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Abstract

Recent advances in diagnosis and treatment are enabling a more targeted approach to treating lung cancers.
Therapy targeting the specific oncogenic driver mutation could inhibit tumor progression and provide a favorable
prognosis in clinical practice. Activating mutations of epidermal growth factor receptor (EGFR) in non-small cell lung
cancer (NSCLC) are a favorable predictive factor for EGFR tyrosine kinase inhibitors (TKIs) treatment. For lung cancer
patients with EGFR-exon 19 deletions or an exon 21 Leu858Arg mutation, the standard first-line treatment is first-
generation (gefitinib, erlotinib), or second-generation (afatinib) TKIs. EGFR TKIs improve response rates, time to
progression, and overall survival. Unfortunately, patients with EGFR mutant lung cancer develop disease progression
after a median of 10 to 14 months on EGFR TKI. Different mechanisms of acquired resistance to first-generation and
second-generation EGFR TKIs have been reported. Optimal treatment for the various mechanisms of acquired
resistance is not yet clearly defined, except for the T790M mutation. Repeated tissue biopsy is important to explore
resistance mechanisms, but it has limitations and risks. Liquid biopsy is a valid alternative to tissue re-biopsy.
Osimertinib has been approved for patients with T790M-positive NSCLC with acquired resistance to EGFR TKI. For
other TKI-resistant mechanisms, combination therapy may be considered. In addition, the use of immunotherapy in
lung cancer treatment has evolved rapidly. Understanding and clarifying the biology of the resistance mechanisms
of EGFR-mutant NSCLC could guide future drug development, leading to more precise therapy and advances in
treatment.

Background
In the United States, an additional 224,390 new lung cancer
cases were diagnosed in 2016, and accounted for about 27%
of all cancer deaths [1]. Although standard platinum-based
chemotherapy is the cornerstone of systemic therapy, it has
a modest effect on overall survival (OS) [2]. Lung cancer is
still the leading cause of cancer death worldwide [3].
In the most recent decade, treatment of non-small cell

lung cancer (NSCLC) has evolved to a great extent. The
discovery of driver mutations in lung cancer allows the cre-
ation of personalized targeted treatment. It is important
that lung cancer patients are tested for oncogenic drivers of
cancer and receive matched targeted therapy [4]. Epidermal
growth factor receptor tyrosine kinase inhibitors (EGFR
TKIs) provide a favorable treatment outcome in epidermal

growth factor receptor (EGFR) mutation-positive patients.
EGFR mutation-positive patients with lung adenocarcin-
oma had a response rate as high as 80%, and around 10–
14 months of progression-free survival (PFS) [5, 6]. The
American Society of Clinical Oncology (ASCO), European
Society for Medical Oncology (ESMO) and National
Comprehensive Cancer Network (NCCN) guidelines rec-
ommend EGFR TKIs as first-line treatment for EGFR-mu-
tant patients. The most common activating mutations are
in-frame deletions in exon 19 and single-point mutation of
exon 21 (Leu858Arg), which together account for more
than 80% of known activating EGFR mutations [7, 8].
Although EGFR TKIs have a favorable and durable treat-

ment response, most patients will eventually develop pro-
gressive disease (PD) within about one year of treatment.
Furthermore, acquired resistance develops and limits the
long-term efficacy of these EGFR TKIs. A variety of mecha-
nisms of acquired resistance to EGFR TKIs have been
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reported. The most common mechanism is the develop-
ment of acquired EGFR T790M mutation [9]. T790M was
found in about 50% of EGFR–mutant cases that acquired
resistance to EGFR TKIs [9]. Patients using either first- or
second-generation EGFR TKIs had a similar prevalence of
acquired T790M [10].
Preclinical data showed that the second-generation

EGFR TKI, afatinib, could overcome the resistance caused
by the T790M mutation [11], but clinical trials have not
revealed the effect due to toxicity limitations. The narrow
therapeutic window of afatinib caused severe adverse ef-
fects (AEs), probably owing to inhibition of wild-type
EGFR [12, 13]. In the phase III LUX-Head & Neck 1
(LHN1) trial, second-line afatinib significantly improved
PFS versus methotrexate in patients with recurrent/meta-
static head and neck squamous cell carcinoma [14]. This
suggests afatinib is a drug active against wild-type EGFR.
The third-generation EGFR TKI, osimertinib, has been
approved for patients with T790M-positive NSCLC with
acquired resistance to EGFR TKIs. Use of third-generation
EGFR TKIs was related to different acquired resistance
mechanisms [15–18]. Therefore, in this manuscript, we
focused on these recently developed treatment strategies
for EGFR-mutant NSCLC with acquired resistance to
first- or second-generation EGFR TKIs.

Clinical presentation of acquired resistance to first-line
EGFR TKIs
Although EGFR-mutant patients receiving EGFR TKIs
have longer median PFS than those receiving platinum-
based chemotherapy as first-line treatment [5, 6, 19, 20],
acquired resistance to EGFR TKIs eventually emerges. In
2010, Jackman et al. proposed clinical criteria for acquired
resistance to EGFR TKI based on the Response Evaluation
Criteria in Solid Tumors (RECIST) [21, 22]. Acquired re-
sistance is defined as when EGFR-mutant NSCLC patients
achieved a response or stable disease with greater than six
months of targeted therapy and subsequently developed
disease progression while still on the targeted agent [22].
However, the patterns of disease progression varied in
clinical practice.
Oncologists traditionally change treatment regimens when

there is objective evidence of radiological or clinical progres-
sion. However, in routine practice, different characteristics of
disease progression might develop when using EGFR TKIs,
and will confuse clinicians. Gandara et al. divided disease pro-
gression with EGFR TKIs use into three subtypes, including:
oligoprogression (new sites or regrowth in a limited number
of areas, maximum of four progression sites), systemic pro-
gression (multisite progression), and central nervous system
(CNS) sanctuary progression (excluding leptomeningeal car-
cinomatosis due to the lack of effective treatment options for
long-term control) [23]. For patients with CNS sanctuary
progression and/or oligoprogressive disease when using a

previously beneficial EGFR TKI, it may be reasonable to con-
sider local treatment and continuation of the targeted agent.
This approach yielded more than six months of additional
disease control [24, 25].
Yang et al. proposed another criteria for EGFR TKI failure

modes in NSCLC [26]. Based on the duration of disease
control, the evolution of the tumor burden, and clinical
symptoms, regardless of genotype profile, the diversity of
EGFR TKI failure could be categorized into three modes,
including dramatic progression, gradual progression, and
local progression. The median PFS was 9.3, 12.9, and
9.2 months (p = 0.007) for these three modes, respectively,
and median OS was 17.7, 39.4, and 23.1 months (p < 0.001),
respectively. In patients with disease in the gradual progres-
sion mode, continuing EGFR TKI therapy was superior to
switching to chemotherapy in terms of OS (39.4 vs.
17.8 months; p = 0.02) [26]. Determination of the clinical
mode could favor strategies for subsequent treatment and
prediction of survival.

Mechanisms of acquired resistance to EGFR TKIs
Acquired resistance mechanisms vary. Several study groups
comprehensively explored the mechanisms through re-
biopsy tissue specimens. The most common acquired
resistance mechanisms were of three types: target gene
modification, alternative pathway activation and histological
or phenotypic transformation (Fig. 1).

Target gene modification
The T790M mutation, which substitutes methionine for
threonine at amino acid position 790 at exon 20 of EGFR,
was the most commonly acquired resistance mechanism. It
accounted for about 50–60% of cases with acquired resist-
ance to gefitinib or erlotinib [9, 10]. The 790 residue is in a
key location at the entrance to a hydrophobic pocket of the
ATP-binding cleft, so it is also referred to as a “gatekeeper”
mutation. Because of the bulky methionine sidechain,
T790M causes conformational change that leads to the de-
velopment of steric hindrance and affects the ability of EGFR
TKI to bind to the ATP-kinase pocket [9]. In addition, the
T790M mutation of EGFR could restore the affinity of the
mutant receptor for ATP, thus reducing the potency of com-
petitive inhibitors [27].
Other second-point mutations, such as D761Y [28],

T854A [29], or L747S [30], confer acquired EGFR TKI resist-
ance, although the definite mechanism is still unclear.

Alternative pathway activation
Alternative or bypass pathway activation also causes pri-
mary resistance. Through bypass tract activation, cancer
cells can survive and proliferate, even when inhibits by the
initial driver pathway. The most common bypass pathway
is MET amplification, which accounts for 5–10% of cases
with acquired resistance to EGFR TKIs [31, 32]. MET gene
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amplification could activate PI3K-AKT pathway signaling
independent of EGFR through driving ERBB3
dimerization and signaling [31]. However, the threshold of
MET amplification that would induce TKI resistance has
not been clarified. Overexpression of hepatocyte growth
factor, the ligand of MET oncoprotein, also promotes
EGFR TKI resistance [33].
Activation of other alternative pathways, including

HER2 amplification [34], PIK3CA mutation [35], BRAF
mutation, and increased expression of the receptor tyro-
sine kinase AXL, have been reported to promote ac-
quired resistance to EGFR TKIs [36].

Histological and phenotypic transformation
About 5% of patients suffered from transformation from
EGFR-mutant adenocarcinoma to small-cell lung cancer
(SCLC) after acquired resistance to EGFR TKIs [35]. A pos-
sible theory is that the initial sample bias resulted in miss-
ing the preexisting SCLC component in the original tumor.
However, the patient had a good treatment response and
prolonged PFS [37], and the original activating EGFR muta-
tions of adenocarcinoma persisted in the re-biopsy SCLC
specimens [38, 39]. Recent studies disclosed that the SCLC
transformation process is predisposed in adenocarcinoma
by inactivation of Rb and p53 [40, 41]. In addition, evalu-
ation of the RB1 and TP53 status of adenocarcinoma is pre-
dictive biomarker for SCLC transformation after TKI
treatment [40, 41]. SCLC transformation arises from com-
mon progenitor cells of adenocarcinoma in response to
EGFR TKI therapy [37].
Inappropriate induction of epithelial–mesenchymal tran-

sition (EMT) in tumor cells caused tumor invasion, metas-
tasis, drug resistance, and stem cell properties [42, 43].
Many studies have shown that EMT is a mechanism of ac-
quired resistance to EGFR TKIs. Different EMT transcrip-
tion factors, including Slug, ZEB1, Snail, and AXL, changed
with the development of acquired resistance to EGFR TKIs
[42, 44]. EMT was reported in two (5%) re-biopsy tumors

of 37 patients [35]. In terms of morphology, the cancer cells
lost their epithelial features (e.g., E-cadherin expression)
and transformed into spindle-like mesenchymal cells with a
gain of vimentin [45].

Exploring the resistance mechanism of EGFR TKIs
Different mechanisms can be detected in disease progres-
sion to EGFR TKIs [46]. It is important to identify the
definite tumor resistance mechanism. Repeated tumor bi-
opsy is a key factor for the subsequent treatment plan.
Genotyping, whether for the existence of EGFR T790M
mutations or other oncogenic alterations, is a crucial step
in guiding future treatment, according to the current
NSCLC guidelines [47, 48].
However, tumor heterogeneity appears in the primary

tumor and in metastatic lesions. Intratumor and inter-
metastases may have diverse clones with different onco-
genic driver mutations or resistance mechanisms [49]. The
resistant mutations may occur at a small clone of tumor
cells and clonal evolution may develop during the treat-
ment process, so molecular-based detection methods play
an important role. Mutation-enriched or ultra-sensitive
(defined as an analytic sensitivity below 1%) molecular-
based detection methods should be considered [46, 50].
The guideline of the College of American Pathologists,
International Association for the Study of Lung Cancer,
and Association for Molecular Pathology recommends that
the assay for the EGFR T790M resistant mutation is able to
detect the mutation in as few as 5% of cells or less (assum-
ing heterozygosity, a 2.5% mutant allele fraction) in clinical
practice [50]. For traditional PCR-based methods, Sanger
sequencing provided a sensitivity of only about 20%. Other
highly sensitive PCR-based assays utilizing locked nucleic
acids (LNAs) or peptide nucleic acids (PNAs) could reach
0.1–2% of analytical sensitivity [51]. Kinase fusions recently
were reported as mechanisms of acquired resistance to
EGFR TKIs [52]. Next-generation sequencing (NGS) is be-
coming the preferred method because it can provide high

Fig. 1 The distribution of different acquired resistance mechanisms
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sensitivity to detect known and unknown mutations and
genetic alterations.
Sometimes, it is difficult to obtain the re-biopsy tumor

specimens because of the potential risks of invasive diag-
nostic procedures. Prospective studies showed that the suc-
cess rate of repeated biopsy was 75–95%, and serious
complications were detected in about 1% of cases [32, 53,
54]. Although repeated biopsy seems safe in clinical prac-
tice, it is still limited in use because of patient fear and
physician preference. Therefore, obtaining serial biopsies
from the same patient is rarely feasible during the NSCLC
treatment course. In addition, the existence of intra-tumor
heterogeneity influences tumor evolution, metastasis and
resistance mechanisms in different ways, including somatic
mutations, epigenetic change and post-transcriptional
modification [55–57]. Therefore, there may be selection
bias because a single snapshot biopsy specimen is not
enough to accurately represent all the resistance mecha-
nisms of different sites.
Liquid biopsy, on the other hand, could provide a source

of information on the resistance mutations of the entire
tumor landscape, compared with the single site sampled
using conventional tumor tissue biopsy [58]. Cell-free circu-
lating DNA (ctDNA) is adopted for noninvasive exploration
of resistance mechanisms and tumor genetic alterations.
ctDNA theoretically could provide a surrogate of the whole
tumor genome of both primary and metastatic lesions.
Different methodologies, with high sensitivity and detection
of genetic number and type alteration, are being used for

ctDNA testing (Table 1) [59]. The EGFR T790M mutation
could be detected in plasma samples by highly sensitive
genotyping methods, including next-generation sequencing,
droplet digital polymerase chain reaction (ddPCR), and bead,
emulsion, amplification and magnetics (BEAMing) assays
[60–63]. The FDA has approved the Roche real-time PCR
assay, cobas® EGFR Mutation Test v2, for detection of EGFR
mutations in ctDNA in blood samples. Using ctDNA to
detect mutations can produce a high positive predictive
value. But, not all tumors shed ctDNA to the same degree,
because of differences in tumor size, stage, location, vascular-
ity, sites of metastatic disease and treatment history [64, 65].
Several studies found that up to 35% of patients with EGFR
T790M might have false-negative plasma levels, compared
with tissue biopsy [66, 67]. Therefore, if liquid biopsy shows
a negative EGFR T790M mutation, tissue biopsy for
confirmation is necessary [66].
Serial analysis of ctDNA can track the molecular dynamic

evolution of the tumor and monitor treatment response.
However, the technological approach is not standardized
because of the broad range of ctDNA isolation techniques,
DNA analysis and quantification [65, 68].

The management of progression during EGFR TKIs use
According to the NCCN guideline [48], subsequent ther-
apy after progression with first-line EGFR TKIs includes
different treatment recommendations, which have been
plotted as an algorithm. For patients with sensitizing
EGFR mutations who progress during or after first-line

Table 1 Sensitivity of detection of circulating tumor DNA (ctDNA)

Test Detection Analytic
limitation

EGFR T790M mutation Test Characteristics Reference

Sensitivity Specificity

MS Known SNVs 1–10% 38.9% for del19/L858R 84.6% for del19/L858R Quantitative [122]

dHLPC Known SNVs 1–5% 81.8% for sensitizing
mutation

89.5% for sensitizing
mutation

Provided information only of
presence/absence of known mutations

[123, 124]

Cobas Known SNVs 1–3% 61.4% (76.7% for
del19/L858R)

78.6%
(98.2% del19/L858R)

Semi-quantitative
The only FDA approved ctDNA
assay for detection of EGFR mutations

[70, 71]

Scorpion-ARMS Known SNVs 1–3% 61.8%–85.7% for
del19/L858R

94.3–100% for
del19/L858R

Semi-quantitative [72, 125]

HRMA Known SNVs,
indels,

0.1–10% 91.67% for sensitizing
mutation

100% for sensitizing
mutation

Rapid EGFR mutation screening [126]

ddPCR Known SNVs > 0.1% 77% (74–82% for
del19/L858R)

63% (100% for
del19/L858R)

Quantitative Rapid turnaround time [73]

BEAMing Known SNVs,
CNVs, SV

> 0.1–0.01% 70% 69% Quantitative Detects complex
alteration

[66]

NGS Known/new SNVs,
indels, CNVs, SV

0.01%–5% 93% (87–100%
for del19/L858R)

94% (96–100% for
del19/L858R)

Quantitative Profiles large gene panels
Detects more complex alteration

[127–129]

PNA-PCR Known SNVs,
indel,

0.01% 78% for del19/L858R 100% for del19/L858R Semi-quantitative [130, 131]

SNV single nucleotide variant, ctDNA circulating tumor DNA, ARMS amplification refractory mutation system, BEAMing beads, emulsion, amplification and
magnetics, ddPCR digital droplet polymerase chain reaction, del deletion, indel insertion/deletion, FDA US Food and Drug Administration, NGS next-generation
sequencing, CNVs copy number variants, SV structure variants, HRMA high-resolution melting analysis, dHLPC denaturing high performance liquid chromatography,
MS mass spectrophotometry (MS), PNA-PCR peptide nucleic acid-polymerase chain reaction
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targeted therapy, recommended therapy depends on the
acquired resistance mechanism and whether the pro-
gression is asymptomatic or symptomatic.
We modified the latest NCCN and ESMO Guidelines

[48, 69], and included the feasibility of liquid biopsy based
on the emerging evidence from studies and trials [70–73].
An algorithm was proposed (Fig. 2) to provide clinical
physicians with an appropriate practice plan for patients
who experience disease progression on EGFR TKIs.

TKI beyond progression
In clinical practice, clinicians may prescribe EGFR TKI
therapy beyond progression, especially when patients suffer
from asymptomatic progression. Nishie et al. retrospectively
analyzed Japanese patients with EGFR mutations. Continu-
ous use of EGFR TKIs beyond progression in patients with
activating EGFR mutations may prolong OS compared with
switching to cytotoxic chemotherapy [74]. In addition, the
phase II ASPIRATION study demonstrated that continued

erlotinib therapy following progression is feasible in se-
lected patients [75]. The NCCN Panel recommended con-
tinuing EGFR TKIs, whether erlotinib, gefitinib, or afatinib,
and considering local therapy in patients with asymptom-
atic progression [48].
A flare-up phenomenon (rapid disease progression) occa-

sionally is noted after discontinuation of EGFR TKIs. Intra-
tumor heterogeneity is the possible mechanism of the
phenomenon. Compared to the resistant clone with indo-
lent behavior, rapid regrowth of TKI-sensitive clones causes
rapid clinical deterioration when EGFR TKIs are discontin-
ued [76]. One retrospective study also showed that 14 of 61
(23%) patients suffered from disease flare after stopping
EGFR TKIs [77]. Therefore, some patients were prescribed
EGFR TKIs after acquired resistance to EGFR TKIs.
The phase III IMPRESS trial aimed to evaluate the effi-

cacy and safety of continuing gefitinib combined with
chemotherapy versus chemotherapy alone in patients with
EGFR-mutation-positive advanced NSCLC with acquired

Fig. 2 Treatment algorism for advanced EGFR-mutant NSCLC patients
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resistance to first-line gefitinib. A total of 265 patients
were enrolled. However, continuation of gefitinib after dis-
ease progression on first-line gefitinib did not prolong PFS
in patients treated with platinum-based doublet chemo-
therapy as subsequent treatment. A long-term follow-up
found that median OS was 13.4 months in the combin-
ation arm and 19.5 months in the control arm (HR 1.44;
p = 0.016) [78]. Besides, the gefitinib group had more side
effects and grade 3 or worse AEs. According to the results
of the IMPRESS trial, continuation of chemotherapy with
first-generation EGFR TKIs after acquired resistance to
EGFR TKIs is not considered as standard treatment.

Switch therapy
Repeated biopsy could provide information about the mech-
anism of acquired resistance. If there is no targetable onco-
genic driver mutations/bypass pathways and corresponding
target medications, chemotherapy is still the standard subse-
quent treatment after acquired resistance to EGFR TKIs.
The NCCN guideline offers a treatment algorithm for pa-
tients whose disease has progressed on first-line EGFR TKIs.
Platinum doublet with or without bevacizumab chemother-
apy should be considered and recommended as second-line
treatment for patients when they suffer from systemic pro-
gression due to acquired resistance to EGFR TKIs.
Two retrospective studies found that for EGFR-mutant pa-

tients who received platinum-based chemotherapy after
disease progression with first-line EGFR TKI treatment, the
response rates were 14–18%. Their median PFS with
second-line chemotherapy was about four months [79, 80].
Because EGFR mutations are detected mostly in patients
with an adenocarcinoma or non-squamous histology, the
optimum regimen might be pemetrexed and platinum
combination treatment [81], followed by maintenance
pemetrexed for patients who did not suffer from disease
progression [48, 82].
The most common mechanism of acquired resistance

to EGFR TKIs is acquired T790M mutation. Second-
generation EGFR TKIs, including afatinib, dacomitinib
and neratinib, had efficacy in inhibiting proliferation of
T790M mutation-positive cells in vitro. However, clinical
trials showed disappointing results due to high toxicities
resulting from the narrow therapeutic window. In con-
trast to second-generation EGFR TKIs, third-generation
EGFR TKIs had a good treatment effect on tumors har-
boring EGFR T790M mutations [48, 83–85].

Next-generation (third-generation) epidermal growth factor
receptor tyrosine kinases inhibitors (EGFR TKIs)
The third-generation EGFR TKIs can form an irreversible
covalent binding to EGFR. They are pyrimidine-based com-
pounds, and differ from quinazolines-based first-and second-
generation EGFR TKIs (Table 2) [86]. Third-generation
EGFR TKIs can attenuate EGFR T790M activity and have

less epithelial toxicity due to less wild-type EGFR activity [86,
87]. Among them, osimertinib (AZD9291) received FDA
and European Medicines Agency (EMA) approval in No-
vember 2015 and February 2016, respectively, for treatment
of patients with T790M mutation-positive NSCLC after ac-
quired resistance to first-line EGFR TKIs treatment. Table 3
shows the available efficacy data of different third-generation
EGFR TKIs in clinical trials.

� Osimertinib (AZD9291)

Osimertinib (AstraZeneca, Macclesfield, UK) is an irre-
versible mono-anilino-pyrimidine EGFR TKI that covalently
binds to the ATP-binding site, CYS797, of the EGFR tyrosine
kinase domain. In EGFR recombinant enzyme assays, osi-
mertinib showed potent activity against diverse activating
EGFR mutations with/without T790M. According to the
preclinical data, osimertinib has 200 times greater potency
against L858R/T790M than wild-type EGFR [88]. Two circu-
lating metabolites of osimertinib, AZ5104 and AZ7550, were
detected, and both had comparable potency to sensitizing
EGFR mutation and T790M [89]. There was no significant
difference in pharmacokinetic exposure between Asian and
non-Asian patients, showing a minimal food effect [90]. In
addition, unlike first- and second-generation EGFR TKIs,
osimertinib exposure was not affected by concurrent admin-
istration of omeprazole [91].
AURA (NCT01802632) is a phase I/II dose-escalation clin-

ical trial of osimertinib, which enrolled 253 Asian and west-
ern NSCLC patients with acquired resistance to first- or
second-generation EGFR TKIs, as defined by Jackman cri-
teria [22, 92]. Patients were not preselected according to
T790M status [92]. Thirty-one patients were treated across
five dose-escalation cohorts (20, 40, 80, 160 and 240 mg oral,
daily) and 222 were treated in the dose-expansion cohort.
In the dose-escalation cohort, there was no dose-limiting

toxicity (DLT) and the maximum tolerated dose (MTD) has
not been reached. Of the 239 evaluable patients, the object-
ive response rate (ORR) was 51% and the disease control rate
(DCR) was 84%. Patients with EGFR-T790M mutation had a
better ORR (61% vs. 21%), DCR (95% vs. 61%), and longer
median PFS (9.6 months vs. 2.8 months) than patients with-
out an EGFR-T790M mutation. The drug is relatively safe,
and most of the AEs were grade 1 and 2. The most common
AEs were diarrhea (47%), skin toxicity (40%), nausea (22%),
and anorexia (21%). When patients took higher dose levels
(160 and 240 mg), there was an increasing incidence and se-
verity of AEs (rash, dry skin, and diarrhea). Based on efficacy
and safety, 80 mg daily was selected as the recommended
dose for further clinical trials [92].
Then, a phase II “AURA2” study (NCT02094261) was

initiated to enroll NSCLC patients with an EGFR-T790M
mutation and acquired resistance to approved EGFR TKIs;
the enrollment criteria were similar to those of the AURA
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study extension cohort. A preplanned pooled analysis was
performed, including 201 patients from the 80 mg osimer-
tinib expansion cohort of AURA and 210 patients from
AURA2; ORR was 66%, DCR was 91%, and median PFS
was 11.0 months [93].
In the phase III AURA3 study, 419 patients were ran-

domized into osimertinib or platinum-pemetrexed chemo-
therapy (maintenance pemetrexed was allowed) groups
after they had acquired resistance to first-line EGFR TKI

therapy. The investigator-assessed PFS (primary endpoint)
was significantly longer in the osimertinib arm than in the
chemotherapy arm (median 10.1 vs. 4.4 months; HR 0.30;
p < 0.001). The FDA has granted regular approval to the
third-generation EGFR TKI, osimertinib, for the treatment
of patients with metastatic EGFR T790M mutation-positive
NSCLC.
In the preclinical study, osimertinib demonstrated

greater penetration of the mouse blood-brain barrier than

Table 2 Different generations of EGFR TKIs

Generation EGFR inhibition Drug Molecular Targetsa Adverse effect Status

1st-generation Reversible; Gefitinib EGFR del19, L858R Skin rash/acne, abnormal LFT FDA approved

competitive Erlotinib EGFR del19, L858R FDA approved

2nd-generation Irreversible; covalent Afatinib EGFR del19, L858R, uncommon
mutations, HER2, HER4

Diarrhea, paronychia.
Skin rash

FDA approved

Dacomitinib EGFR del19, L858R, HER2, HER4 Diarrhea, skin rash/acne Phase III

Neratinib EGFR G719X, HER2, HER4 Diarrhea, dyspnea, N/V Phase II

3rd-generation Irreversible; Osimertinib EGFR mutations and T790M Diarrhea, skin rash FDA approved

covalent Rociletinib EGFR T790M mutation, IGF-1R Hyperglycemia, QTc prolong Withdrawn

Olmutinib EGFR T790M mutation Diarrhea, skin exfoliation,
nausea

Approved in South Korea

ASP8273 EGFR L858R, del19, T790M, Diarrhea, N/V,
thrombocytopenia

Phase III Discontinued

Nazartinib EGFR L858R, del19, T790M, Rash, diarrhea, pruritus Phase I/II

Avitinib (AC0010) EGFR L858R, del19, T790M, Diarrhea, skin rash,
abnormal LFT

Phase I/II

HS-10296 EGFR sensitive mutations
(G719X, del19, L858R, L861Q)
+/− T790M

None reported Phase I/II

PF-06747775 EGFR L858R, del19, T790M, None reported Phase I/II

N/V nausea and/or vomiting, LFT liver function test, del19 deletion in exon19, EGFR epidermal growth factor receptor, FDA Food and Drug Administration
aThe targets included FDA approved or associated targets

Table 3 Efficacy of third-generation EGFR TKIs in EGFR T790M-positive NSCLC patients

Drug Trial Patients (N) Dose ORR T790M PFS (mo.)

Osimertinib AURA phase I [92] Total: 253 T790
M(+): 138

20-240 mg QD T790M(+):
61% T790M(−): 21%

T790M(+):
9.6 T790M(−): 2.8

AURA phase I T790M(+) 63 80 mg QD 71% 9.7

AURA phase II 210 80 mg QD 70% 9.9

AURA phase II extension [132] 411 80 mg QD 62% 12.3

AURA phase III [84] 416 -Osimertinib
arm: 279
-Chemotherapy
arm: 140

71%
31%
Odds ratio:5.39
(95% CI: 3.47–8.48)

10.1
4.4
HR: 0.30
(95% CI: 0.23–0.41)

Rociletinib TIGER-X phase I/II [98] Total: 69
T790M(+): 51

500, 625 or
750 mg bid

45% T790M(+): 9.6
T790M(−): 2.8

Olmutinib HM-EMSI-101 phase
I/II T790M(+) [133]

76 800 mg QD 62% 6.9

ASP8273 NCT02113813 phase I/II [134] Total: 63
T790M(+): 58

300 mg QD 29% 6.8

Nazartinib NCT02108964 phase I/II [105] 152 75-350 mg QD 46.9% 9.7

Avitinib (AC0010) NCT02330367 phase I/II [106] 136 50-350 mg QD 44%
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gefitinib, rociletinib, or afatinib [94]. There were several
reports of dramatic intracranial response to osimertinib in
patients with EGFR T790M lung cancer [94, 95]. A phase
I study (BLOOM, NCT02228369), which has enrolled pre-
treated EGFR-mutant NSCLC patients with leptomenin-
geal metastasis treated with 160 mg osimertinib once
daily, is ongoing. The preliminary data is promising [96].

� Rociletinib (CO-1686)

Rociletinib, a 2,4-disubstituted pyrimidine compound, is
an oral, irreversible, mutant-selective inhibitor of activating
EGFR mutations, including T790M, and spares wild-type
EGFR [97]. TIGER-X (NCT01526928A), a phase I/II trial of
rociletinib, enrolled 130 EGFR-mutant NSCLC patients with
acquired resistance to first- or second-generation EGFR TKIs
[83]. The ORR was 59% for the 46 evaluable T790M
mutation-positive patients and 29% for the 17 T790M
mutation-negative patients [83]. Because of targeting of IGF-
1R, hyperglycemia (22%) was detected as the most common
grade 3 AE. An independent updated analysis of the TIGER-
X trial showed that the T790M mutation-positive patients
had an ORR of 45% [98]. In addition, a series of cases with
response to osimertinib after resistance to rociletinib were
reported [99]. Clovis Oncology, Inc. decided to stop enroll-
ment in all ongoing rociletinib studies and terminate the fu-
ture development program in May 2016.

� Olmutinib (BI-1482694/HM61713; Olita™)

A phase I/II dose escalation clinical trial, HM-EMSI-101
(NCT01588145), was initiated in South Korea [100]. Pa-
tients took olmutinib in doses ranging from 75 to 1200 mg/
day. Among the 34 patients with NSCLC harboring T790M
detected by a central laboratory, the ORR was 58.8%. The
DCR was 97.1% for patients treated with olmutinib in doses
greater than 650 mg. The most common DLTs involved
gastrointestinal symptoms, abnormal liver function (AST/
ALT), and increasing amylase/lipase levels. Therefore,
800 mg/day was selected as the recommended phase II
dose. Seventy-six patients with centrally confirmed T790M
mutation-positive NSCLC were enrolled in part II of the
study, and 70 were evaluable for response. The ORR was
61% and median PFS was 6.9 months [101]. Based on the
aforementioned result, olmutinib was first approved in
South Korea in 2016. However, Boehringer Ingelheim
decided to stop the co-development of this drug because of
an unexpected grade 3/4 skin toxicity (including palmo-
plantar keratoderma) [102].

� ASP8273

Preclinical data showed ASP8273 had antitumor activity
against EGFR TKI-resistant cells, including those with

resistance to osimertinib and rociletinib [103]. A multi-
cohort, phase 1 study (NCT02113813) was initiated to evalu-
ate the safety and efficacy of ASP8273 in NSCLC patients
with disease progression after EGFR TKI treatment. The
most common AEs included diarrhea (47%), nausea (42%),
and fatigue (32%). The most common grade 3/4 AE was
hyponatremia (17%). Across all doses, the ORR was 30.7%,
and median PFS was 6.8 months in patients with EGFR
T790M [104]. A phase III randomized clinical trial (SOLAR)
was conducted to compare the efficacy and safety of
ASP8273 with that of erlotinib or gefitinib as first-line treat-
ment for advanced EGFR-mutant NSCLC (NCT02588261).
However, Astellas Pharma (OTCPK: ALPMY) terminated
the phase III SOLAR study in May 2017 because the
treatment advantage apparently was not adequate enough to
justify continuation.

� Nazartinib (EGF816)

A phase I/II first-in-human study, NCT02108964
(EGF816X2101), investigated nazartinib in EGFR-mutant
patients. A total of 152 patients were treated across seven
cohorts using doses ranging from 75 to 350 mg [105].
Among the 147 evaluable patients, the ORR and DCR
were 46.9% and 87.1%, respectively. The median PFS
across all dose cohorts was 9.7 months. Skin rash (54%),
diarrhea (37%), and pruritus (34%) were the most com-
mon AEs. The skin rashes related to nazartinib were dif-
ferent from those caused by other EGFR TKIs in pattern,
location, and histology. The most common grade 3/4 AE
was diarrhea (16%) [105]. A phase II clinical trial with six
cohorts is ongoing. In addition, a phase Ib/II trial
(NCT02335944 and NCT02323126) is ongoing to investi-
gate the efficacy of combined treatments with INC280, a
specific MET inhibitor, and with nivolumab, an anti-PD-1
monoclonal antibody in patients with EGFR-T790M mu-
tation after acquired resistance to first-line EGFR TKI.

� AC0010

A phase I/II, first-in-human dose-escalation and expan-
sion phase clinical trial (NCT02330367) was carried out
with advanced NSCLC patients with acquired T790M mu-
tation after first-generation EGFR TKIs treatment [106]. In
all, 136 patients have been treated across seven cohorts (50,
100, 150, 200, 250, 300, and 350 mg BID), and MTD has
not been reached. The most common drug-related AEs
were diarrhea (38%), rash (26%) and ALT/AST elevation.
Grade 3/4 AEs of diarrhea (2%), rash (2%) and ALT/AST
elevation (4%, 2%) were recorded. The 124 evaluable
patients had ORR and DCR of 44% and 85%, respectively.
Because of the drug safety profile and activity against
NSCLC with acquired T790M mutation, a phase II,
AEGIS-1 study is ongoing to evaluate treatment efficacy for
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patients with T790M mutation-positive NSCLC with
acquired resistance to first-generation EGFR TKIs. An open
label, randomized phase III trial (NCT03058094) also is on-
going to compare AC0010 (300 mg, BID) with pemetrexed/
cisplatin (4–6 cycles) in patients with advanced NSCLC
who have progressed following prior therapy with EGFR
TKI. T790M in biopsy samples was confirmed by a central
laboratory.

� HS-10296

An open-label, multicenter, phase I/II dose escalation and
expansion trial (NCT02981108) is currently recruiting patients
with locally advanced or metastatic NSCLC after acquired
resistance to first- and/or second-generation EGFR TKIs.

� PF-06747775

PF-06747775 has potent antitumor efficacy against
NSCLC harboring a classical mutation with/without
T790M. It significantly attenuates T790M activity and has
less toxicity because of the reduction of proteome reactivity
relative to earlier EGFR TKIs [107, 108]. A phase I/II clin-
ical trial (NCT02349633) involving patients with advanced
NSCLC harboring EGFR mutations (Del19 or L858R with/
without T790M) is ongoing.

Combination therapy

� Vertical pathway

Cetuximab is a recombinant human/mouse chimeric
EGFR IgG1 monoclonal antibody. Combining afatinib and
cetuximab may be useful for patients who have progressed
after receiving EGFR TKI therapy and chemotherapy [109].
Among 126 patients, the response rate of patients with

T790M-positive and T790M-negative tumors was compar-
able (32% vs. 25%; p= .341). The two groups showed no stat-
istical difference in PFS. The NCCN Panel recommends
considering an afatinib/cetuximab regimen for patients who
have progressed after receiving EGFR TKIs and chemother-
apy [48]. However, skin rash (90% all grades) and diarrhea
(71% all grades) were the two most common adverse effects.
Grades 3 and 4 adverse effects were 44% and 2%, respect-
ively. Because of the high rate of AEs with this combination
therapy, it is no longer a preferred treatment for patients
with tumor harboring EGFR T790M mutations [110].

� Horizontal pathway

Since bypass signaling pathway activation is an important
acquired resistance mechanism of EGFR TKIs, it is reason-
able to combine inhibition of EGFR pathway signaling and
inhibitors for the bypass signaling pathway to overcome re-
sistance. Different horizontal combination strategies are be-
ing investigated, but results are preliminary and immature
(Table 4).
MET amplification is an important mechanism of acquired

resistance to EGFR TKI therapy [31, 111]. A randomized,
open-label, phase 2 study enrolled patients with advanced
NSCLC (enriched for EGFR-mutant disease) who developed
acquired resistance to erlotinib to receive emibetuzumab
(LY2875358), a humanized IgG4 monoclonal bivalent MET
antibody, with or without erlotinib therapy. The ORR of pa-
tients whose re-biopsy samples harbored MET overexpres-
sion (≥60%) was 3.8% in the combination arm and 4.8% in
the monotherapy arm [112]. In Japan, another phase II
clinical trial enrolled 45 patients with advanced EGFR-mu-
tant NSCLC who developed acquired resistance to first-
generation EGFR TKIs to receive tivantinib (ARQ197) and
erlotinib combination therapy. The response rate was
6.7%. High MET expression (≥ 50%) was detected by

Table 4 Main mechanisms involved in acquired resistance to EGF receptor-tyrosine kinase inhibitors and the associated targetable drugs

Molecular alteration Pathway Targetable drug

HER2 amplification Afatinib, Trastuzumab, ado-trastuzumab emtansine (TDM1)

MET overexpression/genetic alteration ● Anti-HGF antibody: Rilotumumab, Ficlatuzumab
● Anti-c-MET antibody: MET Mab, Emibetuzumab (LY2875358)
● Selective c-MET inhibitor: Tivantinib (ARQ197), Capmatinib (INC280),

Savolitinib (AZD6094), Tepotinib (EMD 1214063),
SGX523, SAR125844,

● Multikinase inhibitors: Crizotinib, Cabozantinib (XL184), Glesatinib (MGCD265),
Merestinib (LY2801653), S49076

PIK3CA PI3K-AKT-mTOR ● PI3K inhibitor: Pilaralisib (XL147), Dactolisib (BEZ235) and Pictilisib (GDC-0941),
Buparlisib (BKM120)

● AKT inhibitor: MK-2206
● mTOR inhibitor: Everolimus, Temsirolimus, Ridaforolimus

BRAF Ras-Raf-MEK-ERK Vemurafenib (PLX4032), Dabrafenib (GSK2118436), Selumetinib, LY3009120

AXL overexpression GAS6-AXL ● Tyrosine kinase inhibitor: Cabozantinib (XL 184)
● AXL antibody: E8, D9, Mab173
● AXL decoy receptor: AXL-Fc, MYDI
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immunohistochemical stain in 48.9% of the patients, includ-
ing all three partial responders [113]. In addition, a combin-
ation of capmatinib (INC280) and gefitinib was tested in a
phase 2 study (NCT01610336) in EGFR-mutant NSCLC
patients after acquired resistance to gefitinib. EGFR T790M
NSCLCs were excluded and high cMET expression was re-
quired. Of the 65 evaluable patients, the ORR was 18% and
DCR was 80%. More responses were seen in tumors with
MET amplifications [114].
In addition toMET amplification, different medications are

being investigated to inhibit other bypass signaling pathways,
including a heat shock protein 90 inhibitor, AUY922 (-
ClinicalTrials.gov: NCT01259089 and NCT01646125); a
JAK inhibitor, ruxolitinib (ClinicalTrials.gov: NCT02155465
and NCT02145637); a MET/AXL/FGFR inhibitor S- 49076
(EU Clinical Trials Register: EudraCT Number: 2015–
002646-31) and a PI3K inhibitor, buparlisib (BKM120)
(ClinicalTrials.gov: NCT01570296 and NCT01487265).
Furthermore, combination therapy with osimertinib has

been investigated. The TATTON study (ClinicalTrials.gov:
NCT02143466) enrolled patients who received osimertinib-
based combination therapy with either a MET inhibitor
(savolitinib), MEK inhibitor (selumetinib), or anti-PD-L1
monoclonal antibody (durvalumab) [115]. However, the
rate of drug-related interstitial disease was high in the osi-
mertinib plus durvalumab arm, so the development of this
combination therapy was discontinued [116]. Other clinical
trials, including osimertinib in combination with
ramucirumab, necitumumab, bevacizumab, or navitoclax
(ClinicalTrials.gov, NCT02789345, 02496663, 02803203
and 02520778), are ongoing.
Combination therapies have higher rates of toxicities

and side effects than a single agent does. Although the
aforementioned medications have been evaluated in
clinical trials, clinicians should keep in mind the
possibility of AEs when prescribing combination therapy.

Immunotherapy
For subsequent therapy, or immunotherapy, nivolumab and
pembrolizumab have been approved as standard treatment,
and high-level PD-L1 expression in tumors can predict a
higher response rate. Phase III trials assessing pembrolizu-
mab, nivolumab, or atezolizumab compared to docetaxel as
subsequent therapy for patients with metastatic NSCLC
found there were no survival benefits for EGFR-mutant
lung cancer patients. Also, there were not enough patients
with these mutations to determine whether there were sta-
tistically significant differences. However, immunotherapy
was comparable to chemotherapy and was better tolerated.
[117–119]. Until now, there is not enough evidence to
recommend pembrolizumab, nivolumab, or atezolizumab
as subsequent therapy for EGFR-mutant patients.
In vitro, EGFR-mutant lung cancer cells inhibited antitu-

mor immunity by activating the PD-1/PD-L1 pathway to

suppress T-cell function [120]. This finding indicates that
EGFR functions as an oncogene through cell-autonomous
mechanisms and raises the possibility that other oncogenes
may drive immune escape [120]. However, retrospective
studies showed that NSCLCs harboring EGFR mutations
were associated with low response rates to PD-1/PD-L1 in-
hibitors, which may have resulted from low rates of concur-
rent PD-L1 expression and CD8(+) TILs within the tumor
microenvironment [119]. A retrospective study on the
efficacy of nivolumab in patients with EGFR mutation-
positive NSCLC after EGFR TKI failure found that T790M-
negative patients were more likely than T790M-positive
patients to benefit from nivolumab [121].
Different phase 1 trials combining EGFR TKIs with

immunotherapies include nivolumab (ClinicalTrials.gov,
number NCT01454102); pembrolizumab (ClinicalTrials.gov,
number NCT02039674); and atezolizumab (ClinicalTrials.-
gov, number NCT02013219). These studies are all ongoing.

Conclusions
EGFR TKIs are currently the standard first-line treatment
of patients with advanced NSCLC harboring activating
EGFR mutations. After acquiring resistance to first-line
EGFR TKI therapy, it is important that the mechanisms of
acquired resistance in all patients are explored. Then,
based on the mechanism, subsequent treatment can be
chosen. Continuation of EGFR TKI therapy is suitable for
select patients with asymptomatic progression and/or oli-
goprogression. Repeat tumor biopsy to detect the EGFR
T790M mutation is the current standard of care, and osi-
mertinib has been approved for patients with acquired
EGFR T790M-mutant disease. Liquid biopsy is an alterna-
tive method to detect plasma EGFR T790M mutation and
to identify patients suitable for osimertinib therapy. Com-
bination therapy may be effective for acquired resistance
resulting from activation of the bypass signaling pathway.
Advances in the detection method for different resistance
mechanisms and the development of new drugs are both
urgently needed for personalized therapy.
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