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Abstract—Most mass data processing applications nowadays
often need long, continuous, and uninterrupted data access.
Parallel/distributed file systems often use multiple metadata
servers to manage the global namespace and provide a re-
liability guarantee. With the rapid increase of data amount
and system scale, the probability of hardware or software
failures keeps increasing, which easily leads to multiple points
of failures. Metadata service reliability has become a crucial
issue as it affects file and directory operations in the event of
failures. Existing reliable metadata management mechanisms
can provide fault tolerance but have disadvantages in system
availability, state consistence, and performance overhead. This
paper introduces a new highly reliable policy called MAMS
(multiple actives multiple standbys) to ensure multiple meta-
data service reliability in file systems. Different from traditional
strategies, the MAMS divides metadata servers into different
replica groups and maintains more than one standby node
for failover in each group. Combining the global view with
distributed protocols, the MAMS achieves an automatic state
transition and service takeover. We have implemented the
MAMS policy in a prototyping file system and conducted
extensive tests to validate and evaluate it. The experimental
results confirm that the MAMS policy can achieve a faster
transparent fault tolerance in different error scenarios with
less influence on metadata operations. Compared with typical
designs in Hadoop Avatar, Hadoop HA, and Boom-FS file
systems, the mean time to recovery (MTTR) with the MAMS
was reduced by 80.23%, 65.46% and 28.13%, respectively.

Keywords-Parallel file systems; cluster file systems; multiple
metadata service; metadata management; fault tolerance

I. INTRODUCTION

With the arrival of the big data era, mass data processing

has been widely used for extracting useful knowledge from

a large amount of datasets. Most applications, including

offline and online data analysis, often need long, contin-

uous, and uninterrupted data access. Mass data storage has

become a key technology for large dataset processing. Paral-

lel/distributed file systems have attracted intensive attention

in recent years and are being actively investigated to meet

new demands for the management of massive datasets and

a variety of data structures.

The metadata management is a critical component of

parallel/distributed file systems and plays a key role in terms

of their scalability, reliability, and availability. There are two

metadata management mechanisms in general: a centralized

mechanism or a decentralized mechanism. The centralized

metadata management, including Lustre [1], Calypso [2],

PVFS [3], GFS [4] and HDFS [5], has one metadata server to

organize all metadata of files and directories. It greatly sim-

plifies the design and implementation of parallel/distributed

file systems but easily leads to a single point of failure:

once the metadata server crashes, the file system will not be

available. The decentralized metadata management, includ-

ing Ceph [6], Storage Tank [7], Ursa Minor [8] and HDFS

Federation [9], uses a group of metadata servers to manage

the global namespace. It improves file system scalability

and is the trend for future parallel/distributed file systems.

However, a decentralized metadata management mechanism

presents challenges in metadata operation performance and

in the case of multiple metadata server failures. In this

research, we focus on these challenges and introduce a

highly reliable metadata management policy. We present its

design, implementation, and evaluation results in this paper.

The reliability of file system metadata management has

never been so important. Advances in large-scale cluster and

high performance computing systems enable effective and

rapid mass data processing. However, larger systems gener-

ally have more processing components and other elements,

which increase the overall system failure rate [10]. Though

the mean time between failures (MTBF) for an individual

component may be high, the system reliability can decrease

in a large scale system. As illustrated in Figure 1, the MTBF

of IBM Blue Gene/L which is built with 131,000 processors

is estimated to be below 7 hours [11]. In fact, recent studies

indicate that servers tend to crash with 2-4% failure rate, 1-

5% of disk drives die, and 2% memory errors occur per year

[12]. In an extreme-scale system with more than hundreds

of thousands of nodes, the MTBF is expected to fall below

tens of minutes, and a node error occurs each day on average

[13].

In addition to increasing hardware failures, many systems

often encounter software upgrades, configuration changes,

installation of new components, and planned or unplanned

downtime [14], [15]. As a typical distributed framework,

most Hadoop clusters will perform major upgrades every

quarter and relevant software stack patch at any time. A

metadata service failure can have a significant impact. For

example, it will lead to tens of thousands of file system

request failures at the Facebook realtime system [16] if the

metadata server suspends. Due to the increasing likelihood

of hardware or software failures, the metadata service can be
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Figure 1: Reliability levels of two systems as a function of

the number of nodes with MTBF of 105 and 106 hours for

each node[11]

interrupted and lead to the entire file system unavailability,

which has a catastrophic impact on big data applications.

To provide a highly reliable metadata service, a primary-

backup strategy is often used in distributed systems such as

in Lustre [1] and GFS [4]. If the primary server crashes, a

backup one will take over its role and continue to respond

to clients. However, there is a service downtime in the

backup before it performs metadata recovery. For example,

the largest HDFS cluster in Facebook with 150 million files

takes about 20 minutes for failover [16]. To achieve seamless

service switching, some strategies [9], [17], [18] adopt hot

standby for the primary. It reduces the recovery time, but

still needs dozens of seconds and minutes for recovery

and still has the problem of metadata state inconsistency.

Server state replication [19], [20], [21] is another way to

improve metadata reliability. All metadata modifications are

replicated in multiple standbys when an active is running.

One of the standbys will provide the active service in case

of failures. It enhances the file system reliability. Current

strategies, however, suffer two limitations. First, they have

influence and affect the performance of normal metadata

operations. Second, they require additional failover time for

state transition.

In contrast to these existing systems, we propose a nov-

el highly reliable metadata service called MAMS, namely

multiple actives multiple standbys, for failover in paral-

lel/distributed file system. The contribution of the MAMS

policy is two-fold. First, it tolerates multiple points of

failures by dividing metadata servers into different replica

groups and maintaining more than one standby node for

recovery in each group. If the active metadata server crashes,

a new active server will be elected from other standbys to

take over. It ensures an automatic fault tolerance in different

error scenarios, which significantly improves the file system

reliability. Second, the MAMS policy reduces the overhead

of recovery with little influence on file system performance.

By using a prepared and interactive state transition among

servers, it performs service switching in the form of hot

standby. It also supports dynamically adding backup nodes

at runtime. Performance results show that the MAMS policy

achieved fast failover within milliseconds while achieving

high performance for metadata operations.

The rest of this paper is organized as follows. Section

II discusses related work. Section III describes the design

of the proposed MAMS policy. Section IV evaluates the

performance and characteristics of the MAMS policy, with

comparisons to widely-used highly reliable metadata man-

agement strategies. Section V summarizes this research and

outlines further possible work.

II. RELATED WORK

Numerous active studies have been conducted in recent

years to advance metadata service reliability for paral-

lel/distributed file systems. We discuss existing work in this

section and compare them with our work.

Traditional Primary/Backup Strategy. To support con-

tinuous service for metadata operations, the primary/backup

strategy is currently widely adopted, such as in PVFS [3],

Lustre [1], HARP [22], GFS [4] and HDFS [5]. It achieves

fault tolerance by using the backup server to take over as the

primary if the latter crashes. When the active server provides

service, the backup server receives metadata modifications

from it and replays journals in memory for state recovery.

It has little extra overhead on normal operations but easily

leads to incorrect states between the primary and backup

without consistency guarantee. Furthermore, as it requires

the procedure of restarting and reconnection in the backup

server, it takes a long time for failover. On contrast, our

proposed MAMS policy provides an automatic hot standby

which significantly reduces the overhead for recovery.

Hot Standby Strategy. The hot standby strategy provides

seamless service switching for the primary metadata server.

AvatarNode [16] at Facebook is designed for a realtime file

system that supports online applications and requirements.

It uses NFS (SUN Network Filesystem) [23] to share and

synchronize metadata operations among servers. In order

to construct file locations, the datanodes talk to both the

active and standby metadata servers. As the standby server

keeps the same state with the active server, it can take

over as it quickly. Hadoop HA [9] employs the Quorum

Journal Manager (QJM) to share edit logs between the active

and standby. They can achieve automatic fault tolerance

but still take some time for recovery and has influence

on normal metadata performance. Wang et al. [18] have

proposed a primary-slaves topology to enable Hadoop high

availability through metadata replication. The mechanism

consists of one primary critical node and several slave nodes
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Figure 2: Highly reliable multiple actives multiple standbys (MAMS) metadata service for file systems

for removing a single point of failure. It spends about three

times of the response delay in metadata operations. Different

from the strategies discussed above, our proposed MAMS

policy provides fault tolerance for multiple metadata servers

in the file system. MAMS divides metadata servers into

different replica groups and maintains more than one hot

standby server for fail-over in each group. It significantly

improves the file system reliability with less influence on

metadata operations.

Server State Replication Strategy. To further enhance

system reliability, some strategies adopt replicated state

transition for designing highly reliable services. TidyFS

[19] maintains multiple metadata servers as a replicated

component for the centralized metadata server. It leverages

the Autopilot Replicated State Library [24] to replicate

the metadata and operations on that metadata using the

Paxos [25] algorithm (protocols for solving consensus in

a network of unreliable processors). Boom-FS [20] imple-

ments a data-centric analytics stack which is compatible

with Hadoop interfaces. To achieve reliability, it adopts

a globally-consistent distributed log to guarantee a total

ordering over events affecting replicated states. Both of

them use the Paxos algorithm to maintain consistency across

servers and provide a reliable mechanism by the replicated

state machine approach. The operation performance, how-

ever, is affected for centralizing repair action decisions and

state transition, which leads to additional failover time. Our

proposed MAMS policy addresses this issue.

Active/Active Model Strategy. Symmetric or asymmetric

active/active models are also used to improve file system

reliability. In the symmetric strategy [26], more than one

dedicated server provides the shared global state with the

virtual synchrony technique. With a fast delivery protocol,

service node failures do not cause a fail-over to a backup

and there is no disruption of service or loss of service

state. Asymmetric strategy [27] comprises n+1 and n+m

configurations with n active nodes and 1 or m standby

nodes. The standby servers monitor all active servers and

perform failover when the outage is detected. As client

requests are distributed to multiple active servers, these

strategies will result in a performance decrease in metadata

processing and additional overhead for response time. In

contrast, our proposed MAMS policy adopts distributed

coordination and automatic state transition to ensure failover

in different error scenarios. It achieves a faster transparent

fault tolerance within milliseconds while delivering high

performance for metadata operations.

III. MAMS POLICY

To achieve a highly reliable metadata service in a par-

allel/distributed file system, we propose a new MAMS

(multiple actives multiple standbys) policy that uses an

active-standby cluster for fault tolerance. By maintaining a

prepared and automatic state transition, the MAMS policy

achieves quick recovery in the form of hot standby. We

introduce the detailed design and implementation in this

section.

A. System Model

In the proposed highly reliable MAMS metadata service,

multiple metadata servers are deployed to manage a global

namespace for file systems. Hash-based methods [28] are

adopted for namespace partitioning and metadata distribu-

tion. Dedicated backup nodes are deployed to improve the

reliability of the metadata server cluster. The backup node

can have two states, a standby state and a junior state, dis-

cussed in detail below. Figure 2 shows the architecture of the

highly reliable MAMS metadata service. For each metadata

server (MDS), a replica group is constructed with one active

and two or more standby nodes. By state replication, the

standby nodes can keep the same states with the active and

take over its role in the event of failures. As the distributed

metadata service decouples data and metadata management,
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file contents are split into blocks and replicated in the data

server cluster. Block locations are periodically reported to

both the active and standby nodes by data servers. It means

that the standby node has the up-to-date file locations and

can achieve a hot standby for the active server.

In the replica group, only one metadata server is regarded

as an active and provides service. Other backup nodes

keep their namespace state consistent with the active. An

SSP (shared storage pool) [28] is designed for metadata

synchronization. The pool is built on existing active or

backup servers and needs no additional device or third-

party software support. When the active stores metadata

modifications or namespace image, it writes them sequen-

tially as shared files in the SSP. Through a modified two-

phase commit protocol [29], the standby achieves journal

synchronization from the active with this pool.

For each replica group in the MAMS, the metadata server

starts up in different states according to a global view. The

metadata server acts as one role and is converted to other

states at different conditions. The state of server is divided

into three categories as belows:

• Active. An active server receives client requests and

provides metadata service for the namespace partition

it manages. At any replica group, exactly only one of

servers is in an active state at any time.

• Standby. A standby server is a backup node which

simply keeps an up-to-date namespace state with the

active at any time. It does not provide metadata service

but can take over as the active server in the event of

failures.

• Junior. A junior server is a type of backup node but

cannot provide hot standby. It is in an intermediate

status in which the state does not synchronize with the

active server. It can be a server which restarts after a

failure, or is a newly added backup node.

    Failover:degrade

  Renew:upgrade

Active

192.168.1.110

Standby

192.168.1.111

Junior

192.168.1.112

Failover:degrade

Renew

Client

requests

Hot View

A:192.168.1.110; S:192.168.1.111; J:192.168.112

Shared Storage 

Pool

Modify Elect

Failover:upgrade

SynchronizeReplicate

Control Action

Journal Stream

State Transition

Failover:degrade

Figure 3: Server state transition in the replica group

Under different conditions, the state of servers may be

switched to each other. Figure 3 shows a diagram of server

state transition in the replica group. It can be seen that

there are three servers in different states: one is an active

server with the IP address 192.168.1.110, one is a standby

server with the IP address 192.168.1.111, and another one

is a junior server with the IP address 192.168.1.112. Two

distributed protocols are responsible for the state transition.

The failover protocol performs upgrading or degrading be-

tween the active and standby servers. It also degrades them

to the junior state when necessary. The renewing protocol

is adopted to upgrade the junior to a standby. Based on the

SSP, the active server synchronizes and replicates journals to

standby for keeping the state consistent. It reduces additional

overhead with little influence on normal metadata operations.

A monotonically increasing serial number (sn) is assigned

by the active when it writes journals. Each batch of log

records is described with the pair <sn, transactionid>.

By subtracting the values between two sn, the junior can

retrieve missing metadata from the SSP or the active server

for upgrading to the standby state.

B. Active Election

As the MAMS policy uses more than one standbys for

fault tolerance, it needs to elect a new one when the active

server crashes. With the Paxos algorithm for consensus

[25], MAMS ensures that only one active is elected each

time. The process of active election is like distributed lock

management. When the active crashes, each standby tries to

obtain a distributed lock periodically until it either succeeds

or encounters a failure. Active election can also be achieved

by comparing log sn values. It ensures the continuity of

metadata service even if no standbys are in the global view.

Algorithm 1 describes the active election algorithm in a

replica group.

Algorithm 1 Active election in the replica group

1: stdby = the number of standby nodes
2: if active has errors or no active in the global view then
3: if stdby > 0 then
4: while no active is elected do
5: each standby generates a random number
6: the standby Si which has the largest random

number obtains the lock and is upgraded to active
7: end while
8: else
9: while no active is elected do

10: selecting the junior Ji with maximum sn in logs
11: Ji obtains the lock and takes over as the active
12: end while
13: end if
14: end if

C. Active-Standby State Transition

The MAMS achieves an automatic active-standby switch

for fault tolerance. Combined with the heart beat from the

node monitor, the MAMS uses an event-driven mechanism

733732732732732732
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Figure 4: The main procedure of active-standby transition

to trigger active election and state transition in case of

failures. Each server has three event watchers on the global

view: one is on itself, one is on the active server and another

is on the distributed lock. Any error will trigger them and

results in two situations: the active state is changed, which

makes the active server loses the lock and an election process

is launched, or other state transition between standby and

junior. It ensures that no processes can obtain the distributed

lock before the active loses it. The main procedure of active-

standby transition for failover protocol is depicted in Figure

4, in which the underlined number means the server with

the same IP sequence that has granted the lock.

When the active server has detected failures, it stops

providing service and no longer responds to clients, as

shown in Figure 4(a). In this example, the active is directly

degraded to junior. But some obsolete data, such as buffered

journals in the active server, may be flushed to standbys and

shared log files in the SSP. It does not matter because the

standby only receives and responds for journals which come

from the active server. As the global view will be modified

immediately and the event is triggered whenever there are

changes in server states. Thus, there is no scenario that two

metadata servers access the same shared file simultaneously

in which it achieves the function of IO fencing.

Once a standby server obtains lock successfully, it holds

the lock and prepares for state transition. Events are trig-

gered to notify others to stop competing which will reduce

unnecessary actions for election. The elected standby then

does not receive any journals from the active and awaits an

opportunity to switch. If there are no pending or processing

operations, it will launch upgrade immediately. Otherwise,

the elected standby applies them to its own namespace

and ignores all new modifications. After committing cached

journals, it enters an upgrade procedure which is shown in

Figure 4(b) and (c):

1) The elected standby visits the global view and checks

its own state. If it is in a junior state, it must stop

upgrading and give up the lock. The re-election action

will be performed at this time.

2) The elected standby modifies relevant states in the

global view. It changes the state of previous active

to standby or junior and sets itself to active. At this

moment, operations from the previous active will be

refused by all nodes.

3) New requests from clients and read service are al-

lowed. Once server states are switched, new file oper-

ations may reach the elected standby. It receives and

saves requests in memory but does not commit them

until the upgrade process is finished.

4) To avoid missing operations (e.g., the previous active

does not return success to all clients), the elected

standby flushes last cached journals to others in the

replica group again. As the previous active may be-

come standby and receive the same journals again,

duplicated journals must be distinguished in this step.

Each standby will decide whether to commit logs by

comparing values of sn. Only if sn from the active

is larger than the current maximum serial number, the

standby applies journals and responds to it.

5) The elected standby receives register information from

all servers in the replica group. It confirms and changes

the state of each server in the global view. If a server

does not have the same maximum sn, it is switched to

junior. Otherwise the server will be assigned to standby
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or junior according to its previous state.

6) If more than one standby is registered successfully, the

elected standby becomes the new active. It will launch

the renewing process for junior at appropriate time.

When a junior is upgraded to the standby state, the

global view turns back to a stable status which is shown

in Figure 4(d). During the process of state transition, the

elected standby will stop upgrading if any failures occur.

The MAMS will launch the re-election process in the replica

group at this time. Benefiting from our namespace partition

strategy [28], the client can reconnect to the new active

directly and automatically after active-standby switching and

resend requests when needed. As the process is completely

transparent to applications, the file system sees no errors

occur in the case of failures.

D. Junior Renewing

Once the active has detected fatal errors, such as disk

failures, it will be directly degraded to the junior state. The

standby is often converted to the junior state when errors

occur. The junior is an intermediate state which cannot

provide a hot standby. As the active does not synchronize

log records to the junior, there is inconsistence in namespace

states between them. With the reduction of standbys, the file

system will turn into an unreliable status. To avoid this risk,

the MAMS adopts the renewing protocol to make the junior

recover missing operations and become the standby.

During the runtime, the active scans the global view peri-

odically and tries to launch the renewing process when there

are juniors. It selects one server with the least gap in names-

pace state and creates a session for recovery at each time.

In response, the junior receives commands and starts the

task for upgrading. The active decides the renewing strategy

according to the value of maximum sn from the junior. If the

difference between them is large, the junior first retrieves the

namespace image or journal files. Otherwise, it synchronizes

metadata modifications from the active directly. As metadata

files are stored in the SSP, the junior may obtain them locally

from the pool and reduce the transmission latency. During

the course of reading images, the junior reconstructs the tree

of files and directories in memory and reaches a consistent

state with the active gradually. As there is no sn associated

with it (default 0) and this phase can spend a long time,

the junior records the checkpoint that has been committed.

It can continue to recover from other replicas in the last

position and avoid retransmitting the whole files if there are

any interrupts in the process.

After loading the namespace image, the junior asks a list

of journals from the active which can decide missing files

according to the image timestamp. The junior then starts to

apply logs from the active or the SSP. All above operations

are performed in the background which does not affect active

service. During the procedure, the junior records the current

sn and sends it to the active periodically. When there are

few gaps in the values of sn, the active launches final

synchronization stage. Once the junior recovers all journals

and returns the same sn, the active modifies the global

view and changes its state to standby. Then the junior is

upgraded and can receive metadata modifications from the

active. It keeps an up-to-date namespace state in the form

of hot standby. By renewing, more new backup nodes can

also be added in the replica group at runtime. It significantly

improves the reliability and availability of metadata service.

IV. EVALUATION

In this section we present the evaluation results of the pro-

posed highly reliable metadata management policy MAMS.

A prototyping file system CFS (Clover File System)[28] has

been designed and implemented with the MAMS policy for

the validation and evaluation. It adopts multiple metadata

servers to manage a global namespace and hash-based

method for metadata partition. The CFS is based on the SSP

for metadata synchronization and uses the MAMS policy for

reliable metadata management.

The experimental platform is a cluster with 20 nodes.

Each node consists of four Intel Xeon X3320 Processors,

8-GB memory and one Gigabit network interface card, with

Linux kernel 2.6.32. Each of them acts as the pool node in

the SSP and stores image and journal files. For file system

operations, multiple metadata modifications are aggregated

before being submitted and written back to journals in an

asynchronous way. To facilitate failure detection and auto

service switch, the Zookeeper was used to monitor nodes,

trigger events and maintain the consistent global view.

A. Overhead on Metadata Operations

The MAMS policy provides a highly reliable mechanism

for metadata service, though it may have an impact on

normal metadata operations. To measure the overhead on

normal metadata operations, the experiments were conducted

under failure free cases. As the CFS is an implementation

of multiple metadata servers based on the HDFS, we first

compare it with the HDFS by configuring different active

and standby nodes. Then we compare the MAMS with

typical highly reliable systems, including BackupNode [5],

Hadoop AvatarNode [16], and Hadoop HA [9], to observe

the metadata operation performance.

Figure 5 shows the performance of HDFS and CFS with

the MAMS policy. The CFS was configured with three

metadata servers in which each active had 1 to 4 standbys,

e.g. MAMS-3A3S means 3 actives and 3 standbys. The

HDFS adopts a single metadata server without any reliable

mechanism. The tests used multiple clients on different

nodes to provide the workload with each performing 1

million operations.

From Figure 5, it can be observed that the performance

of CFS is higher than the HDFS for create and getfileinfo

operations. This is due to the metadata partition strategy
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Figure 5: Performance of MAMS with different active and

standby nodes

in CFS which support performing the operations simultane-

ously. The other three types of operations, including delete,

mkdir and rename, belong to distributed transactions in the

CFS. The state synchronization among servers will have an

impact on these operations. For each of these operations,

except the read-only operation getfileinfo, the performance

of the CFS was gradually decreased with adding standbys

in each replica group. As the active needs to synchronize

journals to more nodes when more standbys were added,

it increased the synchronization time. The MAMS policy,

however, was built upon the SSP which reduced the synchro-

nization overhead and was not a performance bottleneck.

The additional overhead is negligible and there was a minor

performance degradation. For example, the performance of

the rename operation with 3A3S was declined with 3.89%,

4.28% and 3.25% respectively by adding one standby for

each metadata server. The MAMS policy decreases some

operation performance of the CFS but significantly enhances

the metadata service reliability (in general, any reliable

metadata management strategy sacrifices the performance

for reliability). It is worthy to trade slight performance

reduction for the entire file system reliability in return.
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Figure 6 shows the comparison on metadata operation

performance with different reliable metadata management

mechanisms. Each test was performed with 1 million oper-

ations with mixed create, getfileinfo, and mkdir operations.

The CFS was configured with 1A3S and other three systems

adopt the primary-backup strategy. The experiment results

reveal that the metadata operation performance was reduced

with reliable metadata management mechanism compared

to the HDFS. It is because that all these there systems

need real-time state synchronization between the primary

and backups, which results in additional overhead. The

BackupNode incurred less time but it does not guarantee

metadata consistency. For the CFS, the performance was

higher than the Hadoop AvatarNode and Hadoop HA even

using multiple standbys. This is mainly due to two aspects:

one is the journal synchronization strategy with the SSP

which greatly reduced the additional overhead; the other is

the MAMS policy can effectively perform service switching

and achieve failover.

In summary, the experiment results indicate that the

MAMS policy can significantly improve metadata service

reliability and keep server states consistent in the same

replica group with little effect on the performance.

B. Failover Time

This series of tests measured the failover time of dif-

ferent reliable metadata management systems discussed in

the above subsection. They are all implemented based on

the HDFS and increase the metadata reliability guarantee

compared to the vanilla HDFS. We also observed and

analyzed the time needed for different stages in the MAMS

in these tests, which includes active election, active-standby

switching and client reconnection. The CFS was configured

with 1A3S and other systems adopt the primary-backup

strategy. In the Hadoop HA, the number of JournalNodes

was set to 4. For fault detection, the heart beat interval and

session timeout of ZooKeeper were set to 2 and 5 seconds,

respectively. Metadata server failures were generated by

shutting down processes, unplugging the network cables, etc.

During the experiments, client interfaces were called to

access the file system continually and the failover time was

measured. We choose the mean time to recovery (MTTR) as

the metric for comparison. It can be computed by subtracting

the timestamp of operation failure and that of success, when

metadata service is unavailable and recovered, respectively.

Each test was performed 10 times, and the average MTTR

was computed as below:

MTTR =

∑times

k=1
(Timereturn failure − Timereturn success)

Times

Table I reports the MTTR of different systems. The first

column lists the image size which indicates file system

scale. The tests were conducted using create operations

to create files. There are more than 7 million files when
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Table I: MTTR of different reliable metadata management

systems

Image

(MB)

MTTR (s)

MAMS-1A3S BackupNode Hadoop Avatar Hadoop HA

16 5.893 2.784 27.362 15.351

32 6.376 5.326 31.574 17.439

64 6.531 9.653 30.721 18.624

128 5.742 22.928 29.273 16.372

256 5.436 36.431 32.805 19.016

512 6.795 78.365 31.446 17.853

1024 6.081 142.513 33.239 19.193

the image size is about 1GB. We can observe that the

MTTR of BackupNode increased gradually with file system

scale expansion from 2.784 to 142.513 seconds. This is

mainly because its backup node needs to recollect block

locations before taking the place of the primary. Compared

with the BackupNode, Hadoop Avatar, and Hadoop HA, the

average failover time of the MAMS are 14.35%, 19.77%,

and 34.54% of them respectively. The results verified two

aspects. One is the process of failover in the MAMS was

performed with a relatively low overhead. The other is that

clients were able to automatically connect to the new active

rapidly and achieved transparent fault tolerance.
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Figure 7: The proportion of failover time at each stage in

MAMS

Table I shows the benefits of the MAMS for recovery.

To further analyze the overhead in MAMS, we counted the

proportion of failover time at each stage. Figure 7 reports

the results with the same analysis like in Table I. The

horizontal axis represents the failover time distinguished

by values exclusive of session timeout (default 5 seconds).

From Figure 7, we can see that it spent the least time for

active election during recovery (less than 100ms). This is

mainly because the MAMS uses the event trigger mechanism

to deal with failures and the Paxos algorithm for election.

It can reach a consensus among the active and standbys

quickly. Meanwhile, the time of active-standby switching is

also stable with values between 250ms and 350ms. With the

growth of failover time, the proportion of client reconnection

was increased. It indicates that our MAMS policy not only

reduced failover time to milliseconds but also improved file

system reliability compared to other strategies.

C. Efficiency for Recovery

In the above subsection, we have reported the failover

time comparing the MAMS with other reliable metadata

management systems. These tests were conducted based on

a single point of server failure. This subsection verifies the

efficiency of the MAMS for recovery when multiple server

errors occur. The CFS was configured with one replica group

including one active and three standbys (1A3S). We used

multiple client processes on different nodes to provide over-

load. The tests include continuous create and regular mkdir

operations. Files are distributed among multiple directories

with average requests per second being counted. Table II

reports different test scenarios and corresponding server state

transition. The states of nodes include active (denoted as A),

standby (denoted as S) and junior (denoted as J). The symbol

“-” means the server is still in a fault state.

Three groups of tests were performed in our experiments.

Errors were generated through modifying the global view

to make the active lose the lock (Test A), unplugging

and reconnecting network wires (Test B), and restarting

processes (Test C). Figure 8 shows the failover ability of

metadata operations in the CFS. The vertical axis is average

requests per second and the horizontal axis is the test time.

As shown in Figure 8(a), the active lost the lock at

the moment of 60 seconds. It triggered an active election

and state transition in response to state 2 in Table II. At

this point, the average time of metadata operations was

not reduced to 0 immediately. It is because the active has

returned partial success results to clients. Subsequently, the

active stopped the service and performed a fault-tolerant

processing from 62 to 68 seconds. The file system did not

respond to clients anymore. After service switching, the state

of each node was transformed to state 4. The original active

registered to the new one as a standby. When the new active

began to provide service, clients may resend requests for

incorrect results. Therefore, the curve has a slight upward

trend at the time of 70 seconds. The duplicated message

handling in the MAMS will avoid the problem of incorrect

metadata operations. At last, the file system restored to the

normal performance before failures in which the new active

continued to provide metadata service. The same operations

were also performed at the time of 120 and 180 seconds.

Experiment results indicate that the MAMS policy can elect

the new active and achieve server takeover quickly to keep

the continuity of file system service.

Test B generated network errors by taking out/plugging

back wires and the results are shown in Figure 8(b). The

test made two servers failed for each time. With the fault
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Table II: Test scenarios and server state transition

State
Active lose lock (Test A) Take out/plug back network wires (Test B) Shut down and restart processes (Test C)

MDS BN BN BN MDS BN BN BN MDS BN BN BN

1 A S S S A S S S A S S S

2 S S S A S S S S

3 A S S A S J J A S S

4 S A S S A S S S J A S S

5 S S S S S S A S S

6 S A S A S S S

7 S S A S J A S S A

8 S S S S A S S J A

9 S S A S J A S S S J A

10 S S S A S S A S S S S A

0K

1K

2K

3K

4K

5K

6K

7K


 �
 �
 ���
 �
 �

 ��


R
e
q

u
e
st

s 
p

e
r 

se
c
o

n
d

Time (seconds)

(a) Drop Lock in the Active

0K

1K

2K

3K

4K

5K

6K

7K


 �
 �
 ��
 �
 �

 ��


R
eq

u
es

ts
 p

er
 s

ec
o

n
d

Time (seconds)

(b) Take Out/Plug Back Network Wires

tolerance capability, the file system stopped responding to

clients temporarily but then returned to normal functions

quickly. As the CFS can continue working in the case of

at least one standby, the file system still provides metadata

service even when the active and standby fail simultaneously.

Experiment results confirmed that the MAMS policy can

tolerate multiple points of failures for metadata servers and

achieved upgrade for juniors by the renewing protocol. It

significantly improves the reliability of the file system. Test

C generated process errors and similar results were observed,

as shown in Figure 8(c). These experiment results verify the

efficiency of the MAMS policy well.

D. Transparent Failover for MapReduce Programs

The CFS file system provides compatible interfaces with

the HDFS and supports mass data processing in the MapRe-
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Figure 8: Failover ability of metadata operations

duce framework. To verify transparent failover for upper ap-

plications, we compared the CFS with the Boom-FS, another

typical reliable system with multiple metadata servers based

on the HDFS. The test generated a metadata server error

for measuring the program completion time with the same

environments. It run a Hadoop wordcount job on a 5GB

input file. The CFS was configured with 3A9S.
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Figure 9: Run time comparison for MapReduce programs in

case of failures

Figure 9 shows the cumulative distribution of the per-
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centage of completed MapReduce jobs over time in case of

failures. The data of Boom-FS including normal and failure

operations comes from [20]. As shown in the figure, it had

an influence on the program when metadata server failed.

Compared with the Boom-FS, the CFS exhibited better

failover performance when errors occurred. Its completion

time of map and reduce jobs was less than the Boom-

FS, by 28.13% and 9.76% respectively. The reduce jobs

of the Boom-FS have a phenomenon of suspension. As

it took time to finish map jobs for recovery, the reduce

jobs needed the former to write intermediate results into

the file system before continuing subsequent operations. It

added additional waiting time. On the contrary, the fault

tolerant mechanism in the MAMS ensured fast taking over

for metadata service. It had little effect on the MapReduce

execution. The experiment results indicate that our MAMS

policy can achieve transparent failover for upper applications

and ensured expected behavior in case of failures.

V. CONCLUSION

This paper introduces a novel highly reliable MAMS

(multiple actives multiple standbys) metadata management

policy for metadata service in parallel/distributed file sys-

tems. It supports application scenarios such as mass data

analysis and processing which require continuous and un-

interrupted services. The MAMS policy uses the active-

standby cluster to achieve automatic recovery in case of

failures. Compared with traditional reliable mechanisms, it

has several notable advantages. The MAMS policy divides

multiple metadata servers into different replica groups and

maintains more than one backup node for each active server.

It is based on a built-in shared storage pool which reduces

the overhead for state synchronization. Combining a global

view with two distributed protocols, the MAMS achieves an

automatic state transition and service takeover in the form of

hot standby. We implemented the MAMS policy in the CFS

(Clover File System), a large-scale distributed file system

compatible with the Hadoop platform. However, the policy

can also be used in other parallel/distributed file systems for

better system reliability. The experiment results show that

the MAMS policy not only achieved faster failover with less

influence on the performance but also significantly improved

metadata service reliability.

In the future, we plan to continue improving file system

reliability by exploring other namespace management meth-

ods and data recovery at any point with less data loss.
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