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Management and control of domestic

smart grid technology
Albert Molderink, Student member, IEEE, Vincent Bakker, Student member, IEEE, Maurice G.C. Bosman,

Johann L. Hurink, Gerard J.M. Smit

Abstract—Emerging new technologies like distributed genera-
tion, distributed storage, and demand side load management will
change the way we consume and produce energy. These tech-
niques enable the possibility to reduce the greenhouse effect and
improve grid stability by optimizing energy streams. By smartly
applying future energy production, consumption and storage
techniques, a more energy efficient electricity supply chain can
be achieved. In this paper a three-step control methodology is
proposed to manage the cooperation between these technologies,
focused on domestic energy streams. In this approach, (global)
objectives like peak shaving or forming a Virtual Power Plant
can be achieved without harming the comfort of residents. As
shown in this work, using good predictions, in advance planning
and realtime control of domestic appliances, a better matching
of demand and supply can be achieved.

Index Terms—Micro-generation, Energy efficiency, Microgrid,
Virtual Power Plant, Smart grid

I. INTRODUCTION

In the last decades, more and more stress is put on the

electricity supply and infrastructure. On the one hand, electric-

ity usage increased significantly and became very fluctuating.

Demand peaks have to be generated and transmitted, and they

define the minimal requirements in the chain. Thus, due to the

fluctuating demand, minimal grid requirements have increased.

Another effect of fluctuations in demand is a decrease in

generation efficiency [1].

On the other hand, the reduction in the CO2 emissions and

the introduction of generation based on renewable sources

become important topics today. However, these renewable

resources are mainly given by very fluctuating and uncontrol-

lable sun-, water- and wind power. The generation patterns

resulting from these renewable sources may have some sim-

ilarities with the electricity demand patterns, but they are in

general far from being equal. For this reason, supplemental

production is required to keep the demand and supply in bal-

ance, resulting in an even more fluctuating generation pattern

for the conventional power plants. Finally, the introduction

of new, energy efficient technologies such as electrical cars

can result in a even further fluctuating electricity demand.

Uncontrolled charging of electrical cars will result in a high

peak demands of electricity since these vehicles need to be
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charged fast to ensure enough capacity for the upcoming trip.

Lowering the peaks in demand is desirable to prolong the

usage of the available grid capacity.

A solution for these problems may be to transform domestic

customers from static consumer into active participants in the

production process. Consumers participation can be achieved

due to the development of new (domestic) appliances with con-

trollable load, microgeneration and domestic energy storage of

both heat and electricity. These devices have potential to shift

electricity consumption in time without harming the comfort of

the residents. Examples of devices with optimization potential

are (smart) freezers and fridges which can adjust their cooling

cycles to shift their electricity load or batteries that can

temporarily store excess electricity. How to improve energy

efficiency using this domestic potential is still not well studied

and needs to be a topic of further research.

It is, in general, agreed that it is both desirable and necessary

to manage Distributed Generation (DG) and to optimize its

efficiency. In [2] it is stated that a fit-and-forget introduction

of domestic DG will cause stability problems. Furthermore,

the large scale introduction of renewables requires a new grid

design and management. A study of the International Energy

Agency concludes that, although DG has higher capital costs

than power plants, it has potential and that it is possible

with DG to supply all demand with the same reliability, but

with lower capacity margins [3]. The study foresees that the

supply can change to decentralized generation in three steps:

1) accommodation in the current grid, 2) introduction of a

decentralized system cooperating with the central system and

3) supplying most demand by DG. However, both [2] and

[3] indicate that commercial attainability and legislation are

important factors for the success of the introduction of DG.

The goal of our research is to determine a methodology

to use the domestic optimization potential to 1) optimize

efficiency of current power plants, 2) support the introduction

of a large penetration level of renewable sources (and thereby

facilitate the means that are needed for CO2 reduction) and

3) optimize usage of the current grid capacity.

In this work we give a more detailed description of the

control strategy presented in [4] to exploit domestic optimiza-

tion potential. This control strategy consists of (local) profile

prediction, in advance global planning and realtime local

control. Here, these individual steps, the choices made and

the idea behind the methodology are expounded. Furthermore,

results of a new realistic use case simulated using a simulator

[5] are given. Furthermore, lessons learned from our prototype

with first versions of our algorithms to study controllability of
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the devices in the real world are given.

The remaining of this paper is structured as follows. The fol-

lowing section introduces the domestic optimization potential.

Section III gives an overview of related work and ends with a

general management and control concept based on the related

work. Section IV describes our approach and the proposed

three-step methodology. Next, sections V to VII describe the

details of the three steps. In section VIII the results of two case

studies are given. We conclude this paper with a discussion of

the results.

II. OPTIMIZATION POTENTIAL

The goal of our control methodology is to exploit the

optimization potential of domestic technologies. Although

some of these technologies themselves may lead to a decreased

domestic energy usage (electricity and heat), the initial goal

of this method is not to decrease domestic energy usage,

but to optimize the electricity import/export by reshaping

the energy profiles of the houses. The energy profiles are

reshaped such that they can be supplied more efficiently or

by a higher share of renewable sources. Besides improving

efficiency, optimization can (and has to) enhance the reliability

of supply [2], [3].

The primary functionality of the system is to control the

domestic generation and buffering technologies in such a way

that they are used properly. Furthermore, the required heat and

electricity supply and the comfort for the residents should be

guaranteed. Some devices have some scheduling freedom in

how to meet these requirements. This scheduling freedom of

the domestic devices is limited by the comfort and technical

constraints and can be used for optimizations. More scheduling

freedom can be gained when residents are willing to decrease

their comfort level leading to less restrictive constraints for

the scheduling. This (small) decrease in comfort should lead

to benefits for the residents, e.g. a reduced electricity bill.

The optimization objective can differ, depending on the

stakeholder of the control systems. The objective for residents

or utilities can be earning/saving money and therefore the goal

is to generate electricity when prices are high and consume

electricity when prices are low. For network operators the goal

can be to maintain grid stability and decrease the required

capacity while an environmental goal can be to improve the

efficiency of power plants. Therefore, an optimization method-

ology should be able to work towards different objectives.

Next to different objectives, control methodologies can have

different scopes for optimization: a local scope (within the

house), a scope of a group of houses e.g. a neighborhood

(microgrid) or a global scope (Virtual Power Plant). Every

scope again might result in different optimization objectives.

1) Local scope: On a local scope the import from and

export into the grid can be optimized, without cooperation

with other houses. Possible optimization objectives are shifting

electricity demand to more beneficial periods (e.g. nights)

and peak shaving. The ultimate goal can be to create an

independent house, which implies no net import from or net

export into the grid. A house that is physically isolated from

the grid is called an islanded house.

The advantages of a local scope is that it is relatively easy

to realize; there is no communication with others (privacy)

and there is no external entity deciding which appliances are

switched on or off (social acceptance).

2) Microgrid: In a microgrid a group of houses together

optimize their combined import from and export into the grid,

optionally combined with larger scale DG (e.g. windturbines).

The objectives of a microgrid can be shifting loads and shaving

peaks such that demand and supply can be matched better

internally. The ultimate goal is perfect matching within the

microgrid, resulting in an islanded microgrid. Advantage of

a group of houses is that their joint optimization potential is

higher than that of individual houses since the load profile

is less dynamic (e.g. startup peaks of appliances disappear

in the combined load). Furthermore, multiple microgenerators

working together can match more demand than individual mi-

crogenerators since better distribution in time of the production

is possible [6]. However, for a microgrid a more complex

optimization methodology is required.

3) Virtual Power Plant (VPP): The original VPP concept

is to manage a large group of micro-generators with a total

capacity comparable to a conventional power plant. Such a

VPP can replace a power plant while having a higher effi-

ciency, and moreover, it is much more flexible than a normal

power plant. Especially this last point is interesting since it

expresses the usability to react on fluctuations. This original

idea of a VPP can of course be extended to all domestic

technologies. Again, for a VPP also a complex optimization

methodology is required. Furthermore, communication with

every individual house is required and privacy and acceptance

issues may occur.

III. RELATED WORK

Most research projects in first instance focus on introducing

and managing (domestic) DG. In [7] the impact of DG on the

stability of the grid itself is studied, i.e. whether the oscillatory

stability of the grid and transformers can be improved with

DG. Their conclusion is that it is possible to improve the

stability when the generators are managed correctly. The

authors of [8] conclude, based on UK energy demand data, that

it is attractive to install microCHPs to reduce CO2 emission

significantly.

Next to DG, energy storage and demand side load man-

agement are also relevant research topics. One of the options

is to combine windturbines with electricity storage to level

out the fluctuations by predicting the expected production

and planning the amount of electricity exported to the grid

exploiting the electricity buffer [9]. In [10] and [11] Grid

Friendly Appliances are described. These appliances switch

(parts of) their load off when the frequency of the grid deviates

too much. This frequency deviation is a measure for the stress

of the grid.

A lot of control methodologies for DG, energy storage

and/or demand side load management are described in lit-

erature, mostly using an agent-based solution. Most agent

based methodologies propose one agent per device placing

bids at the agent one level higher [12]. This higher level agent
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aggregates the bids and sends them upwards. The top level

agent determines a market clearing price based on the bids

and the objective. In [13] multiple domestic technologies are

combined: they conclude that demand side load management

offers 50% of the potential. However, there have to be incen-

tives for the residents to allow some discomfort (e.g. a reduced

energy bill to allow a deviation on the room temperature).

The PowerMatcher described in [14] and [15] uses a similar

agent based approach but also takes the network capacity into

account. Field tests showed a peak reduction of 30% when

a temperature deviation of one degree of the thermostat is

allowed [16].

In [17] the results of individual (local) and overall (global)

optimizations are compared. They conclude that global opti-

mizations lead to better results. Next, they claim that agent

based methodologies outperform non-agent based methodolo-

gies since agent based methodologies take more (domestic)

information into account.

Next to agent based methodologies, there are also non-agent

based methodologies. The research described in [18] proposes

a method that is capable to aim for different objectives. The

methodology is based on a cost function for every device and

using a Non Linear Problem definition the optimal schedule

is found. The authors of [19] address the problems of both

agent and non-agent based solutions: non-agent based solu-

tion are less scalable and agent based solutions need local

intelligence and are not transparent. Therefore, they propose a

combination: aggregate data on multiple levels, while these

levels contain some intelligence. In [20] a methodology is

proposed using Stochastic Dynamic Programming (SDP). The

stochastic part of the methodology considers the uncertainty in

predictions and the stochastic nature of (renewable) production

and demand.

Most methodologies use prediction of demand and/or pro-

duction. Both can be predicted rather good with neural net-

works, as described in [21] and [22].

Summary: Most of the researchers propose a hierarchical

structured, agent based solution. The hierarchical structure

ensures the scalability of the solution. Although a lot of

approaches claim to be distributed without a central algorithm,

all approaches found have one decision-making element.

The similarities between the described approaches and our

approach is the control up to an appliance level and the

hierarchical structure with aggregation on each level (local

and global control). The main differences are the predic-

tion/planning and the lack of agents. Although some agent-

based approaches use prediction and planning on a device

level, this is utilized for profit raising of the agent itself.

The latter is also the main difference between our approach

and an agent-based approach: agents are greedy and try to

optimize their own profit where our optimization methodology

tries to reach a global objective for the whole fleet. As

stated in [17], global optimization algorithms lead to better

results. Furthermore, our approach can address each household

individually using different steering signals instead of using

the same signal (price) for everyone.
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Fig. 1. Model of domestic energy streams

IV. APPROACH

Our research focuses on the development of algorithms

for the control of energy streams in (a group of) houses.

These algorithm are verified using a simulator. This simulator

can simulate the complete methodology for a large fleet

of houses on a device level incorporating local and global

controllers. A detailed description of the simulator can be

found in [5]. Furthermore, the validity of assumptions made

during development of our models have been verified with a

prototype. This prototype consists of a microCHP appliance,

a heatstore, controllable appliances (both heat and electricity)

and control algorithms implemented in software. A detailed

description of this prototype can be found in [23].

The remainder of this section describes the underlying

model of a house on which the algorithms and also the simu-

lator are based. Next, the basic idea and a general description

of the proposed control methodology are given.

A. Model

The model of a single house is shown in Fig. 1. Every house

consists of (several) micro-generators, heat and electricity

buffers, appliances and a local controller. Multiple houses

are combined into a (micro)grid, exchanging electricity and

information between the houses. Electricity can be imported

from and exported into the grid. Heat is produced, stored and

used only within the house.

All domestic heat and electricity devices are divided into

three groups: 1) producers producing heat and/or electricity, 2)

buffers temporarily storing heat or electricity and 3) consumers

consuming heat and/or electricity. Every producer, buffer and

consumer is called a device. Heat and electricity production

can be coupled on device level. For example, a microCHP

produces either heat and electricity or nothing at all. The same

holds for some consuming devices, e.g. a hot fill washing

machine. A more detailed description of the model can be

found in [5].

Within the model, the planning horizon is discretisized

resulting in a set of consecutive time intervals. The number of
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intervals depends on the length of the planning horizon and the

length of the intervals. We often use a 6 minute time interval

since such an interval length is a good trade off between

accuracy and amount of data [24]. Furthermore, 6 minute time

interval calculate easy since it is 1

10
of an hour.

B. Methodology

The goal of the energy management methodology is to

introduce a generic solution for different (future) domestic

technologies and house configurations. Furthermore, within

the methodology multiple objectives are possible and the

scope of the methodology can differ. As a consequence, the

methodology needs to be very flexible and generic. Since there

can be global objectives (e.g. in case of a VPP) and the actual

control of devices is on domestic level, both a global and

a local controller are needed. Furthermore, the methodology

should be able to optimize for a single house up to a large

group of houses. So, the algorithms used in the control system

should be scalable and the amount of required communication

limited. The goal of the methodology is to exploit as much

potential as possible while respecting the comfort constraints

of the residents and the technical constraints of the devices.

One of the applications of the control methodology is to act

actively on an electricity market. To trade on such a market,

an electricity profile must be specified one day in advance.

Therefore, it should be possible to determine a planning one

day in advance for the next day.

Another application can be to react on fluctuations in the

grid. Reacting on fluctuations requires a realtime control

and sufficient generation capacity must be available at every

moment. To achieve this available capacity, again a planning

must be determined in advance.

Therefore, the proposed control strategy consists of three

steps. A schematic representation of the method is given in

Figure 2. In the first step, a system located at the consumers

predicts the production and consumption pattern for all appli-

ances for the upcoming day. For each appliance, based on the

historical usage pattern of the residents and external factors

like the weather, a predicted energy profile is generated. The

local controller aggregates these profiles and sends them to the

global controller. The aggregated energy profile determines the

potential of all appliances located in the houses.

In the second step, these optimization potentials can be used

by a central planner to exploit the potential to reach a global

objective. The global controller consists of multiple nodes

connected in a tree structure. Each house sends its profile to

its parent node, this node aggregates all received profiles and

sends the aggregated profile upwards in the tree, etc. Based on

the received profile and the objective, the root node determines

steering signals for its children to work towards the global

objective. Each node in the tree determines steering signals for

its children based on the received steering signals. The house

controllers can determine an adjusted profile, incorporating the

steering signals. This profile is sent upwards in the tree and

when necessary the root node can adjust the steering signals.

So, the planning is an iterative, distributed algorithm lead by

the global controller. The position of the uppermost node and

PREDICTION

PLANNING

REALTIME

CONTROL

Fig. 2. Three step methododolgy

therefore the global controller determines the scope of the

optimization (within the house, a neighborhood node, etc.).

The result of the second step is a planning for each household

for the upcoming day.

In the final step, a realtime control algorithm decides at

which times appliances are switched on/off, when and how

much energy flows from or to the buffers and when and which

generators are switched on. This realtime control algorithm

uses steering signals from the global planning as input, but

preserves the comfort of the residents in conflict situations.

Furthermore, the local controller has to work around prediction

errors.

The combination of prediction, planning and real-time con-

trol exploits all potential on the most beneficial times. The

hierarchical structure with intelligence on the different levels

ensures scalability, reduces the amount of communication and

decreases the computation time of the planning.

This three-step approach is discussed in more detail in

the following sections. The combination of prediction, local

controllers and global controllers can be extended to a Smart

Grid [2] solution, controlling non-domestic DG, non-domestic

buffers and domestic imports/exports optimizing efficiency of

central power plants. Since the use case described in the

Results section is based on a microCHP, the description of the

first two steps focus on the optimization of a fleet of microCHP

devices.

V. STEP 1: LOCAL PREDICTION

The optimization potential of micro-generators is based on

their scheduling freedom. While PV or microwindturbine are

solely dependent on renewable resources and thus have no

scheduling freedom, a microCHP appliance is controllable.

When a heat buffer is added to the system, the production

and the consumption of heat can be decoupled, within the

limits of the heat buffer. This freedom can be used to schedule

the microCHP to produce heat, and thus electricity, on more

beneficial periods. Using a heat buffer enables the possibility

to have an electricity steered control of a microCHP appliance

instead of a heat steered control. The scheduling freedom of

a microCHP appliances is limited by the heat demand of the
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household and size/level of the heat buffer. By predicting the

heat demand in advance, a better schedule can be determined

for heat-driven generators, improving its optimization poten-

tial. Since the use case described in the Results section is

based on a microCHP, the rest of this section focuses on heat

demand prediction.

In our approach, the heat demand for each individual house-

hold is predicted using neural network techniques. The goal

is to predict the heat profile for the next day as accurately as

possible. Based on the prediction, a schedule for the microCHP

can be calculated. The value of this schedule depends on the

accuracy of the predictions.

There are several reasons why individual heat demand

prediction is used. The first and most important reason is that

the schedules of the generators are made locally. A second

reason is that when our approach is used for optimization of a

group of households. The group might consists of hundreds of

thousands up to a million of households. It is then infeasible

to do a prediction per house centrally. It might be possible to

do a prediction of a whole group, but eventually all individual

generators must be scheduled, based on local heat demand. By

moving the prediction to a local control system in the house,

a scalable system is achieved.

The heat demand (of a household) is dependent on factors

like weather, insulation and human behavior. The prediction

model should be able to predict the heat demand one day

ahead, based on recent observations. In other words, based

on recent heat demand data and information about external

factors like weather and insulation, the model should learn

the relation between these factors and the heat demand.

The relation between external factors, behavior and the cor-

responding heat demand might be different for each house and

household. Each house is different and has different insulation

characteristics. Every household is different and has different

behavioral patterns. By predicting the heat demand per house

locally, local information about the specific environmental

and behavioral characteristics can be used to improve the

prediction.

One important factor in the heat demand is the behavior of

the household. However, due to human nature, this behavior

is not static. People have different behavior on different days

of the week, thus the model has to be flexible. Changes in

behavior should be learned quickly in order to cope with

changes, e.g. holidays.

A. Prediction Model

For our prediction model, neural networks techniques are

used. Neural networks are computational models based on

biological neurons [25]. They are able to learn, to generalize,

or to cluster data. A network has to be configured (trained)

such that the application of the network to a set of given inputs

produces the desired outputs (which are also given).

The output of our prediction model is the heat demand

per hour. We assume the most relevant factors for the heat

demand are the behavior of the residents, the weather and the

characteristics of the house. Therefore, information about these

factors are thus candidates as input for our prediction model.
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Fig. 3. Heat demand prediction for a household on Nov. 22, 2007

To learn the behavior of the residents, historical heat de-

mand is used as an input. Information about the weather

can for example be represented with outdoor temperatures,

wind speeds and solar radiation. Since houses do not change

that often, we consider the characteristics of the house static.

Because of this, the neural network should be able to learn

these characteristics since they are present in all other input

data used. In [22] and [26] multiple possible combinations of

input sets and their influence on the predictions are presented.

Furthermore, in [26] a different way of constructing the

training set is presented. Common use, when generating a

training set for neural network applications, is to select a

large, randomly selected set used for training. In our case,

this translated to giving the network many samples to find as

much general behavior as possible. However, since behavior

is changing during the year, [26] shows that this is not the

best way. Using only information of the last weeks as training

information gives better prediction.

B. Results

An example of a good prediction is depicted in Figure 3.

Here, a prediction is done for a household on November 22,

2007 using historical heat demand data and outdoor temper-

atures as input. As can be seen in the figure, the trend is

followed quite good. As expected, due to human nature and

unmeasurable influences, there is some deviation from the real

heat demand.

VI. STEP 2: GLOBAL PLANNING

The planning described in this section focuses on a large

fleet of houses combined into a VPP, all equipped with a

microCHP and heat buffer.

Based on the heat demand prediction for a single house

we plan the runs of the corresponding microCHP. This means

that the exact periods in time are specified during which the

microCHP should be switched on. This planning takes into

account that the complete heat demand of the house has to be

guaranteed, while using a heat buffer. Furthermore, the plan-

ning is restricted by technical constraints of the microCHP like

minimal runtime. An complete explanation of these constraints

can be found in [27].

Based on the heat demand prediction, each house of a group

of houses (of size N ) makes a production plan, satisfying the
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domestic, or local, constraints (i.e. the heat demand constraints

plus the technical, microCHP related constraints). Considering

the generators in these houses as a Virtual Power Plant (VPP)

introduces a new dimension in the planning problem, since we

now have to focus on the total electricity production of this

group of houses. As a consequence, the planning does not only

need to satisfy local constraints, also a global constraint on the

total electricity production is added. More precisely, the group

of houses should satisfy a predefined production plan P , that

is based on the role the VPP wants to play.

The problem of realizing the production planning for the

group of houses is based on a discretisation of time, as noticed

in Section IV-A. The planning horizon of a single day is

divided into NT intervals for which a decision must be made

for each microCHP in each house. Since a simplified version of

the problem is known to be NP-complete in the strong sense

[27], we develop heuristics which find in reasonable time a

planning for the group of houses that is ‘good enough’. In

this context, we mean by ‘good enough’ that we approximate

the predefined (discrete) production plan P = (P1, . . . , PNT
).

As objective, we use the squared mismatch ms to this plan

P , which should be minimized:

ms =

NT∑

j=1

(

N∑

n=1

en,j − Pj)
2, (1)

where en,j is the produced electricity in house n during time

period j.

Since we deal with an NP-complete problem, in the next

subsection we propose a heuristic method that works in

reasonable time. This method makes use of fast locally op-

timizing methods, which, in the presence of a hierarchical

structure, results in a scalable planning method from a global

perspective.

A. Iterative Distributed Dynamic Programming

The problem is to find production plans for local households

which are subject to local constraints, whereas we want to min-

imize the global deviation of the total electricity production,

measured by the squared mismatch ms. In this subsection we

describe a heuristic that solves this problem by separating the

two elements that make the problem difficult:

1) finding a local plan satisfying local constraints;

2) minimizing the squared mismatch from the global pro-

duction plan.

Next, these two elements are combined in an Iterative Dis-

tributed Dynamic Programming approach. This approach is

explained in more detail by tackling the two single elements.

1) Finding a local plan satisfying local constraints: A local

production plan that satisfies both technical (microCHP re-

lated) and domestic (heat demand) constraints can be found by

using a Dynamic Programming approach. This approach uses

a state s to describe the household situation in each interval.

For more detail we refer to [28]. Over time, the state s changes

based on the decision xj to have the microCHP running or not.

From the state the run history and the total production until the

current time period are deducted. So, technical constraints of

the microCHP and heat buffer constraints can be met by only

allowing feasible states and state changes in the corresponding

time periods. Since the global production plan P often is based

on the electricity market (e.g. the Dutch APX market [29]), the

costs in the Dynamic Programming formulation are chosen to

also be electricity price related. More formally, if pj denotes

the price on the electricity market in period j, we define the

market related costs cj for state changes in time period j by

cj = (max
i

pi) − pj . (2)

since the steering signal for production should be low when

the price is high (steering signals are costs, the objective is

cost reduction). The costs of a state change from period j

to period j + 1 depend on the related decision xj and are

given by xjcj . Now, for each interval j and state s we define

the cost function Fj(s), which expresses the minimal costs

needed from interval j until the end of the planning horizon,

NT , assuming that the current situation is characterized by the

state s.

In practice the number of states is not too large, if the time

periods are chosen larger than or equal to five minutes. Via a

backtracking algorithm the value of F0(s0) can be calculated,

which minimizes the total costs from the start of the planning

period (indicated by state (s0) in period 0) until the end of the

planning period. The path(s) corresponding to this value give

the state changes and, thus, the corresponding decision values

xj to switch the microCHP on or off, i.e. it gives a production

plan for the house.

2) Minimizing the squared mismatch from the global pro-

duction plan: By sending all local production plans to a global

planner, the sum of all production plans of the group of houses

can be calculated and can be calculated and gives a global

electricity output of the VPP, leading to a squared mismatch

ms from the production plan P . In an iterative approach

we aim to minimize this mismatch by iteratively steering the

local production plans in a mismatch-reducing direction. As

a consequence, most of the computation is still done locally

at the houses. On a central level the steering of the plans in

a certain direction is calculated. To allow for scalability, the

group of houses is divided into a hierarchical structure. In this

way a limited number of houses can be regarded as a sub

group, which is steered into the right direction independently

from other sub groups. For simplicity we refer in the following

to the plan P as the production plan for a sub group of houses.

In combination with the use of the local Dynamic Program-

ming approach, we adapt the steering signals in the following

way. Artificial additional costs ai
j are added to the state change

costs cj for time period j in iteration i, if:

• the electricity output of the VPP is larger than the plan

Pj , and

• in the local house plan the microCHP is running at time

period j.

The values of ai
j are sent to the local planner and a new

planning is determined by the local planner. In this way,

microCHPs that are running in periods where the sub group

plan is exceeded are stimulated to produce at other time

periods. In the steering method, the additional cost ai
j that
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is used in the steering process, decreases with each iteration

i, to minimize negative overshooting effects and guarantee a

convergence.

VII. STEP 3: LOCAL SCHEDULING

This section presents the scheduling algorithm that controls

the devices in a single house. The decisions of the algorithm

are based on the current situation in the house and optionally

on the steering signals from the global controller. The most

important requirement of the algorithm is to guarantee the

comfort for the residents and the proper usage of devices.

Within this requirement, the goal is to optimize the electricity

import/export.

The basic idea is that there is a certain demand and this

demand should be matched. The demand is defined as the

sum of the heat and electricity demand of all consumers. This

demand is given as an input parameter and can be matched

with 1) import from the grid, 2) production by generators,

3) the buffers and 4) switching off consumers (not providing

them). When the sum of the four possibilities gives more heat

and/or electricity than the demand, the corresponding energy

flows to a buffer and/or into the grid. However, some matching

is more desirable than others: e.g. it might be allowed to switch

off a fridge temporarily but a TV set should stay on. Therefore,

for every matching costs are defined.

As stated above, every device (in the house) and the grid can

match a certain amount of energy demand (optionally zero).

Furthermore, energy flowing to a buffer or to the grid is seen as

negative matching. Via this generic model, matching costs of

all devices, independent of technology, can be expressed with

linear cost functions. The cost function can express 1) the

costs of the matching, 2) the costs of state transitions (e.g.

startup costs) and 3) costs to steer the behavior and reach

global objectives.

Following this setup, the algorithm has to find an optimal

combination of matching sources using for all devices cost

functions of the same structure. The algorithm is executed for

each time interval. The matching cost for each device is deter-

mined at the beginning of the time interval, based on the status

of the device. The status of the devices cannot be determined

on beforehand, since the status may depend on decisions in

former time intervals. In the current implementation, the costs

only depend on the current status without taking future states

into account.

The optimization problem considers a given set of devices

Dev. Decision variables xi are introduced which express the

amount of matching of device i ∈ Dev. Since these variables

are used for both heat and electricity, two multiplication factors

are introduced, one for heat (Hi) and one for electricity (Ei),

e.g. the heat/electricity ratio of a microCHP is 8 : 1 thus

possible choices are Hi = 8 and Ei = 1.

The possible values for the variables xi may be restricted.

For example, a consuming device can be switched off (xi =
demand or xi = 0) and a certain amount of electricity

can be import/exported (−2000 ≤ xi ≤ 5000). Furthermore,

the cost function parameters may rely on the concrete value

of xi, i.e. the cost function is a non-continuous stepwise

B1

A1

B2 A2 = 0

B3

A3

F1 T1 F2 = T2 F3 T3

xd

co
st

s

Fig. 4. Example intervals and costs for xi

function. To model this, for each device i ∈ Dev a set Si

of intervals is specified and the variable xi is allowed to take

only values from one of these disjoint intervals. Each interval

Iij = [Fij , Tij ] ∈ Si specifies a uniform area for the variable

xi, in the sense that the costs associated with xi ∈ Iij can

be expressed by Aij × xi + Bij . The value Aij expresses the

matching costs and Bij the startup costs if xi is chosen from

the interval Iij . An example of intervals and associated costs

is shown in Figure 4.

The problem of finding a best solution is modeled as an

Integer Linear Program (ILP). The objective of the ILP is

to minimize the costs while all given heat demand Dh and

electricity demand De is matched. This is ensured with the

constraints in (5) and (6) given below. Furthermore, all values

of xi must be valid, i.e. chosen on one of the intervals Iij . To

ensure this, extra binary decision variables cij are introduced

and every xi is split up into variables xij for every interval

j ∈ Si. Via (7) is forced that for every device only one of

the cij is one, i.e. the variable cij specifies the interval from

which xi is chosen. Constraint (8) ensures that only the xij

corresponding to the nonzero cij is nonzero and lies within

the specified interval. The value of xi of a device gets defined

as the sum of all xij for that device (see (4)).

min
∑

i,j

Aij × xij + cij × Bij (3)

s.t. xi =
∑

j

xij ∀i ∈ Dev (4)

Dh =
∑

i

Hi × xi (5)

De =
∑

i

Ei × xi (6)

∑

j

cij = 1 ∀i ∈ Dev (7)

cij × Fij ≤ xij ≤ cij × Tij ∀i ∈ Dev, j ∈ Si (8)

VIII. CASE STUDIES

To verify the methodology, two case studies are used. The

first case study is a simulation of a group of houses using

real heat demand data and real prediction to verify whether it

is possible to make a planning based on prediction. Further-

more, it is verified how well the actual scheduler follows the

planning. The second case study is a test with a single house



IEEE TRANSACTIONS ON SMART GRID 8

0 4 8 12 16 20 24
0

5

10

15

20

25

30

Time (h)

E
le

ct
ri

ci
ty

g
en

er
at

io
n

(k
W

)

Desired

Using predicting data

Using actual data

(a) Planning

0 4 8 12 16 20 24
0

5

10

15

20

25

30

Time (h)

E
le

ct
ri

ci
ty

g
en

er
at

io
n

(k
W

)

Goal

Without global control

With global control

(b) Simulation

Fig. 5. Planning and simulation using the three-step methodology for 39 houses

prototype to verify whether the methodology is also applicable

in a real world situation.

A. Simulation

A neighborhood consisting of 39 houses has been simulated

with our simulator using the three-step-approach. From our

database with real heat demand data of Dutch households,

39 heat profiles between Nov. 19, 2007 until Nov. 31, 2007

have been extracted and used as input for the simulations.

1) Planning: For all houses, a prediction is made using the

above described method. Using the heat demand predictions,

the global planner schedules the runtime of the generators

in these houses. The objective of the planning is a combi-

nation of flattening the electricity production and to produce

during periods when electricity is expensive. Since it is the

winter season, there is quite some heat demand. The high

heat demand results in less scheduling freedom, making the

scheduling more difficult.

The results of the scheduler are depicted in Figure 5(a).

The solid line gives production plan P , the preferred pro-

duction pattern. However, this objective cannot be reached

due to limited schedulingsfreedom. Two different plannings

are made: one using the predicted heat demand (dashed line)

and one using the actual heat demand (dotted line). As can

be seen, both plannings cannot reach the objective and there

quite a difference between both plannings. The total electricity

production of both plannings is almost equal, 475 kWh using

the prediction and 477 kWh using the actual demand. How-

ever, the periods the electricity is produced differs; the sum of

the absolute difference per time interval (SAD) between both

plannings is 82 kWh, 17% of the total production. So, the total

heat demand is predicted quite accurate (2 kWh difference),

but the prediction of the heat demand pattern during the day

is less accurate. Since the actual heat demand is not known

one day in advance, the planning based on the predicted heat

demand is used.

2) Realtime control: Within the simulation, the houses are

controlled using the local controller which receives steering

signals from the global controller. For the simulation the real

heat demand is used, so the determined planning can probably

not exactly be followed due to prediction errors. The results

of the simulations are depicted in Figure 5(b). The solid line

depicts the planning made by the global planner. The dotted

line depicts the actual number of microCHPs running (i.e. the

production pattern). The dashed line depicts the production

pattern when no optimization was used, i.e. if the microCHPs

were only heat-led. The production pattern using optimization

deviates 96 kWh from the schedule without optimization

(SAD); the optimization methodology shifted 17% of the

production, while there was limited optimization potential due

to high heat demand.

The total electricity production in the optimized pattern was

540 kWh, more than planned; all free capacity of the heat

buffers is used to enable more production capacity to follow

the planning as good as possible. The optimized pattern devi-

ates 77 kWh (14%) from the planning (SAD), roughly equal

to the prediction error of 82 kWh. From this 77 kWh, only

10 kWh was under production, the rest was overproduction.

So, in the actual schedule almost all electricity we promised

to produce based on the planning is produced. However, the

deviation caused imbalance due to overproduction. So, the

scheduler did not efficiently worked around prediction errors

but tried to reach the promised production by producing more

electricity. This drawback might be overcome by taking not

only the current state into account in the scheduler but also

some future state.

Determining the global planning by the iterative approach

using our simulator took a couple of minutes on a single

PC (using local TCP/IP connection between the nodes). In

a real situation the computational time will decrease since the

computations are distributed while the communication time

will slightly increase. The expectation is that the total time will

be in the order of minutes due to the hierarchical structure,

which is acceptable for a one-day planning for 24 hours.

The computation of the local controller can be done within

a second for a five minute time frame.

B. Field test

In [30] we showed that peak shaving and shifting of demand

in time using only a realtime scheduler is possible using a

single house prototype. In this case study also the possibility

to actually switch on/off the appliance on the preferred times
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Fig. 6. Results lab tests local planning and scheduling of a microCHP

by the local scheduler is verified. The house prototype consists

of a Whispergen microCHP, a Gledhill heat buffer, a computer

controllable hot water tap and a controllable thermostat in

combination with a heat exchanger.

The objective is to shift production as much as possible

to daylight hours (prevent noise at night). Furthermore, short

runs are avoided (wearing of the machine). The generator runs

until the buffer is filled, so only switch on signals are given.

The planned and actual level in the Gledhill for two different

days is given in Figure 6.

The heat demand prediction for the day in Figure 6(a) was

accurate. Therefore, the planned and actual level in Figure

6(a) are similar and, more important, the planned and actual

runtimes of the microCHP are also equal. Furthermore, the

microCHP is started on initiative of the scheduler and not as

a natural reaction on the buffer level at t = 9.3.

The planning for the second day was to switch on the

microCHP at t = 7.5 and stay on until t = 10, supplying

the peak demand at t = 8.5. However, the peak demand came

a few minutes later, the buffer was full before the peak and

the microCHP had to be switched off. Therefore, the peak

was supplied by heat from the heat buffer and the actual and

scheduled buffer level deviate for multiple hours. This shows

the long term effect of small differences between prediction

and actual heat demand. However, re-planning some moment

later in time in Figure 6(b) (e.g. at t = 8.5) might have

prevented a non-scheduled start at t = 10.2 and the planning

might have been followed better.

IX. CONCLUSION AND FUTURE WORK

The three step methodology proposed in this paper using a

hierarchical planning is a scalable solution with limited com-

munication requirements. The local prediction and scheduler

result in a generic solution supporting different technologies

and houses with different optimization potential.

The first case study shows that it is possible to make

a planning for a group of houses based on predicted heat

demand using an objective. Furthermore, the local scheduler

is capable of following this planning up to a certain level.

The schedule deviates from the planning due to prediction

errors. The local controller is not capable of coping with

prediction errors well enough. The promised production is

reached by producing more heat than necessary (by filling

the heat buffers), resulting in a overproduction on other times.

Therefore, improved methods for the local scheduler to work

around prediction errors are needed.

The second case study shows that it is possible to determine

a planning based on a prediction one day ahead. The models

are accurate enough to determine a planning and it is possible

to control the microCHP. However, when the heat demand

deviates from the prediction, the planned and actual runtimes

of the microCHP deviate as well. A wrongly predicted peak

(for only a few minutes!) can have a severe impact on the

runtime. However, if a new planning is determined, the buffer

levels and therefore the runtimes of the microCHP converge

earlier.

Current and future work focuses on working around pre-

diction errors. On one hand, the local controller should take

future states into account to prevent decisions that influence

future states very negatively. On the other hand, when the local

controller cannot deal with the prediction errors anymore, re-

planning on a higher level is required. Due to the hierarchical

structure of the planning, re-planning can be done on different

levels.
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