
 Open access Journal Article DOI:10.1007/S00779-017-1081-6

Man-in-the-middle attacks on Secure Simple Pairing in Bluetooth standard V5.0 and its
countermeasure — Source link

Da-Zhi Sun, Yi Mu, Willy Susilo

Institutions: Tianjin University, Information Technology University

Published on: 01 Feb 2018 - Ubiquitous Computing

Topics: Bluetooth

Related papers:

 Two practical man-in-the-middle attacks on Bluetooth secure simple pairing and countermeasures

 BlueSniff: Eve meets Alice and Bluetooth

 Implementing an Attack on Bluetooth 2.1+ Secure Simple Pairing in Passkey Entry Mode

 Cracking the Bluetooth PIN

 Practical Man-in-the-Middle Attacks Against Bluetooth Secure Simple Pairing

Share this paper:

View more about this paper here: https://typeset.io/papers/man-in-the-middle-attacks-on-secure-simple-pairing-in-
80f50x19t8

https://typeset.io/
https://www.doi.org/10.1007/S00779-017-1081-6
https://typeset.io/papers/man-in-the-middle-attacks-on-secure-simple-pairing-in-80f50x19t8
https://typeset.io/authors/da-zhi-sun-4kstc5rl8x
https://typeset.io/authors/yi-mu-48fji4xv1d
https://typeset.io/authors/willy-susilo-4fk5mjq2oq
https://typeset.io/institutions/tianjin-university-1ankozso
https://typeset.io/institutions/information-technology-university-26rhu5r0
https://typeset.io/conferences/ubiquitous-computing-1m6glsq6
https://typeset.io/topics/bluetooth-2pd6uszc
https://typeset.io/papers/two-practical-man-in-the-middle-attacks-on-bluetooth-secure-40l630trw4
https://typeset.io/papers/bluesniff-eve-meets-alice-and-bluetooth-50in7cf5tq
https://typeset.io/papers/implementing-an-attack-on-bluetooth-2-1-secure-simple-4c4gcd8buz
https://typeset.io/papers/cracking-the-bluetooth-pin-9tqaiv3elo
https://typeset.io/papers/practical-man-in-the-middle-attacks-against-bluetooth-secure-7f1cz8zqx1
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/man-in-the-middle-attacks-on-secure-simple-pairing-in-80f50x19t8
https://twitter.com/intent/tweet?text=Man-in-the-middle%20attacks%20on%20Secure%20Simple%20Pairing%20in%20Bluetooth%20standard%20V5.0%20and%20its%20countermeasure&url=https://typeset.io/papers/man-in-the-middle-attacks-on-secure-simple-pairing-in-80f50x19t8
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/man-in-the-middle-attacks-on-secure-simple-pairing-in-80f50x19t8
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/man-in-the-middle-attacks-on-secure-simple-pairing-in-80f50x19t8
https://typeset.io/papers/man-in-the-middle-attacks-on-secure-simple-pairing-in-80f50x19t8

University of Wollongong University of Wollongong

Research Online Research Online

Faculty of Engineering and Information
Sciences - Papers: Part B

Faculty of Engineering and Information
Sciences

2017

Man-in-the-middle attacks on Secure Simple Pairing in Bluetooth Man-in-the-middle attacks on Secure Simple Pairing in Bluetooth

standard V5.0 and its countermeasure standard V5.0 and its countermeasure

Da-Zhi Sun
University of Wollongong, dzsun@uow.edu.au

Yi Mu
University of Wollongong, ymu@uow.edu.au

Willy Susilo
University of Wollongong, wsusilo@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/eispapers1

 Part of the Engineering Commons, and the Science and Technology Studies Commons

Recommended Citation Recommended Citation

Sun, Da-Zhi; Mu, Yi; and Susilo, Willy, "Man-in-the-middle attacks on Secure Simple Pairing in Bluetooth

standard V5.0 and its countermeasure" (2017). Faculty of Engineering and Information Sciences - Papers:

Part B. 705.

https://ro.uow.edu.au/eispapers1/705

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/eispapers1
https://ro.uow.edu.au/eispapers1
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eispapers1?utm_source=ro.uow.edu.au%2Feispapers1%2F705&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=ro.uow.edu.au%2Feispapers1%2F705&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=ro.uow.edu.au%2Feispapers1%2F705&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.uow.edu.au/eispapers1/705?utm_source=ro.uow.edu.au%2Feispapers1%2F705&utm_medium=PDF&utm_campaign=PDFCoverPages

Man-in-the-middle attacks on Secure Simple Pairing in Bluetooth standard V5.0 Man-in-the-middle attacks on Secure Simple Pairing in Bluetooth standard V5.0
and its countermeasure and its countermeasure

Abstract Abstract
Bluetooth devices are widely employed in the home network systems. It is important to secure the home
members' Bluetooth devices, because they always store and transmit personal sensitive information. In
the Bluetooth standard, Secure Simple Pairing (SSP) is an essential security mechanism for Bluetooth
devices. We examine the security of SSP in the recent Bluetooth standard V5.0. The passkey entry
association model in SSP is analyzed under the man-in-the-middle (MITM) attacks. Our contribution is
twofold. (1) We demonstrate that the passkey entry association model is vulnerable to the MITM attack,
once the host reuses the passkey. (2) An improved passkey entry protocol is therefore designed to fix the
reusing passkey defect in the passkey entry association model. The improved passkey entry protocol can
be easily adapted to the Bluetooth standard, because it only uses the basic cryptographic components
existed in the Bluetooth standard. Our research results are beneficial to the security enhancement of
Bluetooth devices in the home network systems.

Disciplines Disciplines
Engineering | Science and Technology Studies

Publication Details Publication Details
Sun, D., Mu, Y. & Susilo, W. (2018). Man-in-the-middle attacks on Secure Simple Pairing in Bluetooth
standard V5.0 and its countermeasure. Personal and Ubiquitous Computing, 22 (1), 55-67.

This journal article is available at Research Online: https://ro.uow.edu.au/eispapers1/705

https://ro.uow.edu.au/eispapers1/705

1

Man-in-the-Middle Attacks on Secure Simple

Pairing in Bluetooth Standard V5.0 and Its

Countermeasure

Da-Zhi Sun
a,b,c

, Yi Mu
c
, Willy Susilo

c

a
 Tianjin Key Laboratory of Advanced Networking (TANK), School of Computer

Science and Technology, Tianjin University, No. 135, Yaguan Road, Tianjin

Haihe Education Park, Tianjin 300350, China

b
 State Key Laboratory of Information Security, Institute of Information

Engineering, Chinese Academy of Sciences, Beijing 100093, China

c
 Institute of Cybersecurity and Cryptology, School of Computing and Information

Technology, University of Wollongong, Wollongong, NSW 2522, Australia

Corresponding author. Tel.: +86 22 27406538; fax: +86 22 27406538; ORCID: 0000-0002-5479-

549X.

E-mail addresses: sundazhi@tju.edu.cn, dzsun@uow.edu.au (D.-Z. Sun).

Abstract

Bluetooth devices are widely employed in the home network systems. It is important to secure

home members’ Bluetooth devices, because they always store and transmit personal sensitive

information. In the Bluetooth standard, Secure Simple Pairing (SSP) is an essential security

mechanism for Bluetooth devices. We examine the security of SSP in the recent Bluetooth

standard V5.0. The passkey entry association model in SSP is analyzed under the man-in-the-

middle (MITM) attacks. Our contribution is twofold. (1) We demonstrate that the passkey entry

association model is vulnerable to the MITM attack, once the host reuses the passkey. (2) An

improved passkey entry protocol is therefore designed to fix the reusing passkey defect in the

passkey entry association model. The improved passkey entry protocol can be easily adapted to the

Bluetooth standard, because it only uses the basic cryptographic components existed in the

Bluetooth standard. Our research results are beneficial to the security enhancement of Bluetooth

devices in the home network systems.

Keywords Bluetooth standard, Secure Simple Pairing, passkey entry, man-in-the-

middle attack, home network system

2

Man-in-the-Middle Attacks on Secure Simple

Pairing in Bluetooth Standard V5.0 and Its

Countermeasure

Abstract

Bluetooth devices are widely employed in the home network systems. It is important to secure

home members’ Bluetooth devices, because they always store and transmit personal sensitive

information. In the Bluetooth standard, Secure Simple Pairing (SSP) is an essential security

mechanism for Bluetooth devices. We examine the security of SSP in the recent Bluetooth

standard V5.0. The passkey entry association model in SSP is analyzed under the man-in-the-

middle (MITM) attacks. Our contribution is twofold. (1) We demonstrate that the passkey entry

association model is vulnerable to the MITM attack, once the host reuses the passkey. (2) An

improved passkey entry protocol is therefore designed to fix the reusing passkey defect in the

passkey entry association model. The improved passkey entry protocol can be easily adapted to the

Bluetooth standard, because it only uses the basic cryptographic components existed in the

Bluetooth standard. Our research results are beneficial to the security enhancement of Bluetooth

devices in the home network systems.

Keywords Bluetooth standard, Secure Simple Pairing, passkey entry, man-in-the-

middle attack, home network system

1 Introduction

Fig. 1 Bluetooth security for the home network system

3

The Bluetooth technology [1] enables universal short-range and low-power wireless

connectivity among the Bluetooth devices. Nowadays, Bluetooth modules are integrated

in most smartphones, wireless headsets, and laptops. It is not surprising that the

Bluetooth technology is the footstone of the home network systems.

In practice, the security solutions are necessary to protect the Bluetooth applications

[2–8] due to the ubiquitousness of the Bluetooth devices. For a typical home network

system, the security overview for Bluetooth devices and their network is described as Fig.

1.

The Bluetooth network is not a traditional IP-based network. Hence, IP-based

canonical security solutions, such as IPSec and Public Key Infrastructure (PKI), are not

supported by the Bluetooth network. Nevertheless, to guarantee Bluetooth devices and

their network in a secure manner, the Bluetooth standard [9, 10] specially provides a set

of the exchanging key, authentication, and confidentiality mechanisms.

1.1 Architecture of Bluetooth security

The Bluetooth standard [10] specifies four security modes called security modes 1

through 4. A Bluetooth device possibly supports one or multiple (not all) security modes.

Security modes 2 and 4 are the service level enforced security, where security procedures

are initiated after physical and logical link setup. Comparatively, security mode 3 is

designed for the link level enforced security. That is, a device initiates security

procedures, before the physical link is fully established. Security modes 1, 2, and 3 are

the legacy security modes and apply to those devices with a controller or a host that does

not support security mode 4. Additionally, National Institute of Standards and

Technology (NIST) [11] recommends security mode 4, because it requires the secure

connections, which use Secure Simple Pairing (SSP) and Advanced Encryption Standard

(AES).

From the security view, SSP is the foundation of security mode 4. The crucial task of

SSP is to establish the link key between two Bluetooth devices. In fact, the link key

dominates the security of the Bluetooth network system, because other security

procedures all require depending on the link key to achieve their security goals. During

establishing the link key, SSP uses the Elliptic Curve Diffie-Hellman (ECDH) public key

algorithm as a means to thwart passive eavesdropping attacks. However, the ECDH

public key algorithm in SSP may be subject to man-in-the-middle (MITM) attacks

because of the lack of PKI in the Bluetooth network system. To address MITM attacks,

the four association models offered in SSP are as follows.

(1) Numeric comparison is designed for the case, where a user is shown a 6-digit

number on the display of each pairing device and provides a “yes” or “no” response

4

according to whether the numbers match. Each device in sight of the user independently

computes the 6-digit number. Hence, the MITM attacker fails due to the unmatched 6-

digit numbers.

(2) Passkey entry is primarily designed for the case, where one device has input

capability but does not have the capability to display 6 digits and the other device has

input and (or) output capabilities. To defeat MITM attacks, a 6-digit number called the

passkey need be inputted into one or two devices.

(3) Out of Band (OOB) is designed for devices that support an additional wireless, e.g.,

Near Field Communication (NFC), or wired technology. This model prevents MITM

attacks, because it assumes that the attacker cannot compromise two communication

channels simultaneously.

(4) Just works is designed for the case, where at least one of the pairing devices has

neither a display nor a keyboard for entering digits, e.g., headset. This model provides no

MITM protection.

1.2 Previous work on Secure Simple Pairing

Chang and Shmatikov [12] used the formal method tool to analyze the numeric

comparison association model in SSP and found that the authentication fails if the same

device is used parallel in different sessions. Suomalainen et al. [13] pointed out a

potential attack scenario, where the security of the device with a more IO (Input and

Output) capability is compromised by interacted with another device of restricted IO

capability. Lindell [14] proved that the numeric comparison association model in the

Bluetooth standard V2.1 is secure under the appropriate security model. Haataja and

Toivanen [15, 16] proposed the MITM attacks and the countermeasures for the numeric

comparison and OOB association models. The proposed MITM attacks exploit the

falsification of information sent during the IO capabilities exchange and the fact that the

security of SSP is likely to be limited by the capabilities of the least powerful or the least

secure device type. Phan and Mingard [17] mainly analyzed the numeric comparison,

passkey entry, and OOB association models using the MITM attacks, providing that one

device is malicious. Barnickel et al. [18] explored a MITM attack on the passkey entry

association model, when the attacker prevents the pairing process to successfully

complete and the user inputs the same passkey twice. Albahar et al. [19–21] presented

some countermeasures for SSP to prevent MITM attacks such as using new precautionary

steps in the just works association model and building the virtual channel. Gajbhiye et al.

[22] presented the simulation and the security analysis of the numeric comparison

association model in the network simulator NS2.

5

1.3 Our contribution

We examine the security of SSP in security mode 4 in the recent Bluetooth standard

specifications, i.e., the Bluetooth standard V5.0 [10]. The passkey entry association

model in SSP is reevaluated under the MITM attacks. Our contribution is twofold. (1) We

demonstrate that the passkey entry association model is vulnerable to the MITM attack,

once the host reuses the passkey. (2) An improved passkey entry protocol is therefore

designed to fix the reusing passkey problem under the passkey entry association model.

Moreover, the implementation cost of the improved passkey entry protocol only has an

insignificant increase, compared with the original protocol.

2 Review of Secure Simple Pairing

Fig. 2 Flow chart of Secure Simple Pairing

As shown in Fig. 2, SSP consists of 5 phases, i.e., public key exchange (Phase 1),

authentication stage 1 (Phase 2), authentication stage 2 (Phase 3), link key calculation

(Phase 4), and Link Manager Protocol (LMP) authentication and encryption (Phase 5).

Phases 1, 3, 4, and 5 are the same for all association models. However, authentication

stage 1 is different depending on the association model used. Before the description of 5

Phase 1 (step 1): public key exchange

Phase 2 (steps 2-8): authentication stage 1

Phase 3 (steps 9-11): authentication stage 2

Phase 4 (step 12): link key calculation

Phase 5 (step 13): LMP authentication and encryption

End

Begin

6

phases in SSP, we firstly introduce the terminology used throughout this paper. For

discussion convenience, we almost abide by the same symbols as in the Bluetooth

standard [10].

Cryptographic key

PKx: ECDH public key of Bluetooth device X or attacker X.

SKx: ECDH secret (private) key of Bluetooth device X or attacker X.

LK, LK1, and LK2: link keys established by Bluetooth devices.

DHkey, DHkey1, and DHkey2: Diffie-Hellman keys.

Constant parameter

BD_ADDRx: unique address of Bluetooth device X.

X: unique address of Bluetooth device X, when it appears in cryptographic function.

IOcapX: IO capabilities of Bluetooth device X.

btlk: a predefined bit string.

Variable parameter

Nx: nonce (unique random value) from Bluetooth device X or attacker X.

Nxi: ith nonce (unique random value) from Bluetooth device X or attacker X.

rx: random value of Bluetooth device X, i.e., the passkey.

rxi: ith bit of the rx.

r*x: random image of the rx.

r*xi: ith bit of the r*x.

Cxi: ith commitment value from Bluetooth device X.

C′xi: ith counterfeit commitment value of Bluetooth device X from the attacker.

Ex: check value from Bluetooth device X.

E′x: counterfeit check value of Bluetooth device X from the attacker.

Cryptographic hash function

f1(): used to generate and verify the Cxi and the C′xi.

f2(): used to generate the link key and possible other keys from the Diffie-Hellman

key.

f3(): used to generate and verify the Ex and the E′x in authentication stage 2.

Figure 3 describes 5 phases of SSP under the passkey entry association model. Each

Bluetooth device need generate its own ECDH public-private key pair. Here, the key pair

can be generated only once per device and may be computed in advance of the pairing

procedure. Alternatively, a device may, at any time, discard its public-private key pair

and generate a new one instead. We further explain those phases in the following.

2.1 Phase 1: public key exchange

The public key exchange phase is given as follows.

7

Fig. 3 Secure Simple Pairing under the passkey entry association model

The initiating device A and the responding device B respectively exchange the PKa

and the PKb (step 1a and step 1b in Fig. 3). The A computes the shared DHkey by the

1b. PKb
Phase 1

1a. PKa

Initiating

Device A

Responding

Device B

1c. Start computing DHkey

DHkey=P256(SKa, PKb) or DHkey=P192(SKa, PKb)
1d. Start computing DHkey

DHkey=P256(SKb, PKa) or DHkey=P192(SKb, PKa)

11. Eb

Phase 3

10. Ea

9a. Compute Ea=f3(DHkey, Na, Nb, rb, IOcapA, A, B) 9b. Compute Eb=f3(DHkey, Nb, Na, ra, IOcapB, B, A)

10a. Check Ea=f3(DHkey, Na, Nb, rb, IOcapA, A, B)

If check fails, abort

11a. Check Eb=f3(DHkey, Nb, Na, ra, IOcapB, B, A)

If check fails, abort

Phase 4

12a. Compute LK=f2(DHkey, Na, Nb, btlk,

BD_ADDRa, BD_ADDRb)

12b. Compute LK=f2(DHkey, Na, Nb, btlk,

BD_ADDRa, BD_ADDRb)

8. Nbi

7. Nai

6. Cbi

Phase 2

5. Cai

7a. Check if Cai=f1(PKax, PKbx, Nai, rbi)

If check fails, abort

2a. Inject secret ra; Set rb=ra 2b. Inject secret rb; Set ra=rb

3a. Select random Nai 3b. Select random Nbi

Steps 3-8 execute 20 times

New random numbers are selected in

each round

ra=ra1|ra2|…|ra20

rb=rb1|rb2|…|rb20

4a. Compute commitment: Cai=f1(PKax, PKbx, Nai, rai)

Host

4b. Compute commitment: Cbi=f1(PKbx, PKax, Nbi, rbi)

8a. Check if Cbi=f1(PKbx, PKax, Nbi, rai)

If check fails, abort

8

Diffie-Hellman function P256(SKa, PKb) or P192(SKa, PKb) (step 1c in Fig. 3). In other

side, the B computes the shared DHkey by the Diffie-Hellman function P256(SKb, PKa)

or P192(SKb, PKa) (step 1d in Fig. 3). Herein, if both devices’ controllers and hosts

support secure connections, the function P256() is used. Otherwise, the function P192() is

used.

2.2 Phase 2: authentication stage 1

Authentication stage 1 has three different protocols for the corresponding association

models, i.e., the numeric comparison protocol, the OOB protocol, and the passkey entry

protocol. The just works association model makes use of the numeric comparison

protocol. The detail protocol is chosen based on the IO capabilities of the pairing devices.

In this section, the passkey entry protocol is reviewed, because we address the

weaknesses on it. The host in Fig. 3 is treated as a user or a device function.

The user inputs an identical passkey ra(=rb) into both devices (step 2a and step 2b in

Fig. 3). Alternately, the passkey may be generated and displayed on one device, and then

the user inputs it into the other (also step 2a and step 2b in Fig. 3). This shared passkey

with the 20-bit length is the basis of the mutual authentication of two devices. Steps 3

through 8 are repeated 20 rounds using each bit of the passkey. In the ith round for

1≤i≤20, the device A and the device B perform the following steps.

The A and the B respectively generate the random Nai and the random Nbi (step 3a

and step 3b in Fig. 3). Then, the A and the B further commit to their ith bit of the passkey

by computing Cai=f1(PKax, PKbx, Nai, rai) and Cbi=f1(PKbx, PKax, Nbi, rbi) (step 4a

and step 4b in Fig. 3). Here, the PKax and the PKbx respectively denote the x-coordinates

of the PKa and the PKb. Then, both devices exchange the Cai and the Cbi (step 5 and step

6 in Fig. 3). Next, the A sends its Nai to the B (step 7 in Fig. 3). Upon receiving the Nai,

the B checks whether Cai=f1(PKax, PKbx, Nai, rbi). If it fails, the B terminates the run of

the protocol (step 7a in Fig. 3). Otherwise, the B also sends its Nbi to the A (step 8 in Fig.

3). Upon receiving the Nbi, the A checks whether Cbi=f1(PKbx, PKax, Nbi, rai). If it

fails, the A terminates the run of protocol (step 8a in Fig. 3).

Note that at the end of this stage, the A and the B all set Na=Na20 and Nb=Nb20 for

use in authentication stage 2.

2.3 Phase 3: authentication stage 2

The device A and the device B have successfully completed the message exchange, if

they pass the second stage of the authentication. We depict this authentication stage as

follows.

9

The A and the B respectively compute Ea=f3(DHkey, Na, Nb, rb, IOcapA, A, B) and

Eb=f3(DHkey, Nb, Na, ra, IOcapB, B, A) as confirmation values (step 9a and step 9b in

Fig. 3). The A then transmits its Ea to the B (step 10 in Fig. 3). Upon receiving the Ea,

the B checks whether Ea=f3(DHkey, Na, Nb, rb, IOcapA, A, B). If this check fails, it

indicates that the A has not confirmed the pairing and the run of the protocol should abort

(step 10a in Fig. 3). The B then transmits its Eb to the A (step 11 in Fig. 3). Upon

receiving the Eb, the A similarly checks whether Eb=f3(DHkey, Nb, Na, ra, IOcapB, B,

A). A failure indicates that the B has not confirmed the pairing and the run of the protocol

should abort (step 11a in Fig. 3).

2.4 Phase 4: link key calculation

Once both devices have confirmed the pairing, a shared LK is respectively computed by

f2(DHkey, Na, Nb, btlk, BD_ADDRa, BD_ADDRb) (step 12a and step 12b in Fig. 3).

2.5 Phase 5: LMP authentication and encryption

This phase consists of the authentication process and the encryption key generation

process, which all base the LK. It is actually the same as the final steps in the pairing of

the legacy security modes. The technique details of Phase 5 are omitted, because our

research does not focus on them.

3 Vulnerabilities on Secure Simple Pairing

When SSP is under the passkey entry association model, the passkey ra(=rb) is the only

secret used to prevent MITM attacks. Clearly, if the attacker knows the ra before the run

of the passkey entry protocol, he can launch the MITM attack as Fig. 4. According to the

passkey entry protocol, the passkey is generated and displayed by the Bluetooth device or

chosen and inputted by the user. According to the Bluetooth standard [10], the passkey

generation algorithm is not provided for the device. Hence, the device possibly operates

the nonrandom passkey generation algorithm or simply reuses the passkey. The attacker

is able to launch the MITM attack in Fig. 4, once he correctly predicts the ra displayed by

the device. On the other hand, many users are inclined to choose the same passkey in a

period of time, because it is convenient to them. In the following, we depend on this fact

to compromise the passkey. Clearly, it leads to the MITM attack on the passkey entry

association model as Fig. 4, when the compromised passkey is used again.

3.1 Offline attack on passkey

The attacker E can perform the following steps to derive the used ra.

10

Fig. 4 MITM attack on the passkey entry association model

1b′. PKe 1b. PKb

Phase 1 1a. PKa

Initiating

Device A

Attacker

 E

1c. Start computing Diffie-Hellman key

DHkey1=P256(SKa, PKe) or

DHkey1=P192(SKa, PKe)

1d. Start computing Diffie-Hellman key

DHkey2=P256(SKb, PKe) or

DHkey2=P192(SKb, PKe)

Responding

Device B

1a′. PKe

1c′. Start computing Diffie-Hellman keys

DHkey1=P256(SKe, PKa) and

DHkey2=P256(SKe, PKb) or

DHkey1=P192(SKe, PKa) and

DHkey2=P192(SKe, PKb)
Phase 2

11. Eb
11′. E′b

Phase 3

10. Ea

9a. Compute Ea=f3(DHkey1, Na,

Nb=Ne20, rb, IOcapA, A, B)

9b. Compute Eb=f3(DHkey2, Nb,

Na=Ne20, ra, IOcapB, B, A)

10a. Check

E′a=f3(DHkey2, Na=Ne20, Nb, rb, IOcapA, A, B)

If check fails, abort

11a. Check

E′b=f3(DHkey1, Nb=Ne20, Na, ra, IOcapB, B, A)

If check fails, abort

9′. Compute E′a=f3(DHkey2, Na=Ne20,

Nb, rb, IOcapA, A, B) and E′b=f3(DHkey1,

Nb=Ne20, Na, ra, IOcapB, B, A)

10′. E′a

Phase 4

12a. Compute LK1=f2(DHkey1, Na,

Nb=Ne20, btlk, BD_ADDRa,

BD_ADDRb)

12b. Compute LK2=f2(DHkey2, Na=

Ne20, Nb, btlk, BD_ADDRa,

BD_ADDRb)

12′. Compute LK1=f2(DHkey1, Na,

Nb=Ne20, btlk, BD_ADDRa,

BD_ADDRb) and LK2=f2(DHkey2,

Na=Ne20, Nb, btlk, BD_ADDRa,

BD_ADDRb)

8′. Nei
8. Nbi

7′. Nei

6′. C′bi

7. Nai

5′. C′ai

6. Cbi

5. Cai

7a. Check if C′ai=f1(PKex, PKbx, Nei, rbi)

If check fails, abort

2a. Inject secret ra; Set rb=ra 2b. Inject secret rb; Set ra=rb

3a. Select random Nai 3b. Select random Nbi

4a. Compute commitment:

Cai=f1(PKax, PKex, Nai, rai)

Host

4b. Compute commitment:

Cbi=f1(PKbx, PKex, Nbi, rbi)

8a. Check if C′bi=f1(PKex, PKax, Nei, rai)

If check fails, abort

Host

3′. Select random Nei

4′. Compute commitments:

C′ai=f1(PKex, PKbx, Nei, rai) and

C′bi=f1(PKex, PKax, Nei, rai)

Steps 3-8 execute 20 times for authentication

New random numbers are selected in each round

11

Step 1. Intercept the PKa and the PKb during the phase of public key exchange (step 1a

and step 1b of Fig. 3).

Step 2. During the phase of authentication stage 1, intercept the Cai (step 5 of Fig. 3)

and the Nai (step 7 of Fig. 3) for all 1≤i≤20.

Step 3. For each 1≤i≤20, compute C′ai=f1(PKax, PKbx, Nai, 0) and verify whether

C′ai=Cai. If so, rai=0, else rai=1.

Comments.

(1) When the E passively observes a run of the passkey entry protocol, he can collect

the PKa, the PKb, the Cai, and the Nai from the public channel and further deduce the ra

offline. Therefore, once the host uses the ra again in another new SSP session, the E is

able to exploit the MITM attack as Fig. 4. Clearly, if the host chooses another new

passkey depended on the ra, the E still possibly derives the new one from the ra.

(2) It needs to point out that Barnickel et al.’s attack [18] is similar to our offline

attack. Barnickel et al.’s attack terminates the current SSP session of two devices and

reuses the passkey in the next SSP session of two devices. However, our offline attack

allows a successful SSP session of the pairing devices and exploits subsequent SSP

sessions of them. Hence, our offline attack is not easily detected by the devices owner,

compared with Barnickel et al.’s attack.

3.2 Online attack on passkey

In some situations, the host does not change the passkey until the SSP session is

successful. The host may believe that the wireless communication errors or the related

software flaws cause the failure of the Bluetooth pairing. If the host allows the failures in

some degree, the attacker can make use of the online attack to determine the passkey. As

shown in Fig. 5, the online attack applies the bit-by-bit strategy to determine the ra. Here,

the attacker E interrupts the device A during the run of the passkey entry protocol. And,

the E induces both devices, i.e., the A and the B, to start a new SSP session, if the current

SSP session fails. To determine the rai for each 1≤i≤20, the online attack detail is

described as follows.

When the B generates the Nbi, the E also chooses his Nei (step 3b and step 3a′ in Fig.

5). Then, the B computes the Cbi (step 4b in Fig. 5). At this time, if the rai is determined

by the previous run of the protocol, the E computes his C′ai=f1(PKax, PKbx, Nei, rai)

(step 4a′ in Fig. 5). Otherwise, the E computes his C′ai=f1(PKax, PKbx, Nei, 0) (also step

4a′ in Fig. 5). Next, the E sends the C′ai and the Nei to the B (step 5′ and step 7′ in Fig.

5). If the B terminates the run of the protocol (step 7a in Fig. 5), then the E knows that the

rai is equal to 1 and induces the A to start a new SSP session with the B, else rai=0 when

12

the rai is an undetermined bit. Moreover, the E continues repeating above rule for the next

bit of the ra, if the B does not terminate the current run of the protocol.

To guess the ra, the E intercepts the PKax and the PKbx during the phase of public key

exchange. Hence, the E can always compute the C′ai for the unknown rai and further get

this rai based on the response of the B. In addition, the E is able to omit the Nbi, accept

the correctness of the Cbi, and continuously determine the next unknown bit of the ra, if

the B confirms the receiving C′ai from the E.

Fig. 5 Online attack on the passkey entry protocol

Let Pr(E) denote the probability that event E occurs. Let n and k be non-negative

integers. Assume that the binomial coefficient ��
�

�
��
�

�

k

n
 is the number of different ways of

choosing k distinct objects from a set of n distinct objects, where the order of choice is

trivial. We further present the property of the online attack.

Theorem 1 Let l be the number of the SSP sessions used in the online attack as Fig. 5.

Assume that the ra is a random number with the 20-bit length. Then,

8. Nbi

7′. Nei

5′. C′ai

6. Cbi

Phase 2

Responding

Device B

7a. Check if C′ai=f1(PKax, PKbx, Nei, rbi=rai)

If check fails, abort

2b. Inject secret rb; Set ra=rb

3b. Select random Nbi

Host

4b. Compute commitment: Cbi=f1(PKbx, PKax,

Nbi, rbi)

Attacker

E

3a′. Select random Nei

4a′. Compute commitment: if rai has be

determined before, then C′ai=f1(PKax, PKbx, Nei,

rai), else C′ai=f1(PKax, PKbx, Nei, 0)

7a′. If abort, rai=1 and abort

If not abort and the rai is known, continue

If not abort and the rai is unknown, rai=0 and

continue

Steps 3-8 execute at most 20 times for

authentication

New random numbers are selected in each round

13

20

1

20 2
1

19
2

1

20
=

sessions) SSP before 5 Fig. asattack online by the determined is ra Pr(the

��
�

�
��
�

�

−
+��

�

�
��
�

�

−
�

= lk

 l

l

k

 (1)

Proof. In the probability theory, it is well-known that the Bernoulli trial is an

experiment with exactly two possible outcomes called success and failure. Obviously, the

online passkey attack obeys the Bernoulli trial. That is, if the unknown bit rai is 0, then

the outcome of the online passkey attack is treated as success and the attack continues for

the next unknown bit of the ra, else the outcome of the attack is regarded as failure and

the attacker E need induce the devices to start a new SSP session for the next unknown bit

of the ra. Since the ra is treated as a random number with the 20-bit length,

Pr(rai=0)=Pr(rai=1)=1/2 for each 1≤i≤20. It means that the failure probability p for

guessing any rai is 1/2. According to the fact of the Bernoulli trial, the probability of

exactly f failures in the sequence of n=20 such independent trials is

() 2020
2

20
)2/1(12/1

20
)(1 ��

�

�
��
�

�
=−××��

�

�
��
�

�
=−××��

�

�
��
�

� −−

ff
pp

f

n
fffnf for each 0≤f≤20. (2)

We complete the proof and obtain the Eq. (1), since it needs to collect all probabilities of

each exactly 0≤k≤l−1 failures case and the probability of the failures case when ra20=1

and k=l. ▋

Theorem 1 says that Pr(the ra is determined by the offline attack as Fig. 5 before l=13

SSP sessions)= 0.91652
12

19
2

1

20
2

1

19
2

1

20
20

13

1

2020

1

20
≈��

�

�
��
�

�
+��

�

�
��
�

�

−
=��

�

�
��
�

�

−
+��

�

�
��
�

�

−
��

== k

l

k klk
.

Therefore, we claim that the online attack can effectively recover the passkey. Note that

the practical success probability for guessing the ra is bigger than the theory probability

value computed by Eq. (1), because the ra in the Bluetooth standard is a random 6-digit

number not a random 20-bit number.

4 Countermeasure on Secure Simple Pairing

4.1 Improved passkey entry protocol

Barnickel et al. [18] gave two methods to remove the reusing passkey attacks in the

passkey entry association model. The first method is that the user’s passkey should be

verified by Bluetooth devices to be at least 20 bits with one as the most significant bit and

the devices do not accept the same passkey twice. The second method is that the devices

respectively use the DHkey to encrypt the Nai and the Nbi and then instead exchange

them during step 7 and step 8 in Fig. 3. We argue that Barnickel et al.’s methods are

impractical. The first method requires the devices permanently and securely to record all

14

previous passkeys of the SSP sessions. The implementation costs of this requirement are

quite expensive for the devices. In addition, the users may feel the inconvenience,

because the same passkey is not allowed. The second method is still vulnerable to the

similar online attack in Section 3.2, if the attacker E shares the Diffie-Hellman key with

the device B during the phase of public key exchange. In fact, as described in Fig. 4, the

E can exploit the MITM attack to establish the shared DHkey2 with the B. Therefore, to

overcome the weaknesses of the reusing passkey, we improve the passkey entry protocol

as follows.

Fig. 6 Improved passkey entry protocol

After the passkey is injected into two devices (step 2a and step 2b in Fig. 6), the device

A and the device B respectively generate the random nonce Na0 and the random nonce

Nb0 (step 2c and step 2d in Fig. 6). The A and the B then exchange the Na0 and the Nb0

Execute 20 times

New random numbers are selected in

each round

r*a=r*a1|r*a2|…|r*a20

r*b=r*b1|r*b2|…|r*b20

10. Nbi

9. Nai

8. Cbi

Phase 2

7. Cai

Initiating

Device A

Responding

Device B

2a. Inject secret ra; Set rb=ra

2c. Select random Na0

2b. Inject secret rb; Set ra=rb

2d. Select random Nb0

5a. Select random Nai 5b. Select random Nbi

6a. Compute commitment: Cai=f1(PKax,

PKbx, Nai, r*ai)

Host

6b. Compute commitment: Cbi=f1(PKbx,

PKax, Nbi, r*bi)

3. Na0

4a. Compute r=f2(DHkey, Na0, Nb0, ra) and

set 6 most significant digits of r to r*a

4b. Compute r=f2(DHkey, Na0, Nb0, rb) and

set 6 most significant digits of r to r*b

4. Nb0

9a. Check if Cai=f1(PKax, PKbx, Nai, r*bi)

If check fails, abort

10a. Check if Cbi=f1(PKbx, PKax, Nbi, r*ai)

If check fails, abort

15

(step 3 and step 4 in Fig. 6). The A computes r=f2(DHkey, Na0, Nb0, ra) and sets the r*a

using the 6 most significant digits of the r (step 4a in Fig. 6). Similarly, the B computes

r=f2(DHkey, Na0, Nb0, rb) and sets the r*b using the 6 most significant digits of the r

(step 4b in Fig. 6). The steps 5 through 10 in improved passkey entry protocol are same

as the steps 3 through 8 in original passkey entry protocol (Fig. 3), except that the r*a and

the r*b respectively take place of the ra and the rb.

4.2 Security analysis of improved passkey entry protocol

In our attacks on the passkey entry association model, it shows that the attacker takes

advantage of the run(s) of the passkey entry protocol to derive host’s passkey ra. Then,

the attacker is able to launch his MITM attack, once the host injects the ra again. Based

on this observation, our countermeasure avoids directly using the ra for the device

authentication. Instead, the ra is regarded as a seed of the authentication passkey r during

the run of the passkey entry protocol. Moreover, the countermeasure uses the shared

secret key DHkey and the cryptographic hash function f2() to guarantee against guessing

the ra from the authentication passkey r. At the same time, the countermeasure applies the

nonce Na0 from the device A and the nonce Nb0 from the device B to randomly update

the authentication passkey r at each run of the passkey entry protocol. In the following,

we analyze the security of improved passkey entry protocol in more details.

Case 1 (Concern on offline passkey attack). In fact, the improved passkey entry

protocol maintains the same device authentication scheme as that of original passkey

entry protocol. That is, the A and the B take turns revealing their commitments Cai and

Cbi until the entire ra has been mutually disclosed. Hence, for the attacker E using similar

offline passkey attack in Section 3.1, the entire r*a still is available after a complete run

of improved passkey entry protocol. But, the r*a is only the 6 most significant digits of

the r, where r=f2(DHkey, Na0, Nb0, ra). The E must compromise the ra for launching the

MITM attack in the subsequent SSP sessions. It means that the E needs to compute the ra,

given the Na0, the Nb0, the r*a, and the f2(). Assume that the f2() is a cryptographic one-

way hash function with local one-wayness property [23]. The local one-wayness property

means that the E should be difficult to find the remainder input of the f2(), even if part of

the input of the f2() is known. For example, if t input bits remain unknown, it should take

on average 2
t−1

 cryptographic hash operations to find these bits. We claim that the

improved passkey entry protocol prevents the offline attack in Section 3.1, when the f2()

maintains the local one-wayness property. That is to say, the E is impossible to reveal the

ra from the Na0, the Nb0, the r*a, and the f2(), because the unknown inputs of the f2(),

i.e., the DHkey and the ra, are large enough. Obviously, our claim also fits to the case that

16

the E collects a group of the Na0, the Nb0, and the r*a from several runs of improved

passkey entry protocol and attempts to compute the unique ra based on the f2().

Case 2 (Concern on online passkey attack). As described in Fig. 4, the E can establish

the DHkey2 shared with the device B, when the phase of public key exchange is finished.

Let us consider the E impersonates the A to generate and send his own random Ne0

instead of the Na0 in the run of improved passkey entry protocol. One choice of the E is

to simply apply the similar online attack in Section 3.2. Clearly, the E directly guesses the

correct 6-digt number r*a with the probability 10
−6

. If any run of the improved passkey

entry protocol fails due to the wrong guess of any bit r*ai for 1≤i≤20, the B should

generate a new Nb0, compute another r=f2(DHkey2, Ne0, Nb0, ra), and reset the 6 most

significant digits of the new r to the r*a in the next SSP session. Hence, when the E

mounts on the similar online attack in Section 3.2, his success probability should be 10
−6

.

This success probability satisfies the requirement of the Bluetooth standard specification

[10]. The other choice is that the E controls his Ne0 (step 3 of Fig. 6) and receives the

Nb0 from the B (step 4 of Fig. 6), and then further deduces the 6 most significant digits of

the r for the device authentication. In this case, the E need predict the 6 most significant

digits of the r such that r=f2(DHkey2, Ne0, Nb0, ra), providing that the ra is unknown and

the Nb0 are randomly generated by the B. This success probability also is 10
−6

, because

the f2() has the uniform random distribution property [23]. Note that if the E does not

share the DHkey2 with the B, the success probability of launching MITM attack should

not be over 10
−6

. The reason is that the E faces the unknown Diffie-Hellman key but the

states of other parameters are unchanged.

As a result, the improved passkey entry protocol overcomes the reusing passkey

weaknesses on the original passkey entry protocol. In essence, the secret DHkey added to

the ra amplifies the size of the passkey space. Simultaneously, the Na0, the Nb0, and the

f2() randomize the r and the r*a for the device authentication. This is the trick behind the

improved protocol.

4.3 Performance analysis of improved passkey entry protocol

The improved passkey entry protocol for SSP aims to deploy in different Bluetooth

devices and potentially implement in the service level of Bluetooth network systems.

Hence, we need carefully evaluate the protocol performance. To be fair, we compare the

improved passkey entry protocol with the original passkey entry protocol [10] and

Barnickel et al.’s encrypting nonce protocol [18]. The reason is that these protocols are

designed for the same security goals of the Bluetooth device and make use of similar

basic cryptographic components.

17

In the implementation complexity concern, the improved protocol requires the random

number generator to generate the Nai and the Nbi for each 0≤i≤20, the f2() to derive the

authentication passkey r, and the f1() to compute and check the Cai and the Cbi for each

1≤i≤20. Comparatively, the original protocol needs the random number generator to

generate the Nai and the Nbi for each 1≤i≤20 and the f1() to compute and check the Cai

and the Cbi for each 1≤i≤20. Note that the original protocol also requires the f2() during

the phase of link key calculation. It means that the implementation complexity for the

improved protocol and the original protocol is same in view of the whole SSP session.

However, besides the random number generator and the f1(), Barnickel et al.’s protocol

needs extra encryption function to encrypt the Nai and the Nbi for each 1≤i≤20.

Therefore, the implementation complexity of Barnickel et al.’s protocol is higher than

that of the improved protocol and the original protocol.

As for the communication cost, the improved protocol requires 82 message interactions

to finish a run, compared with 80 message interactions in the original protocol. Moreover,

the improved protocol need exchange the Na0, the Nb0, the Nai, the Nbi, the Cai, and the

Cbi for each 1≤i≤20, while the original protocol requires exchanging the Nai, the Nbi, the

Cai, and the Cbi for each 1≤i≤20. Let the Na0 and the Nb0 all be 128 bits. We know that

the Nai, the Nbi, the Cai, and the Cbi for each 1≤i≤20 are all 128 bits. Thus, the

communication cost of a run is 128×82=10496 bits for the improved protocol and

128×80=10240 bits for the original protocol. The communication cost of a run of

Barnickel et al.’s protocol is also 10240 bits, because it merely uses the encrypted nonces

to take place of the nonces in the original protocol and those data should have the same

bit length.

Consider the computation cost for a run of the protocol. The improved protocol needs 2

cryptographic hash computations of the f2() to derive the authentication passkey r and 80

cryptographic hash computations of the f1() to generate and check the Cai and the Cbi for

each 1≤i≤20. We omit the setting operations for the r*a and the r*b in the improved

protocol, because the setting operation is trivial, compared with the cryptographic hash

computation. By contrast, the original protocol needs 80 cryptographic hash computations

of the f1() for processing the Cai and the Cbi for each 1≤i≤20. However, Barnickel et al.’s

protocol requires not only 80 cryptographic hash computations of the f1() for the Cai and

the Cbi for each 1≤i≤20 but also 40 encryption nonce computations and 40 decryption

nonce computations.

For the storage cost, we only consider the long-standing secret values existed in all

phases of the SSP session. Clearly, three protocols all require storing the long-standing

DHkey. That is, these protocols cost same storage resource.

18

For comparison purpose, we regard the performance values of the original protocol as

the baseline and define the increasing ratio of the communication cost as

1
protocol original theofcost ion communicat the

protocol target theofcost ion communicat the
P

ioncommunicat
−= (3)

and the increasing ratio of the computation cost as

1
protocol original theofcost n computatio the

protocol target theofcost n computatio the
P

ncomputatio
−= . (4)

In Table 1, we summarize the performance results of the improved protocol, the original

protocol, and Barnickel et al.’s protocol. Here, we assume that the overheads of the

encryption or decryption nonce computation are close to those of the cryptographic hash

computation. It shows that the total implementation costs of the improved protocol are

nearly to those of the original protocol. This is a desirable feature, when the improved

protocol fits into the Bluetooth standard. However, the computation cost of Barnickel et

al.’s protocol is higher than that of the other two protocols.

Table 1 Performance comparison among the related protocols

Performance index Our improved protocol Original protocol Barnickel et al.’s protocol

Implementation complexity Medium Medium High

Communication cost 10496 bits 10240 bits 10240 bits

Pcommunication 2.5% 0 0

Computation cost 82 H a 80 H 80 H+40 E b+40 D c≈160 H

Pcomputation 2.5% 0 100%

Storage cost 192 or 256 bits 192 or 256 bits 192 or 256 bits

a. H denotes the cryptographic hash computation

b. E denotes the encryption nonce computation

c. D denotes the decryption nonce computation

4.4 Home network application of improved passkey entry protocol

Due to readily available and low-cost feature, an increasing number of Bluetooth devices

are connected to the home network according to the Bluetooth standard [9, 10]. In the

home network environment, Bluetooth services usually provide the efficient and massive

data transmission among the pairing Bluetooth devices. The transmitting data include the

text, the picture, the audio, the automation, and the video. The home network should

ensure the trusted and uncompromised Bluetooth devices and the corresponding

Bluetooth services. The SSP mechanism in the Bluetooth standard is responsible for this

19

task. In addition, when we build a secure home network system, the SSP mechanism also

is the backbone of the Bluetooth solution to cooperate with other kinds of secure schemes

[24–29].

Under the home network environments, Bluetooth devices are identifiable and

trustable, because they always belong to the home members. Since Phan-Mingard’s

MITM attack [17] uses the outside device, it is not regarded as a serious threat for SSP

under the passkey entry association model. That is to say, the home member would be

cautious, when he finds that the unfamiliar Bluetooth device tries to pair his Bluetooth

device. By contrast, our proposed MITM attacks are destructive in the case of the home

network, because they all run in an undetected manner. The malicious visitor can take his

Bluetooth device to intercept the legal SSP session of the passkey entry association

model, collect the PKa, the PKb, the Cai, and the Nai, and launch the offline attack on the

corresponding passkey (Section 3.1). Alternatively, the malicious visitor’s Bluetooth

device can hijack the legal SSP session of the passkey entry association model and

directly guess the passkey online (Section 3.2). When the home member uses the

compromised passkey again, the MITM attack (Fig. 4) should be successful and the

malicious visitor may disclose the sensitive information stored in the pairing Bluetooth

devices. Unfortunately, the home member does not detect any abnormal state from his

pairing Bluetooth devices. The reason is that malicious visitor’s Bluetooth device never

explicitly takes part in any SSP session.

Note that the home members are perhaps apt to sharing and reusing the passkey. In

fact, a constant passkey is convenient to smooth the run of the SSP sessions among

Bluetooth devices from the different home members. But, the attacker may exploit this

point to launch our MITM attacks. For this reason, the improved passkey entry protocol is

designed to prevent the MITM attacks, even if the home members share and reuse their

passkey. Therefore, compared with the original passkey entry protocol, the improved

passkey entry protocol is more suitable for the home network applications.

5 Conclusions

Bluetooth devices are widely employed in the home network systems. It is important to

secure those Bluetooth devices, because they always store and transmit personal sensitive

information. In the Bluetooth standard, SSP is an essential security mechanism for

Bluetooth devices. Our study dedicates to the MITM attacks on SSP under the passkey

entry association model and the corresponding countermeasure. We demonstrated that the

MITM attacks are possible, when the host reuses the passkey or the device uses

nonrandom passkey generation algorithm in the passkey entry association model. We

further improved the passkey entry protocol to prevent the MITM attacks on the passkey

20

entry association model. The improved protocol can be easily adapted to the Bluetooth

standard, because it only employs the basic cryptographic components existed in the

Bluetooth standard. Moreover, the improved protocol only increases one round message

exchange between the pairing Bluetooth devices and one hash computation for each of

them, compared with the original protocol. Hence, the additional implementation cost is

insignificant.

Acknowledgments

The work of Dr. Da-Zhi Sun was funded in part by China Scholarship Council and in part by the

Open Project of Shanghai Key Laboratory of Trustworthy Computing under Grant No.

07dz22304201402. The authors would like to thank the editor and the reviewers for their valuable

suggestions and comments.

References

1. Bluetooth Special Interest Group (SIG), 2017, https://www.bluetooth.org/en-us

2. Hager, C.T., Midkiff, S.F.: An analysis of Bluetooth security vulnerabilities. In: Proceedings of

IEEE Wireless Communications and Networking Conference-WCNC 2003, New Orleans, LA,

USA, Volume: 3, pp. 1825–1831. IEEE Communications Society (2003)

3. Wong, F.L., Stajano, F., Clulow, J.: Repairing the Bluetooth pairing protocol. In: Christianson,

B., Crispo, B., Malcolm, J.A., Roe, M. (eds.): Proceedings of the 13th International Security

Protocols Workshop-Security Protocols 2005, Cambridge, UK, Lecture Notes in Computer

Science, Volume 4631, pp. 31–45. Springer Berlin Heidelberg (2007)

4. Xu, J.F., Zhang, T., Lin, D., Mao, Y., Liu, X.N., Chen, S.W., Shao, S., Tian, B., Yi, S.W.:

Pairing and authentication security technologies in low-power Bluetooth. In: Proceedings of IEEE

International Conference on Green Computing and Communications-GreenCom, IEEE

International Conference on Internet of Things-iThings, IEEE International Conference on Cyber,

Physical and Social Computing-CPSCom, Beijing, China, pp. 1081–1085. IEEE Computer Society

(2013)

5. Mandal, B.K., Bhattacharyya, D., Kim, T.H.: An architecture design for wireless authentication

security in Bluetooth network. International Journal of Security and Its Applications 8(3), 1–8

(2014)

6. Sun, D.Z., Li, X.H.: Vulnerability and enhancement on Bluetooth pairing and link key

generation scheme for Security Modes 2 and 3. In: Lam, K.Y., Chi, C.H. (eds.): Proceedings of the

18th International Conference on Information and Communications Security-ICICS 2016,

Singapore, Lecture Notes in Computer Science, Volume 9977, pp. 403–417. Springer Berlin

Heidelberg (2016)

7. Cope, P., Campbell, J., Hayajneh T.: An investigation of Bluetooth security vulnerabilities. In:

Proceedings of the 7th Annual Computing and Communication Workshop and Conference-

CCWC, Las Vegas, NV, USA, pp. 1–7. IEEE (2017)

21

8. Hassan, S.S., Bibon, S.D., Hossain, M.S., Atiquzzaman M.: Security threats in Bluetooth

technology. Computers and Security 8(3), in press (2017). DOI: 10.1016/j.cose.2017.03.008

9. Specification of the Bluetooth System, Supplement to the Bluetooth Core Specification, CSSv6,

Bluetooth SIG Proprietary, Publication date: Jul. 2015, https://www.bluetooth.com/specifications/

adopted-specifications

10. Specification of the Bluetooth System, Covered Core Package Version: 5.0, Master Table of

Contents & Compliance Requirements, Bluetooth SIG Proprietary, Publication date: Dec. 2016,

https://www.bluetooth.com/specifications/adopted-specifications

11. Padgette, J., Bahr, J., Batra, M., Holtmann, M., Smithbey, R., Chen, L., Scarfone, K.: Guide to

Bluetooth security: recommendations of the National Institute of Standards and Technology.

National Institute of Standards and Technology (NIST), U.S. Department of Commerce, Special

Publication 800-121 Revision 2, May 2017, http://nvlpubs.nist.gov/nistpubs/SpecialPublications/

NIST.SP.800-121r2.pdf

12. Chang, R., Shmatikov, V.: Formal analysis of authentication in Bluetooth device pairing. In:

Proceedings of LICS/ICALP Workshop on Foundations of Computer Security and Automated

Reasoning for Security Protocol Analysis-FCS-ARSPA’07, pp. 45–62. (2007)

13. Suomalainen, J., Valkonen, J., Asokan, N.: Security associations in personal networks: a

comparative analysis. In: Proceedings of European Workshop on Security and Privacy in Ad-Hoc

and Sensor Networks-ESAS’07, Cambridge, UK, Lecture Notes in Computer Science, Volume

4572, pp. 43–57. Springer Berlin Heidelberg (2009)

14. Lindell, A.Y.: Comparison-based key exchange and the security of the numeric comparison

mode in Bluetooth v2.1. In: Fischlin, M. (ed.): Proceedings of the Cryptographers’ Track at the

RSA Conference-CT-RSA 2009, San Francisco, CA, USA, Lecture Notes in Computer Science,

Volume 5473, pp. 66–83. Springer Berlin Heidelberg (2009)

15. Haataja, K., Toivanen, P.: Practical man-in-the-middle attacks against Bluetooth secure simple

pairing. In: Proceedings of the 4th International Conference on Wireless Communications,

Networking and Mobile Computing-WiCOM’08, Dalian, China, pp. 1–5. IEEE (2008)

16. Haataja, K., Toivanen, P.: Two practical man-in-the-middle attacks on Bluetooth secure simple

pairing and countermeasures. IEEE Transactions on Wireless Communications 9(1), 384–392

(2010)

17. Phan, R.C.-W., Mingard, P.: Analyzing the secure simple pairing in Bluetooth v4.0. Wireless

Personal Communications 64(4), 719–737 (2012)

18. Barnickel, J., Wang, J., Meyer, U.: Implementing an attack on Bluetooth 2.1+ secure simple

pairing in passkey entry mode. In: Proceedings of 11th International Conference on Trust, Security

and Privacy in Computing and Communications-TrustCom 2012, Liverpool, UK, pp. 17–24. IEEE

Computer Society (2012)

19. Albahar, M.A., Keijo, H., Pekka, T.: Bluetooth MITM vulnerabilities: a literature review,

novel attack scenarios, novel countermeasures, and lessons learned. International Journal on

Information Technologies and Security 8(4), 25–49 (2016)

22

20. Albahar, M.A., Keijo, H., Pekka, T.: Virtual channel based pairing: a new novel solution

structure for Bluetooth pairing. International Journal on Information Technologies and Security

8(4), 51–65 (2016)

21. Albahar, M.A., Keijo, H., Pekka, T.: Towards enhancing just works Bluetooth pairing.

International Journal on Information Technologies and Security 8(4), 67–82 (2016)

22. Gajbhiye, S., Sharma, M., Karmkar, S., Sharma, S.: Design, implementation and security

analysis of Bluetooth pairing protocol in NS2. In: Proceedings of International Conference on

Advances in Computing, Communications and Informatics-ICACCI 2016, Jaipur, India, pp. 1711–

1717. IEEE (2016)

23. Menezes, A., Oorschot, P. van, Vanstone, S.: Handbook of Applied Cryptography. CRC Press

(1997). Chapter 9

24. Sun, D.Z., Zhong, J.D.: A hash-based RFID security protocol for strong privacy protection.

IEEE Transactions on Consumer Electronics 58(4), 1246–1252 (2012)

25. Sun, D.Z., Li, J.X., Feng, Z.Y., Cao, Z.F., Xu, G.Q.: On the security and improvement of a

two-factor user authentication scheme in wireless sensor networks. Personal and Ubiquitous

Computing 17(5), 895–905 (2013)

26. Yoon, E.J., Kim, C.: Advanced biometric-based user authentication scheme for wireless sensor

networks. Sensor Letters 11(9), 1836–1843 (2013)

27. Zhu, H.J., Fang, C.L.H., Liu, Y., Chen, C.L., Li, M.Y., Shen, X.M.S.: You can jam but you

cannot hide: defending against jamming attacks for geo-location database driven spectrum sharing.

IEEE Journal on Selected Areas in Communications 34(10), 2723–2737 (2016)

28. Li, M.Y., Meng, Y., Liu, J.Y., Zhu, H.J., Liang, X.H., Liu, Y., Ruan, N.: When CSI meets

public WiFi: inferring your mobile phone password via WiFi signals. In: Proceedings of the ACM

SIGSAC Conference on Computer and Communications Security-CCS 2016, Vienna, Austria, pp.

1068–1079. ACM (2016)

29. Kim, C., Shin, D., Yang, C.N.: Self-embedding fragile watermarking scheme to restoration of

a tampered image using AMBTC. Personal and Ubiquitous Computing, Online First (2017). DOI:

10.1007/s00779-017-1061-x

