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Abstract 

Bluetooth devices are widely employed in the home network systems. It is important to secure 

home members’ Bluetooth devices, because they always store and transmit personal sensitive 

information. In the Bluetooth standard, Secure Simple Pairing (SSP) is an essential security 

mechanism for Bluetooth devices. We examine the security of SSP in the recent Bluetooth 

standard V5.0. The passkey entry association model in SSP is analyzed under the man-in-the-

middle (MITM) attacks. Our contribution is twofold. (1) We demonstrate that the passkey entry 

association model is vulnerable to the MITM attack, once the host reuses the passkey. (2) An 

improved passkey entry protocol is therefore designed to fix the reusing passkey defect in the 

passkey entry association model. The improved passkey entry protocol can be easily adapted to the 

Bluetooth standard, because it only uses the basic cryptographic components existed in the 

Bluetooth standard. Our research results are beneficial to the security enhancement of Bluetooth 

devices in the home network systems. 
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Abstract 

Bluetooth devices are widely employed in the home network systems. It is important to secure 

home members’ Bluetooth devices, because they always store and transmit personal sensitive 

information. In the Bluetooth standard, Secure Simple Pairing (SSP) is an essential security 

mechanism for Bluetooth devices. We examine the security of SSP in the recent Bluetooth 

standard V5.0. The passkey entry association model in SSP is analyzed under the man-in-the-

middle (MITM) attacks. Our contribution is twofold. (1) We demonstrate that the passkey entry 

association model is vulnerable to the MITM attack, once the host reuses the passkey. (2) An 

improved passkey entry protocol is therefore designed to fix the reusing passkey defect in the 

passkey entry association model. The improved passkey entry protocol can be easily adapted to the 

Bluetooth standard, because it only uses the basic cryptographic components existed in the 

Bluetooth standard. Our research results are beneficial to the security enhancement of Bluetooth 

devices in the home network systems. 

Keywords Bluetooth standard, Secure Simple Pairing, passkey entry, man-in-the-

middle attack, home network system 

1 Introduction 

 

Fig. 1 Bluetooth security for the home network system 



3 

The Bluetooth technology [1] enables universal short-range and low-power wireless 

connectivity among the Bluetooth devices. Nowadays, Bluetooth modules are integrated 

in most smartphones, wireless headsets, and laptops. It is not surprising that the 

Bluetooth technology is the footstone of the home network systems. 

In practice, the security solutions are necessary to protect the Bluetooth applications 

[2–8] due to the ubiquitousness of the Bluetooth devices. For a typical home network 

system, the security overview for Bluetooth devices and their network is described as Fig. 

1. 

The Bluetooth network is not a traditional IP-based network. Hence, IP-based 

canonical security solutions, such as IPSec and Public Key Infrastructure (PKI), are not 

supported by the Bluetooth network. Nevertheless, to guarantee Bluetooth devices and 

their network in a secure manner, the Bluetooth standard [9, 10] specially provides a set 

of the exchanging key, authentication, and confidentiality mechanisms. 

1.1 Architecture of Bluetooth security 

The Bluetooth standard [10] specifies four security modes called security modes 1 

through 4. A Bluetooth device possibly supports one or multiple (not all) security modes. 

Security modes 2 and 4 are the service level enforced security, where security procedures 

are initiated after physical and logical link setup. Comparatively, security mode 3 is 

designed for the link level enforced security. That is, a device initiates security 

procedures, before the physical link is fully established. Security modes 1, 2, and 3 are 

the legacy security modes and apply to those devices with a controller or a host that does 

not support security mode 4. Additionally, National Institute of Standards and 

Technology (NIST) [11] recommends security mode 4, because it requires the secure 

connections, which use Secure Simple Pairing (SSP) and Advanced Encryption Standard 

(AES). 

From the security view, SSP is the foundation of security mode 4. The crucial task of 

SSP is to establish the link key between two Bluetooth devices. In fact, the link key 

dominates the security of the Bluetooth network system, because other security 

procedures all require depending on the link key to achieve their security goals. During 

establishing the link key, SSP uses the Elliptic Curve Diffie-Hellman (ECDH) public key 

algorithm as a means to thwart passive eavesdropping attacks. However, the ECDH 

public key algorithm in SSP may be subject to man-in-the-middle (MITM) attacks 

because of the lack of PKI in the Bluetooth network system. To address MITM attacks, 

the four association models offered in SSP are as follows. 

(1) Numeric comparison is designed for the case, where a user is shown a 6-digit 

number on the display of each pairing device and provides a “yes” or “no” response 
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according to whether the numbers match. Each device in sight of the user independently 

computes the 6-digit number. Hence, the MITM attacker fails due to the unmatched 6-

digit numbers. 

(2) Passkey entry is primarily designed for the case, where one device has input 

capability but does not have the capability to display 6 digits and the other device has 

input and (or) output capabilities. To defeat MITM attacks, a 6-digit number called the 

passkey need be inputted into one or two devices. 

(3) Out of Band (OOB) is designed for devices that support an additional wireless, e.g., 

Near Field Communication (NFC), or wired technology. This model prevents MITM 

attacks, because it assumes that the attacker cannot compromise two communication 

channels simultaneously. 

(4) Just works is designed for the case, where at least one of the pairing devices has 

neither a display nor a keyboard for entering digits, e.g., headset. This model provides no 

MITM protection. 

1.2 Previous work on Secure Simple Pairing 

Chang and Shmatikov [12] used the formal method tool to analyze the numeric 

comparison association model in SSP and found that the authentication fails if the same 

device is used parallel in different sessions. Suomalainen et al. [13] pointed out a 

potential attack scenario, where the security of the device with a more IO (Input and 

Output) capability is compromised by interacted with another device of restricted IO 

capability. Lindell [14] proved that the numeric comparison association model in the 

Bluetooth standard V2.1 is secure under the appropriate security model. Haataja and 

Toivanen [15, 16] proposed the MITM attacks and the countermeasures for the numeric 

comparison and OOB association models. The proposed MITM attacks exploit the 

falsification of information sent during the IO capabilities exchange and the fact that the 

security of SSP is likely to be limited by the capabilities of the least powerful or the least 

secure device type. Phan and Mingard [17] mainly analyzed the numeric comparison, 

passkey entry, and OOB association models using the MITM attacks, providing that one 

device is malicious. Barnickel et al. [18] explored a MITM attack on the passkey entry 

association model, when the attacker prevents the pairing process to successfully 

complete and the user inputs the same passkey twice. Albahar et al. [19–21] presented 

some countermeasures for SSP to prevent MITM attacks such as using new precautionary 

steps in the just works association model and building the virtual channel. Gajbhiye et al. 

[22] presented the simulation and the security analysis of the numeric comparison 

association model in the network simulator NS2. 
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1.3 Our contribution 

We examine the security of SSP in security mode 4 in the recent Bluetooth standard 

specifications, i.e., the Bluetooth standard V5.0 [10]. The passkey entry association 

model in SSP is reevaluated under the MITM attacks. Our contribution is twofold. (1) We 

demonstrate that the passkey entry association model is vulnerable to the MITM attack, 

once the host reuses the passkey. (2) An improved passkey entry protocol is therefore 

designed to fix the reusing passkey problem under the passkey entry association model. 

Moreover, the implementation cost of the improved passkey entry protocol only has an 

insignificant increase, compared with the original protocol. 

2 Review of Secure Simple Pairing 

Fig. 2 Flow chart of Secure Simple Pairing 

 

As shown in Fig. 2, SSP consists of 5 phases, i.e., public key exchange (Phase 1), 

authentication stage 1 (Phase 2), authentication stage 2 (Phase 3), link key calculation 

(Phase 4), and Link Manager Protocol (LMP) authentication and encryption (Phase 5). 

Phases 1, 3, 4, and 5 are the same for all association models. However, authentication 

stage 1 is different depending on the association model used. Before the description of 5 

Phase 1 (step 1): public key exchange 

Phase 2 (steps 2-8): authentication stage 1 

Phase 3 (steps 9-11): authentication stage 2 

Phase 4 (step 12): link key calculation 

Phase 5 (step 13): LMP authentication and encryption 

End 

Begin 
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phases in SSP, we firstly introduce the terminology used throughout this paper. For 

discussion convenience, we almost abide by the same symbols as in the Bluetooth 

standard [10]. 

Cryptographic key 

PKx: ECDH public key of Bluetooth device X or attacker X. 

SKx: ECDH secret (private) key of Bluetooth device X or attacker X. 

LK, LK1, and LK2: link keys established by Bluetooth devices. 

DHkey, DHkey1, and DHkey2: Diffie-Hellman keys. 

Constant parameter 

BD_ADDRx: unique address of Bluetooth device X. 

X: unique address of Bluetooth device X, when it appears in cryptographic function. 

IOcapX: IO capabilities of Bluetooth device X. 

btlk: a predefined bit string. 

Variable parameter 

Nx: nonce (unique random value) from Bluetooth device X or attacker X. 

Nxi: ith nonce (unique random value) from Bluetooth device X or attacker X. 

rx: random value of Bluetooth device X, i.e., the passkey. 

rxi: ith bit of the rx. 

r*x: random image of the rx. 

r*xi: ith bit of the r*x. 

Cxi: ith commitment value from Bluetooth device X. 

C′xi: ith counterfeit commitment value of Bluetooth device X from the attacker. 

Ex: check value from Bluetooth device X. 

E′x: counterfeit check value of Bluetooth device X from the attacker. 

Cryptographic hash function 

f1(): used to generate and verify the Cxi and the C′xi. 

f2(): used to generate the link key and possible other keys from the Diffie-Hellman 

key. 

f3(): used to generate and verify the Ex and the E′x in authentication stage 2. 

Figure 3 describes 5 phases of SSP under the passkey entry association model. Each 

Bluetooth device need generate its own ECDH public-private key pair. Here, the key pair 

can be generated only once per device and may be computed in advance of the pairing 

procedure. Alternatively, a device may, at any time, discard its public-private key pair 

and generate a new one instead. We further explain those phases in the following. 

2.1 Phase 1: public key exchange 

The public key exchange phase is given as follows. 
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Fig. 3 Secure Simple Pairing under the passkey entry association model 

 

The initiating device A and the responding device B respectively exchange the PKa 

and the PKb (step 1a and step 1b in Fig. 3). The A computes the shared DHkey by the 

1b. PKb 
Phase 1 

1a. PKa 

Initiating 

Device A 

Responding 

Device B 

1c. Start computing DHkey 

DHkey=P256(SKa, PKb) or DHkey=P192(SKa, PKb) 
1d. Start computing DHkey 

DHkey=P256(SKb, PKa) or DHkey=P192(SKb, PKa) 

11. Eb 

Phase 3 

10. Ea 

9a. Compute Ea=f3(DHkey, Na, Nb, rb, IOcapA, A, B) 9b. Compute Eb=f3(DHkey, Nb, Na, ra, IOcapB, B, A) 

10a. Check Ea=f3(DHkey, Na, Nb, rb, IOcapA, A, B) 

If check fails, abort 

11a. Check Eb=f3(DHkey, Nb, Na, ra, IOcapB, B, A) 

If check fails, abort 

Phase 4 

12a. Compute LK=f2(DHkey, Na, Nb, btlk, 

BD_ADDRa, BD_ADDRb) 

12b. Compute LK=f2(DHkey, Na, Nb, btlk, 

BD_ADDRa, BD_ADDRb) 

8. Nbi 

7. Nai 

6. Cbi 

Phase 2 

5. Cai 

7a. Check if Cai=f1(PKax, PKbx, Nai, rbi) 

If check fails, abort 

2a. Inject secret ra; Set rb=ra 2b. Inject secret rb; Set ra=rb 

3a. Select random Nai 3b. Select random Nbi 

Steps 3-8 execute 20 times 

New random numbers are selected in 

each round 

ra=ra1|ra2|…|ra20 

rb=rb1|rb2|…|rb20 

4a. Compute commitment: Cai=f1(PKax, PKbx, Nai, rai) 

Host 

4b. Compute commitment: Cbi=f1(PKbx, PKax, Nbi, rbi) 

8a. Check if Cbi=f1(PKbx, PKax, Nbi, rai) 

If check fails, abort 
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Diffie-Hellman function P256(SKa, PKb) or P192(SKa, PKb) (step 1c in Fig. 3). In other 

side, the B computes the shared DHkey by the Diffie-Hellman function P256(SKb, PKa) 

or P192(SKb, PKa) (step 1d in Fig. 3). Herein, if both devices’ controllers and hosts 

support secure connections, the function P256() is used. Otherwise, the function P192() is 

used. 

2.2 Phase 2: authentication stage 1 

Authentication stage 1 has three different protocols for the corresponding association 

models, i.e., the numeric comparison protocol, the OOB protocol, and the passkey entry 

protocol. The just works association model makes use of the numeric comparison 

protocol. The detail protocol is chosen based on the IO capabilities of the pairing devices. 

In this section, the passkey entry protocol is reviewed, because we address the 

weaknesses on it. The host in Fig. 3 is treated as a user or a device function. 

The user inputs an identical passkey ra(=rb) into both devices (step 2a and step 2b in 

Fig. 3). Alternately, the passkey may be generated and displayed on one device, and then 

the user inputs it into the other (also step 2a and step 2b in Fig. 3). This shared passkey 

with the 20-bit length is the basis of the mutual authentication of two devices. Steps 3 

through 8 are repeated 20 rounds using each bit of the passkey. In the ith round for 

1≤i≤20, the device A and the device B perform the following steps. 

The A and the B respectively generate the random Nai and the random Nbi (step 3a 

and step 3b in Fig. 3). Then, the A and the B further commit to their ith bit of the passkey 

by computing Cai=f1(PKax, PKbx, Nai, rai) and Cbi=f1(PKbx, PKax, Nbi, rbi) (step 4a 

and step 4b in Fig. 3). Here, the PKax and the PKbx respectively denote the x-coordinates 

of the PKa and the PKb. Then, both devices exchange the Cai and the Cbi (step 5 and step 

6 in Fig. 3). Next, the A sends its Nai to the B (step 7 in Fig. 3). Upon receiving the Nai, 

the B checks whether Cai=f1(PKax, PKbx, Nai, rbi). If it fails, the B terminates the run of 

the protocol (step 7a in Fig. 3). Otherwise, the B also sends its Nbi to the A (step 8 in Fig. 

3). Upon receiving the Nbi, the A checks whether Cbi=f1(PKbx, PKax, Nbi, rai). If it 

fails, the A terminates the run of protocol (step 8a in Fig. 3). 

Note that at the end of this stage, the A and the B all set Na=Na20 and Nb=Nb20 for 

use in authentication stage 2. 

2.3 Phase 3: authentication stage 2 

The device A and the device B have successfully completed the message exchange, if 

they pass the second stage of the authentication. We depict this authentication stage as 

follows. 
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The A and the B respectively compute Ea=f3(DHkey, Na, Nb, rb, IOcapA, A, B) and 

Eb=f3(DHkey, Nb, Na, ra, IOcapB, B, A) as confirmation values (step 9a and step 9b in 

Fig. 3). The A then transmits its Ea to the B (step 10 in Fig. 3). Upon receiving the Ea, 

the B checks whether Ea=f3(DHkey, Na, Nb, rb, IOcapA, A, B). If this check fails, it 

indicates that the A has not confirmed the pairing and the run of the protocol should abort 

(step 10a in Fig. 3). The B then transmits its Eb to the A (step 11 in Fig. 3). Upon 

receiving the Eb, the A similarly checks whether Eb=f3(DHkey, Nb, Na, ra, IOcapB, B, 

A). A failure indicates that the B has not confirmed the pairing and the run of the protocol 

should abort (step 11a in Fig. 3). 

2.4 Phase 4: link key calculation 

Once both devices have confirmed the pairing, a shared LK is respectively computed by 

f2(DHkey, Na, Nb, btlk, BD_ADDRa, BD_ADDRb) (step 12a and step 12b in Fig. 3). 

2.5 Phase 5: LMP authentication and encryption 

This phase consists of the authentication process and the encryption key generation 

process, which all base the LK. It is actually the same as the final steps in the pairing of 

the legacy security modes. The technique details of Phase 5 are omitted, because our 

research does not focus on them. 

3 Vulnerabilities on Secure Simple Pairing 

When SSP is under the passkey entry association model, the passkey ra(=rb) is the only 

secret used to prevent MITM attacks. Clearly, if the attacker knows the ra before the run 

of the passkey entry protocol, he can launch the MITM attack as Fig. 4. According to the 

passkey entry protocol, the passkey is generated and displayed by the Bluetooth device or 

chosen and inputted by the user. According to the Bluetooth standard [10], the passkey 

generation algorithm is not provided for the device. Hence, the device possibly operates 

the nonrandom passkey generation algorithm or simply reuses the passkey. The attacker 

is able to launch the MITM attack in Fig. 4, once he correctly predicts the ra displayed by 

the device. On the other hand, many users are inclined to choose the same passkey in a 

period of time, because it is convenient to them. In the following, we depend on this fact 

to compromise the passkey. Clearly, it leads to the MITM attack on the passkey entry 

association model as Fig. 4, when the compromised passkey is used again. 

3.1 Offline attack on passkey 

The attacker E can perform the following steps to derive the used ra. 
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Fig. 4 MITM attack on the passkey entry association model 
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4a. Compute commitment: 

Cai=f1(PKax, PKex, Nai, rai) 

Host 

4b. Compute commitment: 

Cbi=f1(PKbx, PKex, Nbi, rbi) 

8a. Check if C′bi=f1(PKex, PKax, Nei, rai) 

If check fails, abort 

Host 

3′. Select random Nei 

4′. Compute commitments: 

C′ai=f1(PKex, PKbx, Nei, rai) and 

C′bi=f1(PKex, PKax, Nei, rai) 

Steps 3-8 execute 20 times for authentication 

New random numbers are selected in each round 
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Step 1. Intercept the PKa and the PKb during the phase of public key exchange (step 1a 

and step 1b of Fig. 3). 

Step 2. During the phase of authentication stage 1, intercept the Cai (step 5 of Fig. 3) 

and the Nai (step 7 of Fig. 3) for all 1≤i≤20. 

Step 3. For each 1≤i≤20, compute C′ai=f1(PKax, PKbx, Nai, 0) and verify whether 

C′ai=Cai. If so, rai=0, else rai=1. 

Comments. 

(1) When the E passively observes a run of the passkey entry protocol, he can collect 

the PKa, the PKb, the Cai, and the Nai from the public channel and further deduce the ra 

offline. Therefore, once the host uses the ra again in another new SSP session, the E is 

able to exploit the MITM attack as Fig. 4. Clearly, if the host chooses another new 

passkey depended on the ra, the E still possibly derives the new one from the ra. 

(2) It needs to point out that Barnickel et al.’s attack [18] is similar to our offline 

attack. Barnickel et al.’s attack terminates the current SSP session of two devices and 

reuses the passkey in the next SSP session of two devices. However, our offline attack 

allows a successful SSP session of the pairing devices and exploits subsequent SSP 

sessions of them. Hence, our offline attack is not easily detected by the devices owner, 

compared with Barnickel et al.’s attack. 

3.2 Online attack on passkey 

In some situations, the host does not change the passkey until the SSP session is 

successful. The host may believe that the wireless communication errors or the related 

software flaws cause the failure of the Bluetooth pairing. If the host allows the failures in 

some degree, the attacker can make use of the online attack to determine the passkey. As 

shown in Fig. 5, the online attack applies the bit-by-bit strategy to determine the ra. Here, 

the attacker E interrupts the device A during the run of the passkey entry protocol. And, 

the E induces both devices, i.e., the A and the B, to start a new SSP session, if the current 

SSP session fails. To determine the rai for each 1≤i≤20, the online attack detail is 

described as follows. 

When the B generates the Nbi, the E also chooses his Nei (step 3b and step 3a′ in Fig. 

5). Then, the B computes the Cbi (step 4b in Fig. 5). At this time, if the rai is determined 

by the previous run of the protocol, the E computes his C′ai=f1(PKax, PKbx, Nei, rai) 

(step 4a′ in Fig. 5). Otherwise, the E computes his C′ai=f1(PKax, PKbx, Nei, 0) (also step 

4a′ in Fig. 5). Next, the E sends the C′ai and the Nei to the B (step 5′ and step 7′ in Fig. 

5). If the B terminates the run of the protocol (step 7a in Fig. 5), then the E knows that the 

rai is equal to 1 and induces the A to start a new SSP session with the B, else rai=0 when 
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the rai is an undetermined bit. Moreover, the E continues repeating above rule for the next 

bit of the ra, if the B does not terminate the current run of the protocol. 

To guess the ra, the E intercepts the PKax and the PKbx during the phase of public key 

exchange. Hence, the E can always compute the C′ai for the unknown rai and further get 

this rai based on the response of the B. In addition, the E is able to omit the Nbi, accept 

the correctness of the Cbi, and continuously determine the next unknown bit of the ra, if 

the B confirms the receiving C′ai from the E. 

 

Fig. 5 Online attack on the passkey entry protocol 

 

Let Pr(E) denote the probability that event E occurs. Let n and k be non-negative 

integers. Assume that the binomial coefficient ��
�

�
��
�

�

k

n
 is the number of different ways of 

choosing k distinct objects from a set of n distinct objects, where the order of choice is 

trivial. We further present the property of the online attack. 

Theorem 1 Let l be the number of the SSP sessions used in the online attack as Fig. 5. 

Assume that the ra is a random number with the 20-bit length. Then, 

8. Nbi 

7′. Nei 

5′. C′ai 

6. Cbi 

Phase 2 

Responding 

Device B 

7a. Check if C′ai=f1(PKax, PKbx, Nei, rbi=rai) 

If check fails, abort 

2b. Inject secret rb; Set ra=rb 

3b. Select random Nbi 

Host 

4b. Compute commitment: Cbi=f1(PKbx, PKax, 

Nbi, rbi) 

Attacker 

E 

3a′. Select random Nei 

4a′. Compute commitment: if rai has be 

determined before, then C′ai=f1(PKax, PKbx, Nei, 

rai), else C′ai=f1(PKax, PKbx, Nei, 0) 

7a′. If abort, rai=1 and abort 

If not abort and the rai is known, continue 

If not abort and the rai is unknown, rai=0 and 

continue 

Steps 3-8 execute at most 20 times for 

authentication 

New random numbers are selected in each round 
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Proof. In the probability theory, it is well-known that the Bernoulli trial is an 

experiment with exactly two possible outcomes called success and failure. Obviously, the 

online passkey attack obeys the Bernoulli trial. That is, if the unknown bit rai is 0, then 

the outcome of the online passkey attack is treated as success and the attack continues for 

the next unknown bit of the ra, else the outcome of the attack is regarded as failure and 

the attacker E need induce the devices to start a new SSP session for the next unknown bit 

of the ra. Since the ra is treated as a random number with the 20-bit length, 

Pr(rai=0)=Pr(rai=1)=1/2 for each 1≤i≤20. It means that the failure probability p for 

guessing any rai is 1/2. According to the fact of the Bernoulli trial, the probability of 

exactly f failures in the sequence of n=20 such independent trials is 
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We complete the proof and obtain the Eq. (1), since it needs to collect all probabilities of 

each exactly 0≤k≤l−1 failures case and the probability of the failures case when ra20=1 

and k=l.                                                               ▋ 

Theorem 1 says that Pr(the ra is determined by the offline attack as Fig. 5 before l=13 

SSP sessions)= 0.91652
12

19
2

1

20
2

1

19
2

1

20
20

13

1

2020

1

20
≈��

�

�
��
�

�
+��

�

�
��
�

�

−
=��

�

�
��
�

�

−
+��

�

�
��
�

�

−
��

== k

l

k klk
. 

Therefore, we claim that the online attack can effectively recover the passkey. Note that 

the practical success probability for guessing the ra is bigger than the theory probability 

value computed by Eq. (1), because the ra in the Bluetooth standard is a random 6-digit 

number not a random 20-bit number. 

4 Countermeasure on Secure Simple Pairing 

4.1 Improved passkey entry protocol 

Barnickel et al. [18] gave two methods to remove the reusing passkey attacks in the 

passkey entry association model. The first method is that the user’s passkey should be 

verified by Bluetooth devices to be at least 20 bits with one as the most significant bit and 

the devices do not accept the same passkey twice. The second method is that the devices 

respectively use the DHkey to encrypt the Nai and the Nbi and then instead exchange 

them during step 7 and step 8 in Fig. 3. We argue that Barnickel et al.’s methods are 

impractical. The first method requires the devices permanently and securely to record all 
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previous passkeys of the SSP sessions. The implementation costs of this requirement are 

quite expensive for the devices. In addition, the users may feel the inconvenience, 

because the same passkey is not allowed. The second method is still vulnerable to the 

similar online attack in Section 3.2, if the attacker E shares the Diffie-Hellman key with 

the device B during the phase of public key exchange. In fact, as described in Fig. 4, the 

E can exploit the MITM attack to establish the shared DHkey2 with the B. Therefore, to 

overcome the weaknesses of the reusing passkey, we improve the passkey entry protocol 

as follows. 

 

Fig. 6 Improved passkey entry protocol 

 

After the passkey is injected into two devices (step 2a and step 2b in Fig. 6), the device 

A and the device B respectively generate the random nonce Na0 and the random nonce 

Nb0 (step 2c and step 2d in Fig. 6). The A and the B then exchange the Na0 and the Nb0 

Execute 20 times 

New random numbers are selected in 

each round 

r*a=r*a1|r*a2|…|r*a20 

r*b=r*b1|r*b2|…|r*b20 

10. Nbi 

9. Nai 

8. Cbi 

Phase 2 

7. Cai 

Initiating 

Device A 

Responding 

Device B 

2a. Inject secret ra; Set rb=ra 

2c. Select random Na0 

2b. Inject secret rb; Set ra=rb 

2d. Select random Nb0 

5a. Select random Nai 5b. Select random Nbi 

6a. Compute commitment: Cai=f1(PKax, 

PKbx, Nai, r*ai) 

Host 

6b. Compute commitment: Cbi=f1(PKbx, 

PKax, Nbi, r*bi) 

3. Na0 

4a. Compute r=f2(DHkey, Na0, Nb0, ra) and 

set 6 most significant digits of r to r*a 

4b. Compute r=f2(DHkey, Na0, Nb0, rb) and 

set 6 most significant digits of r to r*b 

4. Nb0 

9a. Check if Cai=f1(PKax, PKbx, Nai, r*bi) 

If check fails, abort 

10a. Check if Cbi=f1(PKbx, PKax, Nbi, r*ai) 

If check fails, abort 
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(step 3 and step 4 in Fig. 6). The A computes r=f2(DHkey, Na0, Nb0, ra) and sets the r*a 

using the 6 most significant digits of the r (step 4a in Fig. 6). Similarly, the B computes 

r=f2(DHkey, Na0, Nb0, rb) and sets the r*b using the 6 most significant digits of the r 

(step 4b in Fig. 6). The steps 5 through 10 in improved passkey entry protocol are same 

as the steps 3 through 8 in original passkey entry protocol (Fig. 3), except that the r*a and 

the r*b respectively take place of the ra and the rb. 

4.2 Security analysis of improved passkey entry protocol 

In our attacks on the passkey entry association model, it shows that the attacker takes 

advantage of the run(s) of the passkey entry protocol to derive host’s passkey ra. Then, 

the attacker is able to launch his MITM attack, once the host injects the ra again. Based 

on this observation, our countermeasure avoids directly using the ra for the device 

authentication. Instead, the ra is regarded as a seed of the authentication passkey r during 

the run of the passkey entry protocol. Moreover, the countermeasure uses the shared 

secret key DHkey and the cryptographic hash function f2() to guarantee against guessing 

the ra from the authentication passkey r. At the same time, the countermeasure applies the 

nonce Na0 from the device A and the nonce Nb0 from the device B to randomly update 

the authentication passkey r at each run of the passkey entry protocol. In the following, 

we analyze the security of improved passkey entry protocol in more details. 

Case 1 (Concern on offline passkey attack). In fact, the improved passkey entry 

protocol maintains the same device authentication scheme as that of original passkey 

entry protocol. That is, the A and the B take turns revealing their commitments Cai and 

Cbi until the entire ra has been mutually disclosed. Hence, for the attacker E using similar 

offline passkey attack in Section 3.1, the entire r*a still is available after a complete run 

of improved passkey entry protocol. But, the r*a is only the 6 most significant digits of 

the r, where r=f2(DHkey, Na0, Nb0, ra). The E must compromise the ra for launching the 

MITM attack in the subsequent SSP sessions. It means that the E needs to compute the ra, 

given the Na0, the Nb0, the r*a, and the f2(). Assume that the f2() is a cryptographic one-

way hash function with local one-wayness property [23]. The local one-wayness property 

means that the E should be difficult to find the remainder input of the f2(), even if part of 

the input of the f2() is known. For example, if t input bits remain unknown, it should take 

on average 2
t−1

 cryptographic hash operations to find these bits. We claim that the 

improved passkey entry protocol prevents the offline attack in Section 3.1, when the f2() 

maintains the local one-wayness property. That is to say, the E is impossible to reveal the 

ra from the Na0, the Nb0, the r*a, and the f2(), because the unknown inputs of the f2(), 

i.e., the DHkey and the ra, are large enough. Obviously, our claim also fits to the case that 
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the E collects a group of the Na0, the Nb0, and the r*a from several runs of improved 

passkey entry protocol and attempts to compute the unique ra based on the f2(). 

Case 2 (Concern on online passkey attack). As described in Fig. 4, the E can establish 

the DHkey2 shared with the device B, when the phase of public key exchange is finished. 

Let us consider the E impersonates the A to generate and send his own random Ne0 

instead of the Na0 in the run of improved passkey entry protocol. One choice of the E is 

to simply apply the similar online attack in Section 3.2. Clearly, the E directly guesses the 

correct 6-digt number r*a with the probability 10
−6

. If any run of the improved passkey 

entry protocol fails due to the wrong guess of any bit r*ai for 1≤i≤20, the B should 

generate a new Nb0, compute another r=f2(DHkey2, Ne0, Nb0, ra), and reset the 6 most 

significant digits of the new r to the r*a in the next SSP session. Hence, when the E 

mounts on the similar online attack in Section 3.2, his success probability should be 10
−6

. 

This success probability satisfies the requirement of the Bluetooth standard specification 

[10]. The other choice is that the E controls his Ne0 (step 3 of Fig. 6) and receives the 

Nb0 from the B (step 4 of Fig. 6), and then further deduces the 6 most significant digits of 

the r for the device authentication. In this case, the E need predict the 6 most significant 

digits of the r such that r=f2(DHkey2, Ne0, Nb0, ra), providing that the ra is unknown and 

the Nb0 are randomly generated by the B. This success probability also is 10
−6

, because 

the f2() has the uniform random distribution property [23]. Note that if the E does not 

share the DHkey2 with the B, the success probability of launching MITM attack should 

not be over 10
−6

. The reason is that the E faces the unknown Diffie-Hellman key but the 

states of other parameters are unchanged. 

As a result, the improved passkey entry protocol overcomes the reusing passkey 

weaknesses on the original passkey entry protocol. In essence, the secret DHkey added to 

the ra amplifies the size of the passkey space. Simultaneously, the Na0, the Nb0, and the 

f2() randomize the r and the r*a for the device authentication. This is the trick behind the 

improved protocol. 

4.3 Performance analysis of improved passkey entry protocol 

The improved passkey entry protocol for SSP aims to deploy in different Bluetooth 

devices and potentially implement in the service level of Bluetooth network systems. 

Hence, we need carefully evaluate the protocol performance. To be fair, we compare the 

improved passkey entry protocol with the original passkey entry protocol [10] and 

Barnickel et al.’s encrypting nonce protocol [18]. The reason is that these protocols are 

designed for the same security goals of the Bluetooth device and make use of similar 

basic cryptographic components. 
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In the implementation complexity concern, the improved protocol requires the random 

number generator to generate the Nai and the Nbi for each 0≤i≤20, the f2() to derive the 

authentication passkey r, and the f1() to compute and check the Cai and the Cbi for each 

1≤i≤20. Comparatively, the original protocol needs the random number generator to 

generate the Nai and the Nbi for each 1≤i≤20 and the f1() to compute and check the Cai 

and the Cbi for each 1≤i≤20. Note that the original protocol also requires the f2() during 

the phase of link key calculation. It means that the implementation complexity for the 

improved protocol and the original protocol is same in view of the whole SSP session. 

However, besides the random number generator and the f1(), Barnickel et al.’s protocol 

needs extra encryption function to encrypt the Nai and the Nbi for each 1≤i≤20. 

Therefore, the implementation complexity of Barnickel et al.’s protocol is higher than 

that of the improved protocol and the original protocol. 

As for the communication cost, the improved protocol requires 82 message interactions 

to finish a run, compared with 80 message interactions in the original protocol. Moreover, 

the improved protocol need exchange the Na0, the Nb0, the Nai, the Nbi, the Cai, and the 

Cbi for each 1≤i≤20, while the original protocol requires exchanging the Nai, the Nbi, the 

Cai, and the Cbi for each 1≤i≤20. Let the Na0 and the Nb0 all be 128 bits. We know that 

the Nai, the Nbi, the Cai, and the Cbi for each 1≤i≤20 are all 128 bits. Thus, the 

communication cost of a run is 128×82=10496 bits for the improved protocol and 

128×80=10240 bits for the original protocol. The communication cost of a run of 

Barnickel et al.’s protocol is also 10240 bits, because it merely uses the encrypted nonces 

to take place of the nonces in the original protocol and those data should have the same 

bit length. 

Consider the computation cost for a run of the protocol. The improved protocol needs 2 

cryptographic hash computations of the f2() to derive the authentication passkey r and 80 

cryptographic hash computations of the f1() to generate and check the Cai and the Cbi for 

each 1≤i≤20. We omit the setting operations for the r*a and the r*b in the improved 

protocol, because the setting operation is trivial, compared with the cryptographic hash 

computation. By contrast, the original protocol needs 80 cryptographic hash computations 

of the f1() for processing the Cai and the Cbi for each 1≤i≤20. However, Barnickel et al.’s 

protocol requires not only 80 cryptographic hash computations of the f1() for the Cai and 

the Cbi for each 1≤i≤20 but also 40 encryption nonce computations and 40 decryption 

nonce computations. 

For the storage cost, we only consider the long-standing secret values existed in all 

phases of the SSP session. Clearly, three protocols all require storing the long-standing 

DHkey. That is, these protocols cost same storage resource. 
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For comparison purpose, we regard the performance values of the original protocol as 

the baseline and define the increasing ratio of the communication cost as 

1
protocol original  theofcost ion communicat the

protocol target  theofcost ion communicat the
P

ioncommunicat
−=                  (3) 

and the increasing ratio of the computation cost as 

1
protocol original  theofcost n computatio the

protocol target  theofcost n computatio the
P

ncomputatio
−= .                    (4) 

In Table 1, we summarize the performance results of the improved protocol, the original 

protocol, and Barnickel et al.’s protocol. Here, we assume that the overheads of the 

encryption or decryption nonce computation are close to those of the cryptographic hash 

computation. It shows that the total implementation costs of the improved protocol are 

nearly to those of the original protocol. This is a desirable feature, when the improved 

protocol fits into the Bluetooth standard. However, the computation cost of Barnickel et 

al.’s protocol is higher than that of the other two protocols. 

 

Table 1 Performance comparison among the related protocols 

Performance index Our improved protocol Original protocol Barnickel et al.’s protocol 

Implementation complexity Medium Medium High 

Communication cost 10496 bits 10240 bits 10240 bits 

Pcommunication 2.5% 0 0 

Computation cost 82 H a 80 H 80 H+40 E b+40 D c≈160 H 

Pcomputation 2.5% 0 100% 

Storage cost 192 or 256 bits 192 or 256 bits 192 or 256 bits 

a. H denotes the cryptographic hash computation 

b. E denotes the encryption nonce computation 

c. D denotes the decryption nonce computation 

 

4.4 Home network application of improved passkey entry protocol 

Due to readily available and low-cost feature, an increasing number of Bluetooth devices 

are connected to the home network according to the Bluetooth standard [9, 10]. In the 

home network environment, Bluetooth services usually provide the efficient and massive 

data transmission among the pairing Bluetooth devices. The transmitting data include the 

text, the picture, the audio, the automation, and the video. The home network should 

ensure the trusted and uncompromised Bluetooth devices and the corresponding 

Bluetooth services. The SSP mechanism in the Bluetooth standard is responsible for this 
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task. In addition, when we build a secure home network system, the SSP mechanism also 

is the backbone of the Bluetooth solution to cooperate with other kinds of secure schemes 

[24–29]. 

Under the home network environments, Bluetooth devices are identifiable and 

trustable, because they always belong to the home members. Since Phan-Mingard’s 

MITM attack [17] uses the outside device, it is not regarded as a serious threat for SSP 

under the passkey entry association model. That is to say, the home member would be 

cautious, when he finds that the unfamiliar Bluetooth device tries to pair his Bluetooth 

device. By contrast, our proposed MITM attacks are destructive in the case of the home 

network, because they all run in an undetected manner. The malicious visitor can take his 

Bluetooth device to intercept the legal SSP session of the passkey entry association 

model, collect the PKa, the PKb, the Cai, and the Nai, and launch the offline attack on the 

corresponding passkey (Section 3.1). Alternatively, the malicious visitor’s Bluetooth 

device can hijack the legal SSP session of the passkey entry association model and 

directly guess the passkey online (Section 3.2). When the home member uses the 

compromised passkey again, the MITM attack (Fig. 4) should be successful and the 

malicious visitor may disclose the sensitive information stored in the pairing Bluetooth 

devices. Unfortunately, the home member does not detect any abnormal state from his 

pairing Bluetooth devices. The reason is that malicious visitor’s Bluetooth device never 

explicitly takes part in any SSP session. 

Note that the home members are perhaps apt to sharing and reusing the passkey. In 

fact, a constant passkey is convenient to smooth the run of the SSP sessions among 

Bluetooth devices from the different home members. But, the attacker may exploit this 

point to launch our MITM attacks. For this reason, the improved passkey entry protocol is 

designed to prevent the MITM attacks, even if the home members share and reuse their 

passkey. Therefore, compared with the original passkey entry protocol, the improved 

passkey entry protocol is more suitable for the home network applications. 

5 Conclusions 

Bluetooth devices are widely employed in the home network systems. It is important to 

secure those Bluetooth devices, because they always store and transmit personal sensitive 

information. In the Bluetooth standard, SSP is an essential security mechanism for 

Bluetooth devices. Our study dedicates to the MITM attacks on SSP under the passkey 

entry association model and the corresponding countermeasure. We demonstrated that the 

MITM attacks are possible, when the host reuses the passkey or the device uses 

nonrandom passkey generation algorithm in the passkey entry association model. We 

further improved the passkey entry protocol to prevent the MITM attacks on the passkey 
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entry association model. The improved protocol can be easily adapted to the Bluetooth 

standard, because it only employs the basic cryptographic components existed in the 

Bluetooth standard. Moreover, the improved protocol only increases one round message 

exchange between the pairing Bluetooth devices and one hash computation for each of 

them, compared with the original protocol. Hence, the additional implementation cost is 

insignificant. 
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