSC formation. However, to our knowledge, there is no
report of an experimental or pathological condition in
which the formation of the first-wave spermatogonia
would be disrupted, but not that of SSCs. Despite these
uncertainties, a number of genes and mechanisms have
been proposed to induce SSC differentiation. This section
will review some of the well-established and novel
www.reproduction-online.org
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inducers of spermatogonial differentiation during the first
postnatal week in rodents, a period in which SSCs
represent the highest proportion of germ cells, as distinct
from later ages.

SSCs arise from RA-induced gonocyte differentiation,
forming a stem cell reservoir located in a niche
constituting somatic cells, principally Sertoli cells and
peritubular myoid cells, which provides nutrients and
regulatory factors to the SSCs (reviewed in Oatley &
Brinster (2012)). At the same time, a small subset of
gonocytes is believed to bypass the SSC phase to directly
differentiate into the spermatogonia of the first sperma-
togenic wave (Yoshida et al. 2006). The first wave of
spermatogenesis is less efficient and encompasses larger
levels of apoptosis than subsequent steady-state cycles of
spermatogenesis, and it is likely that the spermatozoa
resulting from this first round may not be fertile (Kluin
et al. 1982, Mori et al. 1997, Yoshida et al. 2006). Based
on lineage analysis studies in association with trans-
plantation assays, and using the basic helix–loop–helix
transcription factor neurogenin 3 (Ngn3/Neurog3) as a
marker of undifferentiated spermatogonia, including
SSCs, and Kit as a marker of differentiating spermatogo-
nia, Yoshida et al.’s study suggested that the first wave
arises from the direct differentiation of NGN3K gono-
cytes into NGN3K spermatogonia, distinguishable from
the pool of NGN3C SSCs at the origin of steady-state
spermatogenesis. In a subsequent study, these authors
followed NGN3C spermatogonia fate using pulse-chase
experiments in tamoxifen-inducible Ngn3/CreER;CAG-
CAT-Z transgenic mice, generated by crossing tamoxifen-
inducible Ngn3-CreER mice with CAG-CAT-Z mice (with
the Cat gene floxed by loxP-preventing lacZ expression)
(Nakagawa et al. 2007). This strategy allowed the authors
to perform pulse-chase labeling of NGN3-expressing
cells for different periods of time, and to follow their fate
in transplantation and regeneration studies using lacZ
as a reporter gene for up to 1 year after labeling. These
studies unveiled the co-existence of two distinct
populations within the Ngn3C undifferentiated (Asingle,
Apair, and Aaligned) spermatogonia, one constituting true
SSCs and the other corresponding to a transit amplifying
population of cells (‘potential stem cells’) that retained
the ability to self-renew in specific conditions, where the
replenishment of the SSC pool was required. However,
a later study using additional markers proposed that
true SSCs are included among a group of Ngn3K

undifferentiated spermatogonia, and that NGN3C

spermatogonia represent transit amplifying progenitor
spermatogonia issued from the SSCs (Suzuki et al. 2009).
This difference illustrates a recurring problem linked to
the difficulty of establishing definitive SSC identity
(Hermann et al. 2011). Indeed, over the years, many
genes labeled as SSC markers were subsequently found
to be expressed in other types of undifferentiated
spermatogonia apparently committed to differentiation.
This incapacity of unequivocally delineating SSCs
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among undifferentiated spermatogonia is consistent
with the hypothesis that spermatogonia-type Apair or
Aaligned might be able in specific conditions to revert to
SSCs (Nakagawa et al. 2007, 2010).

While the studies mentioned above analyzed the
expression profiles of NGN3 in spermatogonial popu-
lations, others examined the role of NGN3 in sperma-
togonial differentiation. NGN3 was proposed to drive
the differentiation of mouse SSCs and progenitor
spermatogonia, as a downstream effector of STAT3-
induced differentiation (Kaucher et al. 2012). Using
THY1C undifferentiated spermatogonia and trans-
plantation assays, these authors showed that the transient
inhibition of STAT3 or addition of GDNF both led to
decreased NGN3 expression and increased self-renewal
potential of Thy1C cells. While STAT3 was shown to
regulate Ngn3 transcription, Ngn3-deficient THY1C

cells failed to differentiate in transplantation assays.
These data concurred with earlier transplantation studies
reporting that, upon decreased STAT3 activity, cells
could not differentiate beyond the undifferentiated
spermatogonia stage in recipient testes (Oatley et al.
2010). Taken together, these studies demonstrated the
involvement of STAT3 and NGN3 in the differentiation of
SSCs and progenitor spermatogonia. This is different
from the role of STAT3 in Drosophila, where it is
necessary for SSC self-renewal (Sheng et al. 2009). It is
noteworthy that our studies in neonatal gonocytes
showed that the RA induction of STRA8 expression
also requires an active Stat, in this case, the JAK2/STAT5
pathway (Manku et al. 2014).

During SSC differentiation, RA downregulates
ZBTB16/PLZF, which in turn probably leads to the
increased expression of KIT in differentiating spermato-
gonia (Suzuki et al. 2012). Alongside increased KIT
expression, RA-induced spermatogonia differentiation
also results in increased expression of SOHLH1 (Suzuki
et al. 2012), which in turn functions to increase KIT
expression as well (Barrios et al. 2012). The role of RA
in spermatogonial differentiation was further clarified
using Rbp4 null mice, in order to prevent the formation
of RA from endogenous retinol pools (Ghyselinck et al.
2006). RA and retinol were reported to induce the
in vitro differentiation of spermatogonia, using an
organotypic culture system of fresh and frozen PND6
and PND7 mouse testes (Travers et al. 2013). Sperma-
togonia and primary spermatocytes were visualized
using Tra98 immunostaining, which detects germ cell
nuclear antigen (GCNA), while undifferentiated and
differentiated spermatogonia were identified using PlzfC

and KitC immunostaining respectively. The authors
concluded that in vitro SSC differentiation and sub-
sequent spermatogenesis were feasible even using
frozen testes, thus representing an attractive approach
that could potentially be used in the future to restore
fertility in patients. Barrios et al. have shown that PND4
isolated NGN3C, KIT- mouse germ cells express high
Reproduction (2015) 149 R139–R157
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levels of NANOS2, a RNA-binding protein involved in
SSC self-renewal and in the suppression of spermatogo-
nial differentiation (Suzuki & Saga 2008, Suzuki et al.
2009, Sada et al. 2012), in response to FGF9, a growth
factor produced by Sertoli cells (Barrios et al. 2010). By
contrast, the addition of RA reduced NANOS2 expre-
ssion and concomitantly induced KIT and STRA8
expression in these cells (Barrios et al. 2010). Moreover,
in PND7 mice, PLZF, a transcription factor required for
SSC maintenance (Buaas et al. 2004), was shown to act
as a repressor on the Kit promoter, preventing KIT
expression, whereas isolated Thy1C spermatogonia from
PlzfK/K mice showed more than a doubling in their KIT
expression (Filipponi et al. 2007). Using cell line models
and whole-mouse testes, Zhang et al. (2013a) reported
that long and short transcripts of Kit are expressed in
spermatogonia, the long transcript being mainly expre-
ssed in the cytoplasm and cell membrane, while the
short transcript was found in nuclei as well as the
cytoplasm and cell membrane. They also reported that
the long transcript of Kit was not expressed in SSCs, in
line with other studies (Payne 2013). This group
concluded that there are extensive transcriptional and
translational changes in KIT expression before and after
SSCs differentiation (Zhang et al. 2013a).

The same authors reported that RA decreased the
expression of BMP4 in PND5 mouse testes, but not at
PND10 where it was increased by 0.7 mM RA, while
having no effect on BMP4 expression at PND60. These
data suggest that RA exerts different effects on BMP4 in
function of age. While the suppressing effect of RA on
BMP4 expression at PND5 is surprising, the increase
observed at PND10 agrees with earlier studies. Indeed,
BMP4 was found to decrease the stem cell maintenance
of adult mouse SSCs (Nagano et al. 2003), as well as to
induce SSC differentiation by affecting cell adhesion
pathways and cytoskeletal proteins in the rat cell line
GC-6spg, used as an SSC model (Carlomagno et al.
2010). Moreover, it has been shown that when mouse
SSCs undergo differentiation in the presence of BMP4,
there is downregulation of PLZF, a pluripotency marker
involved in SSC self-renewal, and upregulation of the
differentiation marker KIT. During this process, SMAD1/
5/8 proteins, common downstream components of BMP
signaling cascades, are activated. BMP4 was also shown
to exert its effect via upregulation of SOHLH2 (Hao et al.
2008), a transcription factor known to promote the
differentiation of both SSCs and the cells these SSCs
become in knockdown studies (Suzuki et al. 2012).
Overall, these studies showed that RA increases BMP4
expression in SSCs, which in turn promotes SSC
differentiation to progenitor cells by increasing
SOHLH2 and KIT expression, while repressing the self-
renewing potential of SSCs by decreasing PLZF
expression. The importance of SOHLH1 and SOHLH2
in spermatogonial differentiation was highlighted in
studies showing that SOHLH1/SOHLH2 KO mice had
Reproduction (2015) 149 R139–R157
functional spermatogonial proliferation but improper
differentiation. It was also determined that SOHLH
proteins were able to regulate Gfra1, Sox3, and Kit
gene expression. Overall, this study found that SOHLH1
and SOHLH2 were able to induce genes necessary for
spermatogonial differentiation, while at the same time
suppressing genes involved in stem cell maintenance
(Suzuki et al. 2012).

Regarding the receptors involved in these processes,
Gely-Pernot et al. (2012) have shown that RARG (RARg)
is expressed in Aaligned spermatogonia and during the
Aaligned to A1 transition, but not in As or Ap spermatogonia.
RARG ablation in adult mice prevented the RA-induced
transition from Aaligned to A1 spermatogonia and led to
testicular tubules missing germ cell layers. By contrast, in
prepubertal mice, the absence of RARG could be
compensated by RARA, as shown by the occurrence of
a normal first spermatogenic wave, as well as the
worsening of the phenotype in mutant mice with Rara/
gK/K spermatogonia (Gely-Pernot et al. 2012). Contrary
to mice made VAD at birth, in which only Sertoli cells and
undifferentiated GFRA1 and ZBTB16/PLZF-positive sper-
matogonia could be found, the testes from RargK/K mice
contained spermatogonia expressing KIT and STRA8, as
well as GFRA1 and ZBTB16/PLZF, demonstrating more
progression in germ cell differentiation. Similarly, the
simultaneous inactivation of RARA and RARG in PND3
spermatogonia was not sufficient to totally prevent the
formation of germ cells beyond the undifferentiated stage
in all tubules. These data suggest that RA-dependent
pathways other than those of RARA and RARG might play
a role in prepubertal spermatogonial differentiation.

As in gonocytes, miRNA species have emerged as
important regulators of mouse SSC differentiation.
However, the two developmental phases appear to
involve different families of miRNAs. Previous studies
had shown that miR-34c and miR-21 are highly
expressed in SSC-enriched Thy1C mouse spermato-
gonia, and showed a role of miR-21 in SSC self-renewal
potential, but did not study the function of miR-34 in
these cells (Niu et al. 2011). Other studies on ovarian
primary epithelial and cancer cells had reported that
miR-34 expression decreased cell proliferation upon
p53-dependent activation (Corney et al. 2007). These
data suggested that miR-34 might have an opposite
role to miR-21 by promoting differentiation rather than
self-renewal. Indeed, the over-expression of miR-34C
in mouse PND6 undifferentiated spermatogonia was
found to decrease the expression of NANOS2, leading
to the upregulation of NANOS3 and STRA8, markers
of spermatogonial differentiation, and premeiosis
transition, and that of the meiotic marker SCP3 (Yu
et al. 2014). These results suggest that spermatogonial
differentiation requires not only the induction of
differentiation factors, but also the removal of functional
brakes such as NANOS2, probably responsible for
preventing premature differentiation.
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The roles of miRNAs in spermatogonial differentiation
was further investigated by the team of Dr M Griswold,
who showed that the expression of miR-17-92 (Mirc1)
and miR-106b-25 (Mirc3) paralog clusters was signi-
ficantly decreased during the RA-induced differentiation
of PND7 THY1C-enriched undifferentiated mouse
spermatogonia (Tong et al. 2012). Among the Mirc1
cluster, expression of miR-18a, miR-20a, and miR-92
was mainly observed at PND3, while miR-17 was the
highest at PND3 and progressively decreased with age.
RA-induced decreases in Mirc1 and Mirc3 in THY1C-
enriched spermatogonia led to increased expression of
Bcl2l11 (Bim), Kit, and Stat3, important factors in
spermatogonial differentiation (Tong et al. 2012). Mirc1
KO mice had lower epididymal sperm but increased
Mirc3 cluster, suggesting interactions between the two
clusters. These studies positioned Mirc1 and Mirc3
clusters as negative regulators of undifferentiated
spermatogonia. Another miRNA shown to regulate
spermatogonial differentiation is miR-146, which was
also downregulated in RA-treated undifferentiated
spermatogonia (Huszar & Payne 2013). Alongside this
decrease, there was a significant decrease in ZBTB16/
PLZF expression and increase in Kit expression. More-
over, the over-expression of miR-146 led to decreased
expression of Stra8, Kit, and Sohlh2, genes normally
associated with spermatogonial differentiation (Huszar &
Payne 2013).

Altogether, these studies demonstrated the partici-
pation of several miRNA species as either positive or
negative regulators of undifferentiated spermatogonia
differentiation. Considering that only a fraction of SSCs
commit to differentiation at any given time, it would
be interesting to examine whether the temporal and
spatial fine tuning of SSC differentiation involves the
expression of different sets of miRNAs at different
locations and times within the seminiferous tubules.

Another potential regulator of SSC differentiation is
activin A, encoded by the gene Inhba, for which
contrasting studies are available. Nagano et al. (2003)
have shown that activin A decreased stem cell main-
tenance in SSCs from PND5–PND8 mice co-cultured
with TM4 or SF7 Sertoli cell lines, and the ability of
these cells to form colonies in transplantation assays,
similar to BMP4. As activin A has been previously shown
to induce the proliferation of spermatogonia in vitro
(Mather et al. 1990), the authors proposed that activin A
may decrease the SSC pool by increasing their
recruitment to the subset of cells committed to
differentiation and induced to mitosis by activin A
(Nagano et al. 2003). However, another group using
PND0–PND7 Inhba knockin mice (InhbaBK/BK) in which
the mature coding subunit sequence of Inhba had been
replaced by the lower affinity Inhbb domain sequence
proposed that a reduction of bioactive activin A levels
led to the premature increase in markers of differentiated
germ cells such as KIT, and suggested that activin A is
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critical for the proper coordination of germ cell
maturation, as well as for Sertoli cell proliferation
(Mithraprabhu et al. 2010). Interestingly, differentiating
neonatal gonocytes were shown to be negative for
activin A protein expression, with Inhba mRNA
presenting a sharp decrease between PND3 and PND6
in mice, and instead to express the activin inhibitor
follistatin (Meehan et al. 2000, Mithraprabhu et al.
2010). Simultaneous to the decrease in activin A during
the first postnatal week, there was a gradual increase
in its inhibitor follistatin, followed during the second
postnatal week by an increase in inhibins (Barakat et al.
2008). These studies indicate that activin A and
its negative regulators follistatin and inhibins are tightly
regulated during the first postnatal week and probably
play a critical role in controlling the commitment of
cells to differentiate. Further studies are required to
determine more precisely the timing of activin A
expression and the mechanisms mediating its effects on
the fate decision of SSCs.

Although the main function of GDNF, a member of
the TGFB superfamily acting via the two receptor system
of GFRA1 and RET, is to stimulate SSC self-renewal and
survival, it has also been shown to promote differentiation
in specific conditions (Meng et al. 2000). Indeed, GDNF
expression levels are considered to play a pivotal role
in controlling the fate of SSCs between self-renewal
and differentiation, with high GDNF levels inducing
SSCs self-renewal and low GDNF levels promoting
differentiation (Meng et al. 2000). Other studies have
demonstrated that the determination of which SSC
undergoes self-renewal or differentiation is a completely
random process that does not depend on its surrounding
environment (Wu et al. 2009). Several studies have
converged to support the existence of a signaling network
in which PLZF and GDNF could interact at the level of
mTORC1 to prevent SSC commitment to differentiation.
First, GDNF was shown to stimulate the PI3K/AKT
pathway in spermatogonia (Braydich-Stolle et al. 2007).
Then, GDNF was reported to activate mTORC1 in SSCs,
which was shown to deplete the SSC pool by favoring
SSC differentiation rather than self-renewal (Hobbs et al.
2010). The connection was provided in the same study,
where PLZF was shown to prevent mTORC1 activation
by inducing its inhibitor, Redd1, promoting self-renewal
against differentiation. Another level of regulation was
added through the ability of mTORC1 to inhibit AKT
(Sabatini 2006). Finally, PLZF was reported to negatively
interact with SALL4, a pluripotency transcription factor
preferentially expressed in spermatogonial progenitor
cells, where it induces differentiation, as well as in germ
cell tumors (Hobbs et al. 2012). Another factor that might
regulate spermatogonial progenitor cell differentiation is
the epithelial cell adhesion molecule EPCAM, which was
originally proposed as a marker for the enrichment of
SSCs. Using transplantation assays, Kanatsu-Shinohara
et al. showed that EPCAMC-enriched cells contained
Reproduction (2015) 149 R139–R157
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a limited amount of cells with stem cell potential,
contrary to germ cells enriched by flow cytometry for
the tetraspanin CD9C that expressed stronger SSC
potential. The study showed that EPCAM expression
was increased in response to continuous exposure to
GDNF, but not FGF2, in mouse spermatogonia. More-
over, overexpression of EPCAM in germ cells from Rosa
mice did not affect their SSC potential in transplantation
assays, while suppression of EPCAM increased the
concentration of SSCs (Kanatsu-Shinohara et al. 2011).
These findings implied that the suppression of EPCAM
prevented spermatogonia from differentiating. The exist-
ence of these multi-layered signaling pathways, although
not always identified in the same phase of spermatogonial
development, illustrates how self-renewal and commit-
ment to differentiation can be modulated at different
interacting levels.

In search of factors involved in SSC differentiation, a
study identified neuregulin 1 as inducing the formation
of Aaligned spermatogonia chains in rat, when used in
combination with GDNF (Hamra et al. 2007). This study
took advantage of the different fates of spermatogonia
when grown on a monolayer of the MSC-1 Sertoli cell
line, which promotes stem cell maintenance, vs cells
grown on the mouse embryonic fibroblastic SNL feeder
layer cell line, which appears to induce differentiation.
While the addition of exogenous GDNF alone to
spermatogonia grown on Sertoli Cell-modified Laminin
induced the formation of 4–8 cell chains, the simul-
taneous addition of GDNF and SNL cell-conditioned
medium led to the formation of up to 32-cell long chains
of Aaligned spermatogonia. The purification and mass
spectrometry analysis of the substance in the cell-
conditioned medium responsible for this effect revealed
that it was neuregulin 1. Thus, neuregulin 1 was
proposed to act in vitro as a spermatogonial amplifi-
cation and differentiation factor in a GDNF-dependent
manner, with GDNF targeting SSCs to become Apaired

and neuregulin inducing Apaired to differentiate into
Aaligned spermatogonia. This effect was attributed to the
binding of neuregulin 1 on neuregulin receptor ErbB3,
complexed to ErbB2, both present in undifferentiated
spermatogonia (Hamra et al. 2007).

The complexity of GDNF effects is further illustrated
by studies showing that it can simultaneously promote
SSC self-renewal and repress spermatogonial differen-
tiation. This repressive effect on differentiation was
proposed to be mediated by the GDNF-dependent
upregulation of the expression of NUMB, a known
repressor of NOTCH. NOTCH signaling regulates stem
cell fate choices and can promote stem cell self-renewal
or differentiation, depending on the surrounding cues
(Braydich-Stolle et al. 2005). NUMB inhibits the
NOTCH pathway by interacting with activated NOTCH
receptor (NICD), leading to its degradation. Thus, the
GDNF-regulated production of NUMB may be an
important factor in the maintenance of the SSC pool by
Reproduction (2015) 149 R139–R157
inducing NOTCH1 degradation (Braydich-Stolle et al.
2005). GDNF is also important in maintaining the
expression of NANOS2, which, as mentioned above,
also prevents differentiation. Another key gene in the
timing and extent of spermatogonial differentiation is
Dmrt1, which was shown to repress the RA-induced
transcription of Stra8, thus restricting the responsiveness
of the cells to RA by limiting their differentiation to
premeiotic changes (Matson et al. 2010). It is important
to note that although factors such as BMP4, activin A,
GDNF, and neuregulin 1 are probably involved in SSC
differentiation, they must be properly controlled in order
to keep a balance between the SSC self-renewal and
differentiation processes.

In addition, Zheng et al. have recently used peptide
tandem mass tag (TMT) labeling for the proteomics
analysis of mouse neonatal testes from PND0.5–
PND5.5, in an effort to identify proteins specifically
involved in early phases of mouse spermatogenesis. The
comparison of these data with existing databases led to
the identification of several potential candidate proteins
possibly involved in gonocyte and SSC maturation. The
germ cell expression of some of these proteins was
confirmed by immunohistochemical analysis of PND3.5
and adult testes, identifying the presence of NUP153,
SUZ12, and scaffold attachment factor B2 (SAFB2) in
P3.5 undifferentiated spermatogonia, while whole-testes
immunoblot analysis indicated their upregulation
between PND3.5–PND5.5, suggesting potential roles
in SSC maturation (Zheng et al. 2014). NUP153 is a
nucleoporin protein that has not been previously shown
to be involved in spermatogenesis. Nuclear transport of
regulatory factors was proposed as a key regulatory
process in germ cell differentiation (Hogarth et al. 2005).
Thus, it is not surprising that such proteins would be
involved in SSC differentiation. Interestingly, we have
found by gene expression array analysis that Nup153
and Safb2 mRNAs are both expressed in PND3
gonocytes, at high level in the case of Nup153,
suggesting that these genes might also play a role in
gonocyte development (Manku and Culty, unpublished
data). Furthermore, SUZ12 is a component of the
polycomb repressive complex (PRC2) and Suz12K/K

mice were found to have abnormal ESC differentiation.
Thus, it is possible that a lack of SUZ12 would also
negatively affect SSC differentiation. SAFB has previously
been shown to be involved in SSC differentiation in
rodents (Sergeant et al. 2007), in agreement with the
postulate from the proteomic analysis.

Mouse SSCs are also able to transdifferentiate into
hepatic-stem cell-like cells, which in turn, will differ-
entiate into mature hepatocyte-like cells in vitro. This
transdifferentiation requires activation of the ERK1/2 and
Smad2/3 signaling pathways (Zhang et al. 2013b).
Interestingly, we have previously shown that ERK1/2
activation is necessary for gonocyte proliferation, but
that it does not participate in gonocyte differentiation
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(Thuillier et al. 2010, Manku et al. 2014). The ability of
SSCs to transdifferentiate into mature hepatocytes is
quite remarkable, illustrating the high plasticity of these
unipotent stem cells, capable of reverting to pluripo-
tency under specific conditions, representing potential
clinical use in the treatment of liver diseases (Zhang et al.
2013b). SSCs were proposed to have two potential
therapeutic uses, one as a source of reprogrammable
pluripotent stem cells that could be used for tissue
regeneration (Nayernia 2007), the other as a reservoir
of stem cells for the regeneration of spermatogenesis
following cancer therapies (Valli et al. 2014).

Similar to gonocytes, in which WNT signaling
pathways emerged as potentially involved in differen-
tiation through miRNA studies, canonical and non-
canonical WNT signaling pathways were proposed to
play a role in spermatogonial functions. In particular,
Wnt5a, probably produced by Sertoli cells, was shown
to promote SSC survival and self-renewal via a non-
canonical process while blocking b-catenin-dependent
responses (Yeh et al. 2011), whereas WNT3A was
found to be indirectly supporting SSCs by selectively
stimulating the proliferation of progenitor spermatogonia
committed to differentiation in a b-catenin-dependent
manner (Yeh et al. 2012). These data suggest that WNT
signaling pathways are involved both in gonocyte
and spermatogonial functions, probably proliferation
and differentiation, but further studies will be needed to
clarify their exact functions.

Thus, although SSCs are an essential part of spermato-
genesis, the processes and signaling mechanisms through
which SSCs and other types of undifferentiated sperma-
togonia differentiate have not been sufficiently studied
to fully comprehend the complexity of their regulation,
due to their small cell number, SSCs being only 0.03% of
the total testicular germ cells (Tegelenbosch & de Rooij
1993), and the difficulty of conclusively distinguishing
them from other undifferentiated spermatogonia.
However, the recent advancements in this field suggest
that new technologies should soon become available to
better study SSC differentiation.
Insights from non-rodent species

Although the most common models in the study of
spermatogenesis are rodents, other animals have been
used, including boars, pigs, fish, worms, and fruit flies.
A small numbers of studies have also been carried out
on fetal to juvenile primates, including humans. The
majority of these studies focused on developing methods
to isolate and culture germ cells, transplantation assays
of SSCs into recipient testes from autologous or
heterologous species, or the determination of gene
markers to classify various germ cell types. Despite
being a growing field of research, few studies have been
performed on the differentiation of gonocytes, SSCs, and
spermatogonia in these non-traditional animal models.
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Similarities in gene expression profiles between
rodent and primate gonocytes have been reported, in
support of using rodent models to study early germ cell
development. However, most of these studies focused
on pluripotency genes that were also retained in
carcinoma in situ and TGCTs. Typical examples are the
transcription factors NANOG, OCT4, TFAP2C (AP2g),
and the miRNA-binding protein LIN28A, which are
expressed not only in rodent and human fetal PGCs and
gonocytes (Culty 2009, Weber et al. 2010), but also in
testicular tumors (Hoei-Hansen et al. 2005, Rajpert-De
Meyts 2006, Sonne et al. 2009, Gillis et al. 2011,
Aeckerle et al. 2012). In mouse and human ESCs, both
NANOG and OCT4 were found to belong to a protein
network regulating cell pluripotency, which included
also Wnt and its downstream target b-catenin (Abu-
Remaileh et al. 2010, Marucci et al. 2014). In ESCs,
OCT4 was proposed to control ESC fate decision
by inducing b-catenin degradation and preventing
Wnt-regulated differentiation. As mentioned earlier, the
role of the Wnt/b-catenin pathway in spermatogonia
is more complex. Interestingly, LIN28A was found to
localize to the nuclei and cytosol of neonatal gonocytes,
but to be restricted to the cytosol in spermatogonia,
suggesting differential roles in gonocytes and spermato-
gonia (Gaytan et al. 2013). Moreover, despite their stem
cell status, SSCs were found to express none or very
little of NANOG, OCT4, and TFAP2C, while maintain-
ing higher levels of two other ESC pluripotency genes,
Thy1 and Plzf (Culty 2009). These changes suggest
that spermatogonial differentiation includes the active
repression of selected pluripotency factors both in
rodents and humans.

Given the limited availability of fetal and neonatal
human testicular biopsies and the small numbers of germ
cells that can be isolated from such samples, very few
studies have examined the early steps of germ cell
development in humans. At later ages, studies on SSCs
have generally revolved around the maintenance of the
SSC pool or the regeneration of spermatogenesis using
SSCs isolated from pathological testes, after testicular
insult/injury or chemotherapy treatments. Thus, although
the steps leading to the formation of the SSC pool are
critical for human spermatogenesis, these processes are
seldom studied and the mechanisms that govern human
gonocyte and spermatogonial differentiation are not
well understood. Several studies have used primate
models as surrogate for humans. Among them, studies in
marmosets (Callithrix jacchus) have shown that germ
cell differentiation occurs in a manner similar to that
observed in humans, when analyzed at the level of
common gene expression and cellular processes
(Mitchell et al. 2008). At the molecular level, Mitchell
et al. have shown that marmoset gonocyte differentiation
results in decreased expression of the pluripotency
markers OCT4 and NANOG and increase in VASA
(DDX4) gene expression. Moreover, both humans and
Reproduction (2015) 149 R139–R157
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marmoset gonocyte differentiation occurred in an
asynchronous manner within individual tubules
(Mitchell et al. 2008). Thus, marmoset was proposed to
be an ideal model to study gonocyte differentiation.
However, the exact molecular mechanisms and signal-
ing pathways of differentiation in the human and
marmoset also remain yet to be determined.

Although they follow similar developmental patterns
and appear to involve the same sets of genes/pathways
overall, human and rodent spermatogenesis differs in
some aspects of their fetal to neonatal developmental
phases. A major difference is that rodent testis presents
better temporal segregation of germ cell sub-types
during perinatal periods than humans or marmosets do.
Indeed, despite the heterogeneity of rodent gonocytes
and spermatogonial populations, one can still define
major developmental phases in which one germ cell
type is dominant (Culty 2009, 2013). By contrast, in
human and marmoset, a survey of available data on gene
expression profiles, cell behaviors (e.g. proliferation
or migration), and cell positioning within seminiferous
cords (central vs basal location) clearly shows
large overlaps of gonocyte and spermatogonial sub-
populations for a period spreading from late gestation
to early infancy (Sharpe et al. 2003, Franke et al. 2004,
Gaskell et al. 2004, Pauls et al. 2006, Jørgensen et al.
2012, Ewen et al. 2013, McKinnell et al. 2013,
O’Shaughnessy & Fowler 2014).

Another difference resides in the fact that rodent
gonocyte undergoes two phases of proliferation in the
fetal and neonatal periods, respectively, separated by a
proportionally long period of quiescence, whereas
humans and marmosets lack this quiescent phase, and
instead, one can find proliferative gonocytes in all
periods surveyed, from gestation weeks (GWs) 12–14
until 2.5–4 months after birth in human, albeit at various
levels (Hilscher & Engemann 1992, Berensztein et al.
2002, Honecker et al. 2004, Ewen et al. 2013). Overall,
these studies reported the highest rates of proliferation
between the third and fifth gestation months, followed
by decreased proliferation in late gestation and a small
increase in proliferation in 2.5- to 6-month-old infants.
Thus, despite the lack of total quiescence, human fetal
gonocytes present a period of minimal proliferation
similar to the quiescence phase observed in rodents.
Moreover, it is interesting to note that the late gestation
period of low proliferation in human fetal gonocytes
partially overlaps with the phase of highest DNA methyl
transferase expression (GW21–GW29), strikingly remi-
niscent of the high DNA methylation activities observed
during late gestation in rodent gonocytes (Galetzka et al.
2007). In marmoset, in which gestation lasts 22 weeks,
similar fluctuations in proliferation rates were observed,
with maximal proliferation at GW11–GW14, a decrease
at GW15–GW16, followed by an increase to 40% of
proliferating gonocytes at GW17–GW20, and a return
to a lower rate until 6 weeks after birth (Mitchell et al.
Reproduction (2015) 149 R139–R157
2008). A subsequent study by the same group concurred
with a proliferation index of 29% in GW12–GW17 fetal
gonocytes, decreasing to values of w10% in infants from
the first postnatal week to 5 months (McKinnell et al.
2013). Interestingly, we have observed an in vivo
proliferation rate of w30% in PND3 rats, similar to the
values found in marmoset late fetal testes (Thuillier et al.
2009). Taken together, the transient decrease in prolifer-
ation rates and the concomitant high levels of DNA
methylation in late gestation suggest that this period
in human germ cell development is comparable to the
fetal quiescent phase observed in rodents.

Another important discriminatory factor during
gonocyte development is whether or not they have
reached the basement membrane of the tubules, a
prerequisite to differentiation. In rat, it is very rare to
see a gonocyte not centrally located at PND3, whereas
this can happen earlier in mice. This is very different from
human and marmoset, in which germ cell relocation
can be observed already in utero. In GW15–GW18
human testes, the quantification of more differentiated
VasaC (30% of total gonocytes) and more pluripotent
Oct4C gonocytes (70% of total gonocytes), located
either centrally or basally within the tubules, showed
that one out of three Oct4C cells had already relocated
to the basement membrane, as well as two out of
three VasaC cells (McKinnell et al. 2013). In marmoset,
there were 26% of VasaC gonocytes located at the base
of the tubules at GW12–GW17, while at birth, 31% of
gonocytes were at the basement membrane (McKinnell
et al. 2013). However, at postnatal weeks 18–24 (early
infancy), there were still 56% of the cells with a typical
gonocyte morphology centrally located, and their total
numbers had increased by several fold, demonstrating
the continuation of proliferation up to 6 months of age
(Sharpe et al. 2003, McKinnell et al. 2013). These various
studies provided indirect benchmarks on the timing of
gonocyte and spermatogonial differentiation in com-
parison to rodents, and highlighted genes acting as
potential gatekeepers that may need to be repressed for
differentiation to proceed.

The study of gonocytes in Mongolian gerbils (Meriones
unguiculatus) has revealed that, similar to rats, gonocytes
must migrate to the seminiferous tubule basement
membrane in order to differentiate. However, in the
gerbil, the relocation period is much longer, extending
to the second postnatal week (Pinto et al. 2010). This
relocation also occurs simultaneously with a loss in
androgen sensitivity (Pinto et al. 2010). The pig is another
animal model in which early steps of germ cell
development have been studied, because of their
potential use in derivating pluripotent cells for the
generation of transgenic farm animals (Alberio & Perez
2012). In pigs, gonocytes will proliferate, migrate to the
basement membrane of the tubules, and differentiate to
SSCs during the first 3 months of life. These gonocytes can
be identified by the marker dolichos biflorus agglutinin
www.reproduction-online.org
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(DBA), highly expressed not only before PND14, but also
during gonocyte differentiation between 2 and 3 weeks
of age and in subsets of spermatogonia (Klisch et al. 2011,
Kim et al. 2013). Germ cells from 2- to 3-week-old,
but not younger, prepubertal pigs also expressed stage-
specific embryonic antigen 1 (SSEA1; Goel et al. 2007).
Using SSEA1–FACS enrichment coupled to xenotrans-
plantation assays, Kim et al. (2013) proposed that SSEA1
is a marker of undifferentiated pig spermatogonia,
including SSCs. Approximately half of SSEA1 enriched
cells co-expressed Uchl1 (ubiquitin carboxyl-terminal
esterase L1/PGP 9.5) and more than 40% expressed
the undifferentiated spermatogonial marker PLZF, as well
as VASA, considered as an SSC differentiation marker
in boars (Luo et al. 2009). In this model, Thy1,
CD9, and a6-b1-integrins appeared less effective for
spermatogonial enrichment than they are in rodent
models, suggesting differences in SSC markers between
porcine and rodent models. Moreover, the mechanisms
regulating porcine gonocytes and SSC differentiation
are not understood yet.

A commonly used model for the study of germline
stem cell (GSC) development is the Drosophila (see
reviews by de Cuevas & Matunis (2011) and Spradling
et al. (2011)). In this invertebrate, GSC formation from
www.reproduction-online.org
PGCs relies on PGC migration, coinciding with gonad
formation and the establishment of the hub, an
embryonic center formed by somatic gonadal precursor
cells located at the apex of the testes. Studies have shown
that the Jak/Stat pathway activation is involved in PGC
migration into the vicinity of the hub, where they will
become GSCs, and that only germ cells with active Jak/
Stat will form polarized adherent junctions with hub
cells, defining the stem cell niche microenvironment
essential for the maintenance of GSC self-renewal. Jak/
Stat was found to be necessary for GSC maintenance,
and to prevent further differentiation (Sheng et al. 2009).
Differentiation appears to be regulated by interactions
between germ cells and the cyst cells surrounding them.
Early germ cells were shown to produce Spitz, an EGF
receptor (EGFR) ligand, which acts on EGFRs on cyst
cells, leading to MAPK activation and the promotion of
germ cell differentiation. One of the genes involved in
differentiation is Bam (bag of marbles). On the other end,
cyst cells produce TGFb, which prevents Bam expression
and differentiation (Davies & Fuller 2008). These animal
models have also been instrumental in revealing the
critical role of epigenetic processes such as chromatin
remodeling and histone modifications in the regulation
of germ cell differentiation (review in Eun et al. (2010)).
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Downloaded from Bioscientifica.com at 08/24/2022 03:06:37PM
via free access



Table 1 Summary of genes/proteins/pathways involved in gonocytes or spermatogonial differentiation.

Cell type Species Gene/pathway Function Effect References

Neonatal
gonocytes

m NOTCH1 Overexpression in fetal gonocytes leads
to premature differentiation: [ Kit,
[ SOHLH2

C Dirami et al. (2001) and
Garcia et al. (2013)

m,r RA, RAR [ Differentiation; [ Stra8, [ V1-PDGFRB,
[ Dazl, [ Kit

C Wang & Culty (2007) and
Zhou et al. (2008a,b)

r Proteasome activity Required for RA-induced differentiation C Manku et al. (2012)
r Variant V1-PDGFRB [ By RA; overexpression [ Stra8 expression C Sarkar, Manku and Culty

(unpublished data)
r Variant PDGFRA [ By RA, unknown function C Manku et al. (2014)
r SRC, Jak2/Stat5 Activity required for RA-induced

differentiation
C Manku et al. (2014)

m MIS/AMH [ Differentiation to type A spermatogonia C Zhou & Hutson (1995)
m miR293, 294, 291,

290-5p
miRNA clusters downregulated during

differentiation regulate PTEN and
Wnt/b-catenin pathways

K McIver et al. (2012)

Pathways converging on cyclin D1
r Nup153 and Safb2 Strong mRNA expression ? Manku and Culty (unpub-

lished observations)
Spermatogonia

SSCs
m,r RA, RAR SSCs to undifferentiated, progenitors to

differentiated
C Schrans-Stassen et al. (1999)

and Zhou et al. (2008a,b)
m Stra8, Kit, Sohlh2,

Bim, Dazl
Progression from SSCs to differentiating cells C Tong et al. (2012)

m Sohlh1 Increases Kit expression C Barrios et al. (2012), Oatley &
Brinster (2012), and Suzuki
et al. (2012)

m miR-34C Y Nanos2, [ differentiation, [ Nanos3,
[ Stra8

C Yu et al. (2014)

r BMP4 Increased by RA, [ SSC differentiation,
[ SMAD1/5/8 activation, [ Sohlh2,
[ Kit, Y PLZF

C Carlomagno et al. (2010)

m Decreased activin A [ Recruitment of cells to differentiation,
[ Kit

C Nagano et al. (2003)

m,r Low level GDNF Promotes SSC to Apair differentiation C Meng et al. (2000) and Hamra
et al. (2007)

r Neuregulin 1 Promotes Apaired to Aaligned differentiation C Hamra et al. (2007)
m STAT3 Induces Ngn3 expression C Oatley et al. (2010)
m Ngn3/Neurog SSC to undifferentiated, transit amplifying

progenitors
C Kaucher et al. (2012)

m PLZF In SSC to undifferentiated. Blocks Kit, SALL4,
TORC1

K Buaas et al. (2004)

m Nanos2 Regulated by Fgf9, prevents differentiation K Barrios et al. (2010) and Sada
et al. (2012)

m Numb Represses Notch1, Y differentiation K Braydich-Stolle et al. (2005)
m Mirc1, Mirc3

clusters
Negative regulators, Y by RA K Tong et al. (2012)

m miR-146 Negative regulators, Y by RA K Huszar & Payne (2013)
m DMRT1 Represses Stra8 transcription; restricts

RA responsiveness
K Matson et al. (2010)

m Nup153, Suz12,
Safb2

[ Expression at PND3.5; in cells at
basement membrane; in undifferentiated
spermatogonia

C? Zheng et al. (2014)

Upward pointing arrows indicate increased expression of a gene/protein or increased function. Downward pointing arrows indicate decreased
expression of a gene/protein or suppressed function.
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Although there is no defined ‘gonocyte’ stage in
Drosophila, the postmigratory germ cells that make
connections to hub cells and become GSCs demonstrate
a behavior similar to the neonatal migratory gonocytes
that need to establish contact with the basement
membrane of the seminiferous cords in order to
differentiate into SSCs. As mentioned earlier, we have
recently found that Jak/Stat activation is required for
RA-induced gonocyte differentiation in vitro (Manku
et al. 2014). By analogy with the Drosophila model, it
would be interesting to determine whether Jak/Stat
Reproduction (2015) 149 R139–R157
activation is involved in the cell adhesion processes
allowing the anchoring of migratory gonocytes in the
future niche, where they can become spermatogonia.
Conclusion

By presenting the state of the current knowledge on the
mechanisms regulating gonocyte and spermatogonial
differentiation (Fig. 1), this review emphasizes the broad
gaps left in our understanding of these cells and the lack
of available literature on these topics. Although the
www.reproduction-online.org
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development of these early germ cells dictates the
subsequent status of spermatogenesis, the paucity of
transitional gonocytes and SSCs within testes, together
with the absence of specific markers for these phases of
germ cell development, have hindered the pace of new
findings in this field of research. Nonetheless, strides
have been made, unveiling different genes and pathways
that are critical for the differentiation of both cell types.
The comparison of these processes also stressed how
they involve different proteins and signaling pathways,
despite both responding to RA (Table 1). This further
suggests that the fine tuning and regulation of differen-
tiation in time and space are carried out through
crosstalk mechanisms between RA and other factors.
However, more work needs to be carried out to
determine how all of these pieces fit together to regulate
proper early germ cell differentiation.
Declaration of interest

The authors declare that there is no conflict of interest
that could be perceived as prejudicing the impartiality of
the review.
Funding

The authors were supported in part by a NSERC Discovery grant
(no. 386038-2013) and a grant from the Canadian Institutes
of Health Research (CIHR) (no. MOP-312268) to M Culty.
The Research Institute of MUHC is supported in part by a
Center grant from Le Fonds de la Recherche en Santé du
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