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PROBABILISTIC CHARACTERISTICS SUPPORTING 
 THE MANAGEMENT OF A PRODUCTION-SUPPLY SYSTEM 

The construction of a model and quantitative measures have been presented aimed at improving 
the efficiency of a production-supply system described by a three-dimensional stochastic process. For 
this purpose, the laws governing the functioning of the system have been described, corresponding to 
the three different states of the stock level in the subsystem M. These laws generate the quantitative 
model of the examined system, which enables the construction of the proposed quantitative measures 
supporting the managing process of such a system. 

Keywords: production-supply system, model of a system, system characteristics 

1. The system and theoretical description of its operation 

Production systems and supply subsystems have been studied by various authors 
(e.g., [1–4, 8, 9, 11–17]). This article is a continuation of the research carried out in  
[4, 8, 9, 11, 15, 16], in particular in [5, 6]. It is dedicated to building a new probabilistic 
model of the operation of such systems. Based on this model, quantitative measures are 
defined, with the aim of improving how the system operates. 

It is assumed that there are two streams of inputs provided in a continuous manner 
(e.g., by conveyor belts, pipelines, transmission lines) to the recipient E (e.g., a power 
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station), whose operation requires the constant supply of raw materials α (e.g. carbon): 
a stream у1(t) of production by a subsystem T1 and a stream у2(t) of production by a sub-
system T2. 

Random changes in the processes y1(t), y2(t) and unplanned breaks in operation (fail-
ures) of the subsystems T1 and T2 are factors reducing the operational efficiency of such 
a system. This efficiency can be increased – while reducing the potential for interrup-
tions in the supply of a sufficient quantity of the product to the recipient E – by locating 
a warehouse-reservoir M with specific volume V in the environment of the recipient E. 
The product streams y1(t), y2(t) are collected in the subsystem M if the stock level z(t) 
in the warehouse M does not exceed the level V and when y1(t) > a or y2(t) > a. If the 
present content of the element M is equal to V, and y1(t) > a or y2(t) > a, then the inten-
sity of the streams y1(t), y2(t) is restricted to the level a. When the warehouse M is empty 
and y1(t) < a and y2(t) < a, then a situation which is unfavourable to the recipient E 
arises. Determination of the probability of this event has a practical meaning. The coor-
dination of the subsystems T1, T2 , M and E is presented in Fig. 1. 

 
Fig. 1. General description of the operation of the considered production-supply system 

The operation of the examined system is described by a three-dimensional process 
(y1(t), y2(t), z(t)). We assume that the subsystems T1 and T2 operate independently, and 
the processes y1(t) and y2(t), controlling the stock level of the warehouse z(t), are Markov 
processes with a finite number of states. Let us denote the states of the product stream 
y1(t), describing the intensity of supply to the subsystem M, by: y11, y12, …, y1n, and the 
states of the product stream y2(t) by : y21, y22, …, y2m. 

The intensities of transitions between states (levels of supply) of the processes y1(t) 
and y2(t) are denoted by  1

jk  and  2 ,sk  respectively, and written in the following form: 

 
(1)

1 1        for  jk

j k
j ky y

   (1) 

 
( 2)

2 2        for  si
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s iy y   (2) 

Obtaining the appropriate measures supporting the process of managing the system 
requires the derivation of the probabilities of the system states. Let P(y1(t), y2(t), z(t)) be 
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the probability that at a fixed point of time t the supply stream of the product y1(t) will 
be in the following state: 

 y1: y11, y12, …, y1n (3) 

and the supply stream y2(t) will be in the state 

 y2: y21, y22, …, y2m (4) 

and, at the same time, the stock level of the warehouse (container) M will be z. 
There is no probability mass for any specific z, 0 < z < V, i.e. 

P(y1(t), y2(t), z(t) = z) = 0 

because there are uncountably many values of z  (0, V). 
Therefore, probability density functions 1

2
( , )k

k

x

xf z t  are introduced, describing prob-
abilities of the forms: 
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where 0  a1 < b1  V, x1k is the kth state of the auxiliary introduced process  

x1(t) = y1(t) – a(x1k = y1k – a, k = 1, 2, ..., n) 

while x2i is the ith state of the process  

x2(t) = y2(t) – a(x2i = y2i – a, i = 1, 2, ..., m) 

Next, let us denote by 1

2
({0}, ),k

i

x

xQ t  1

2
({ }, )k
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xQ V t  probabilities of the form: 

1 1 2 2( ( ) 0, ( ) , ( ) )k iP z t x t x x t x   , 1 1 2 2( ( ) , ( ) , ( ) )k iP z t V x t x x t x    

We will analyse the operation of the system by considering three different cases: 
0 < z(t) < V, z(t) = 0, z(t) = V, because these cases correspond to specific operating 
conditions of the system. 

In order to obtain quantitative measures connected with improving the efficiency of 
system operation (Fig. 1), it is sufficient to determine the probabilities represented by 
equation (5) and the probabilities 1

2
({0}, ),k

i

x

xQ t  1

2
({ }, ).k

i

x

xQ V t   
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Equation (5) expresses the probability that at a fixed time t, the inventory level in 
warehouse M is in the range (a1, b1) and the states of the processes x1(t), x2(t) are equal 
to x1k and x2i, respectively. 

Similarly the expressions 1

2
({0}, ),k

i

x

xQ t  1

2
({ }, )k

i

x

xQ V t  are the probabilities of the in-
ventory levels being z(t) = 0 and z(t) = V, respectively, and the processes x1(t) and x2(t) 
being in the states x1k and x2i at time t. 

Analysis of the operation of the system will be carried out for the case when the 
inventory level fulfils the condition: 0 < z(t) < V. Hence, at that moment there are no 
immediate constraints on the rate at which subsystems T1 and T2 can supply the ware-
house and the recipient’s requirements are guaranteed. 

Calculation of the probability of the set of states 

(a1 < z(t) < b1, x1(t) = x1k, x2(t) = x2i) 

according to equation (5) requires knowledge of the density function 1

2
( , ).k

i

x

xf z t  Hence, 
we will derive an equation, which this function fulfils. According to how the system 
operates in the analysed case, we have [5]: 
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where: 
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
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i il
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The intuition of relationship (6) is as follows: the first element in this equation gives 
the probability of remaining in the state (x1k, x2i). This probability is 1 minus the sum of 
the intensities of the outflows from the state (x1k, x2i) (see, e.g., [7]). In our case, the 
intensity of the outflows from the state x1k is equal to  1

k  (definition (1), formula (7), 

and from the state x2i is equal to  2
i  (definition (2), formula (8)). Equation (6) is based 
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on the fact that in “simple” processes double changes in the state occur at a rate of order 
higher than τ. This is taken into account by the asymptotic equality ≈ , which means that 
the expression o(τ), fulfilling the following condition 
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is omitted. 
Irrespective of changes in the states x1k and x2i, the changes in the stock level of the 

warehouse z follow according to the initial state. They are controlled by both of the 
processes y1(t) and y2(t). If at time t the state is (x1k, x2i), then in an interval of time of 
length τ the stock level increases by (x1k + x2i + a)τ. Thus, if at time t + τ the stock level 
of the warehouse is z, at time t it had to be z – (x1k + x2i + a)τ. This fact is taken into 
account in the first component of formula (6). The other components can be explained 
using analogous arguments. After using Taylor’s formula, equation (6) takes the form: 

1

21 1

2 2

1

21

2
'

1

2

1 2 1 2

(1) (2)
1 2

(2) (2)

( , )
( , ) ( , ) [ ( ) ] [ ( ) ]

( , )
1 ( ) ( , ) [ ( ) ]

(1 )

(

k

ik k

i i

k

ik

i

i

k

i

x

xx x

x x k i k i

x

xx

k i x k i

k k

i k k

x

x

f z t
f z t f z t x x a x x a

z

f z t
f z t x x a

z

f z

   

    

   










            
  

                

 





1

2
'

1

'21

2

1 1 22

(1) (2)

1 2 1 2

(1) (2) 2

( , )
, ) [ ( ) ] [ ( ) ]

(1 )

( , )
( , ) [ ( ) ] [ ( ) ]

k

i

k

ik

i

x

x

k k ii
i i

k i i

x

x
x

x k i k i

k k
i i

k k i i

f z t
t x x a x x a

z

f z t
f z t x x a x x a

z

  

   

  

  














   



 

          
  

 

           
  







 

(10)

 

After applying simple transformations to equation (10), the asymptotic form of 
equation (10) changes into equation (11), which is satisfied by the density functions 

1
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xf z t  specifying the probabilities expressed by formula (5). This equation has the form: 
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for 0 < z < V; k = 1, 2, …, n; i = 1, 2, …, m. 
Moving on to the analysis of the system in the other two cases, we present the rela-

tionships specifying the probabilities given by 1
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Utilizing the operating conditions of the system in the case z(t) = 0, we obtain the 

following equations, see [6]: 
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where: (1)
k  and (2)

i  are described by formulas (7) and (8). 
The intuition of equation (12) is as follows: the first element of the equation gives 

the probability of remaining in the state (z = 0, x1 = x1k, x2 = x2i). This probability is one 
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minus the sum of the outflow intensities from the state (x1 = x1k, x2 = x2i) (see, e.g., [7]). 
In our case, according to definitions (1) and (2), the outflow intensity from the state x1k 
is (1)

k  (formula (7)) and the outflow intensity from the state x2i is (2)
i  (formula (8)). 

However, the level of z = 0 at time t +  can also be achieved, if at time t the state 
is (x1k, x2i) and the warehouse is partially filled such that: 0  z(t) < – (x1k + x2i + a). An 
initial stock level of (a – y1k – y2i) = (–x1k – x2i – a)  0 at time t reaches the zero state 
by time t + . This fact takes into account the second term of formula (12). The other 
components can be explained using analogous arguments, together with the fact that in 
“simple” processes double changes of state occur at a rate of a higher order than . This 
is taken into account by the asymptotic equation , which means that the expression 
o(), satisfying condition (9), was omitted. 

The asymptotic equation (12), after application of formula (5), the mean value the-
orem for integrals (see, e.g., [10]) and simple transformations, changes into the follow-
ing form: 
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Of course, for –(x1k + x2i + a) < 0, the equation 
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is satisfied because under the condition (x1k + x2i + a) > 0, i.e., when y1k + y2i > a, the 
state z (t) = 0 cannot ever be achieved. 

Moving on to analysing the operation of the system in the case where it reaches the 
state z(t) = V, we will determine the relationships satisfied by the probabilities 
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The system operates differently than in the two previous cases. Arguing analogously 

as in the case of the state z(t) = 0, we obtain a formula for the probabilities 
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for x1k + x2i + a  0. 
Analogously to the previous case, after application of formula (5), the mean value 

theorem for integrals and simple analytical transformations, relation (15) transforms 
into an equation of the form: 
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(16)
 

for x1k + x2i + a  0. 
Whereas for (x1k + x2i + a) < 0, 
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2
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x
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since under the condition (x1k + x2i + a) < 0, i.e. when y1k + y2i < a, the state z(t) = V 
cannot ever be achieved. 
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2. A quantitative model of the system and the probabilistic 
characteristics of management support for such a system 

Relations (11), (13), (14), (16), (17) create a probabilistic model of the system. Thus 
it takes the following form: 
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for 0 < z < V; k = 1, 2, …, n; i = 1, 2, …, m. 
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(20)
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The mathematical description of the system expressed by relations (18)–20) will 

now be applied to present quantitative measures that can be used by a decision-making 
body in order to increase the effectiveness of system management, as well as in the 
design phase of such a system. 

If at time t a random event occurs, e.g., the rate of supply by the production subsys-
tem represented by the product streams y1(t), y2(t) is less than the requirements of a re-
ceiver E whose operations are continuous (e.g., production of electricity, water, gas, 
oil), and the contents of the warehouse M are zero, then the recipient is forced to use 
other supply sources or to limit its own production. This leads to financial losses in the 
considered system (the recipient’s losses). The probability of such an unfavourable 
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event, namely a shortage in the product supply to the customer at time t, is denoted by 
w1(t) and is expressed by the formula 
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Another unfavourable state of the system occurs when the quantity of the product 
supplied by the production subsystem exceeds the requirements of the receiver E and 
the warehouse M is full. In this case, the production subsystem (sender) is not able to 
send its product to the recipient E, which also leads to losses in the system (the sender’s 
losses). The probability w2(t) of such an event can be calculated from the formula 
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These two characteristics w1(t) and w2(t) are thus measures for assessing the degree 
of losses in production, for the recipient and the production subsystem, respectively. 

As an index for evaluating the degree of utilization of warehouse M at time t in the 
system, we may use the probability of the following random: the stock level is positive, 
but lower than V. 

The probability w3(t) of this event is expressed by the formula: 
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where: 1
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x k iQ V t P z t V x t x x t x     (see (5)). 
If the value w3(t) is close to one, then there is low probability that either a deficit 

occurs (in the product supply to the customer) when the warehouse is empty or sender 
losses occur, when the warehouse M is full. In the case where the value of the indicator 
w3(t) is nearly zero, the phenomenon of sender loss or recipient deficit may occur with 
a high probability. 

The probabilities of the occurrence of the limiting states of the subsystem M at time t 
are defined by the formulas: 
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Formula (24) expresses the probability that the warehouse M is empty at time t, and 
relation (25) – the probability of the subsystem M being full at moment t. 
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The probabilities of the warehouse M being partially full, of the process x1(t) being 
in state x1k, and of the process x2(t) being in state x2i at moment t, respectively, can be 
determined from the following formulas: 
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The chance of the following random events occurring at time t: 

w9(t) = P(x1(t) = x1k, x2(t) = x2i), w10(t) = P(0 < z(t) < V, x2(t) = x2i) 

w11(t) = P(0 < z(t) = V, x1(t) = x1k), w12(t) = P(z(t) = 0, x1(t) = x1k) 

w13(t) = P(z(t) = 0, x2(t) = x2i), w14(t) = P(z(t) = V, x1(t) = x1k) 

w15(t) = P(z(t) = V, x2(t) = x2i), w16(t) = P(z(t) = 0, x1(t) = x1k, x2(t) = x2i) 

w17(t) = P(z(t) = V, x1(t) = x1k, x2(t) = x2i), w18(t) = P(0 < z(t) < V, x1(t) = x1k, x2(t) = x2i) 

can be determined using the quantitative model of the system expressed by the relation-
ships (18)–(20), using the following formulas: 
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3. Summary 

The proposed probabilistic description of the operation of a production-supply sys-
tem represents an aggregated variant of the process of supplying products to the subsys-
tem M, which takes into account both the production subsystem, and the supply subsys-
tem. The resulting model of the system generated by the three highlighted sets of states 
of the subsystem M allows us to determine measures which support the management 
process of the system. These measures are given by the relations (21)–(34), which de-
pend on the values of the parameters (1) ,jk (2) ,si  x1k, x2i, a, V, i.e., they are functions of 
these quantities. Therefore, we can optimize the values of the listed characteristics by 
appropriate changes in these parameters, and thus increase the efficiency of the system. 
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