
Abstract-- The Intelligent Network (IN) represents the world
wide accepted basis for uniform provisioning of advanced
telecom services. On the other hand IP based communication is
fast becoming a viable alternative for voice communications.
Mobile agents offer unique opportunities for structuring and
implementing open distributed service architectures, facilitated
by the dynamic downloading and movement of service code to
specific network nodes. In this paper, a new service architecture
for IP Telephony, based on the ITU-T standard H.323, is
proposed. The implementation uses Mobile Agents and Jini as an
enabling technologies and existing architectural concepts taken
from IN. This IP service architecture enables telecom services
deployed through mobile service agents on a per user basis,
which results in several advantages when compared to
centralized service architectures. The paper demonstrates that
the flexible extensible architecture can accommodate not only
existing services but is flexible enough to accommodate a wide
variety of future services. In addition we show how the
architecture addresses the full management life-cycle of
advanced services, from open third party creation, to
subscription and utilization, and ultimately to maintenance and
withdrawal.

Index terms-- IP Telephony, Service Architecture, Mobile
 Agents H.323

I. INTRODUCTION

Internet Protocol Telephony[1][2] or IP telephony, which
delivers voice and data communications over IP networks[3],
became a reality for the first time in 1995 when Vocaltec, Inc.
introduced its Internet Phone software[2]. Because of its low
price and efficient use of bandwidth, it has progressed rapidly
in the relatively short period of time since then. As the
Internet is an open, distributed and evolving entity, it is
expected that there will be many extensions to IP telephony.
In the classical telephony world which is based on circuit
switched networks, a number of service architectures have
been developed in the last decade. There are for example, the
Intelligent Networks (IN) framework[4], Telecommunications
Management Network (TMN)[5], the Telecommunications
Information Networking Architecture (TINA-C)[6], etc. The
purpose of these service architectures is to increase the
quality and range of services offered in communication
networks. In order to compete with classical telephony in
today’s market, one of the challenges that IP telephony faces
is to offer not only the same high quality voice calls, but also
a set of advanced services that are at least at a par with what
classical telephony offers today. While the high quality of
voice calls has not yet been achieved in the IP telephony
world, sound architectures are needed for the control and
management of services.

 The traditional telephone system has very primitive end
terminals (telephones) and considerable intelligence inside the
network[7]. Advanced service architectures separate call
setup and call processing functions. In general, the Internet
represents a different balance, with intelligent end-terminals
(computers) and a simple set of functions inside the switches
of the network. Switches are composed of software and
general-purpose hardware. It is reasonable to foresee that
long-term evolution of IP Telephony will have much more
intelligence implemented in the end terminals rather than
inside the network. Advanced services such as call diversion
and call transfer, which are implemented inside the telephone
network today, can be implemented in users’ computers.
 In order to realize this view of IP telephony, appropriate
protocols and technologies are needed. Currently, there are
two protocols that address this issue, one is the International
Telecommunication Union's (ITU-T) H.323[8], and the other
is the Internet Engineering Task Force (IETF) Session
Initiation Protocol (SIP)[9]. The ITU-T's Study Group 16
approved the first version of the H.323 specification in 1996
and the third version of the standard has been recently
released. The standard is broad in scope and includes stand-
alone devices and embedded personal computer technologies
as well as point-to-point and multi-point conferences. SIP is
rather lightweight, reusing many of the header fields,
encoding rules, error codes, and authentication mechanisms
of HTTP. (See, for example,[10][11] for a comparison and
[12] for a critique.) The Service life cycle, defined by the
TINA-C service architecture recommendation, consists of
service construction, deployment, utilization and withdrawal.
 Advanced services supported by H.323 are specified in
the H.450.x series[13]. Each of the defined advanced services
has it's own specification. As is pointed out in [11], “How
they may be broken down into reusable building blocks is not
clear and this will lead to specification and implementation
inefficiency”. The H.323 specification does not address
service control and management. In addition, there are no
third party defined services. Hence there is obviously room
left for developers to design more flexible service
architectures using enabling technologies; e.g., Mobile Agents
(MA). One of the goals of our research is to design a more
open architecture in which services are broadly available, and
in which lower level services can cooperate to generate higher
level services or can be combined into higher level services.
 IP telephony is real-time data communications over IP
transport. As the Internet is an open, distributed and evolving
entity, flexibility, scalability and robustness are very
important issues to be considered when designing new service
architectures. MA technology has the ability to provide
solutions addressing all of these issues. As is pointed out in
[14], the key advantage of MA is flexibility. It can enhance
service architectures, providing easy service customization
and instant service provisioning.
 The remainder of this paper is organized as follows. In
Section II, the basic enabling technologies are briefly
discussed. Concepts of IN and MA, Jini/JavaBeans, and

Management of Advanced Services in H.323 Internet Protocol Telephony
Bernard Pagurek, Jingrong Tang, Tony White, Roch Glitho*

Systems and Computer Engineering, Carleton University,
1125 Colonel By Dr., Ottawa, Canada K1S5B6
*Ericsson Research Canada, Montreal, Canada

advantages for using them, are explained. In Section III, a
new IP telephony service architecture and aspects of the
actual implemented solution using Jini, MA, and IN concepts
are described. Section IV discusses proposed mechanisms for
service creation from low level components and ongoing
service management. In addition how mobile agents can
contribute to advanced services is explored further. Section V
presents three scenarios for application of this new service
architecture - Call Forwarding Unconditional without and
then with a gatekeeper, and finally aspects of Virtual Private
Network (VPN) Services. Section VI presents the
conclusions relating to this research.

II. ENABLING TECHNOLOGIES

 The Java language has a number of advantages that make
it particularly appropriate for Mobile Agent (MA)
technology. Its main appeal for agents is its portability. This
means that any system with sufficient resources can host Java
programs. The Java Virtual Machine and Java’s class loading
model, coupled with several of Java features – most
importantly serialization, remote method invocation,
multithreading, and reflection – have made building first-pass
mobile agent systems a fairly simple task[15].
 MA, as one of the enabling technology for IP telephony
services, is introduced in Section II.A. JavaBeans and Jini
(both from Sun Microsystems) are two good complementary
candidate technologies for the implementation of an IP
Telephony service architecture; they are described in Section
II.B.

A. Mobile Agent Technology

 An agent can be described as a software component that
performs a specific task autonomously on behalf of a person
or an organization [16]. It contains some level of intelligence,
ranging from predefined rules to self-learning Artificial
Intelligence (AI) mechanisms. Thus agents may operate rather
asynchronously to the user and may communicate with the
user, system resources and other agents as required to perform
their tasks. They are often event or time triggered.
 A Mobile Agent clearly is not bound to the host where it
begins execution. It has a unique ability to transport itself
from one host in a network to another. As it travels, it
performs work on behalf of a network user. Flexibility and
extensibility are due to the dynamic nature of the underlying
network infrastructure and service demand. Other arguments
for mobile agents have also been forthcoming[17].
 In the past, the main motivations for the application of
mobile agents were the lack of capacity to execute programs
locally, and the desire to share resources and improve load
balancing in a distributed system. In contrast to these
concepts, designed for rather specific or closed environments,
new agent concepts aim for open environments (e.g., the
Internet). Today, flexibility and extensibility are key design
issues for emerging network service architectures in order to
permit quick adaptation to changing customer service
demands. The following are some of the reasons for using
MA technologies:
� A MA-based approach may reduce the network load when

compared to an RPC (Remote Procedure Call) – based
approach.

� Asynchronous and autonomous execution provide the
possibility for realization of advanced services by means
of using mobile agents.

� Being independent of the underlying network
infrastructure makes the service architecture extendable.

� MAs allow new services to be provided dynamically
either by customization or (re) configuration of existing
services.

� MAs provide an effective way for deployment and
utilization of advanced services within a distributed
environment.

 The mobile agent paradigm and emerging agent
technologies are considered key for implementing open,
flexible and scalable services. There are many commercial
and nearly commercial agent platforms, such as Grasshopper
(IKV++), Voyager (ObjectSpace), and Concordia
(Mitsubishi. For this work we chose Grasshopper as the
platform, mainly because of its adherence to the OMG
MASIF standardization effort.
 In April 1997, CLIMATE – The Cluster for Intelligent
Mobile Agents for Telecommunication Environments, a pool
of projects within the European Union collaborative research
and development program on Advanced Communications
Technologies and Services (ACTS), was launched to explore
the usage of agent technologies. Most of these projects are
located within the Service Engineering, Security, and
Communications Management domains. CLIMATE is taking
an active part in contributing to relevant agent standards (e.g.,
OMG, FIPA) and telecommunication standards (e.g., IN,
TMN, UMTS standardization). Notably, the Grasshopper MA
framework has been developed under the CLIMATE
umbrella.

B. JavaBeans/Jini

 The JavaBeans specification is an object-oriented
programming interface that is used to build re-useable
application or program building blocks called components
that can be deployed in a network or any major operating
system. Ideally, any Java component conforming to the
JavaBeans component model can be reused in any other
JavaBean compliant application. Every Bean not only
complies with the JavaBean model, it also carries with it all
its properties and methods, which can be easily garnered
through introspection – a JavaBean property whereby any
Bean-aware tool (e.g., a visual programming tool) can analyze
and report on how a Bean operates.
 Jini technology[18] takes advantage of the Java language.
In Jini everything is a service. It brings to the network
facilities for distributed computing, network based services,
seamless expansion, reliable smart devices, and easy
administration. It provides lookup services (LUSs) and a
network bulletin board (or blackboard) for all services on the
network. Jini LUSs facilitate a search of services connected
by the communication infrastructure and store not only
pointers to the service on the network, but also service proxy
code, interfaces that enable a user to acquire and execute
these services. It is important to note that finding a usable
service results initially in the downloading of the proxy code
which can then be used to configure and deploy actual
services. The components of the Jini system can be
segmented into three categories: infrastructure, programming
model and services. The infrastructure is the set of
components that enables building of a federated Jini system,
while the services are the entities within the federation. The
programming model comprises interfaces that enable the
construction of reliable services.

C. Intelligent Networks

IN services [4][19] are based on additional service logic and
data on top of different switched telecommunication
networks. Centralized service nodes known as Service
Control Points (SCPs) control the telecommunications
network via a dedicated out of band signaling network; i.e.,
the International Signaling System No. 7 (SS7) network. The
bearer switching nodes, known as Service Switching Points
(SSPs), provide only basic call processing capabilities. IN
service deployment and management is realized through a
Service Management System (SMS), which interacts with IN
elements via a data communication network. Since the SSPs
and the SCP have to interact for each IN service call (usually
multiple times), the signaling network and the central SCP
may become serious bottlenecks. Furthermore, SCP failures
would result in global service unavailability.
 The IN platform provides greater flexibility for service
creation in general and also for the tailoring of services to suit
the exact requirements of a particular customer. IN-based
services rely on service-independent building blocks (SIBs)
these being the smallest units in service creation. SIBs are
reusable and can be chained together in various combinations
to realize services. They are defined to be independent of the
specific service and technology for which or on which they
will be realized. SIBs were not traditionally implemented
with object oriented concepts and this is one of the reasons
for the drive towards JavaBeans for low level component
implementation.
 With more effort to standardize agent platforms, agent
platforms are maturing, and with Java as an enabling tool for
implementing MAs, Mobile Agents have brought tremendous
opportunities for development of new service architectures
for IP telephony. It should be noted that MA architectures for
traditional IN services in the PSTN[16] and Internet
services[24] have already been proposed. The use of CORBA
and Java for multimedia services has also been proposed[20]
as has the integration of IN and Internet services [21]. Based
on the hypothesis that networks based on the IP protocol will
not replace the Public Switched Telephone Network (PSTN)
in the short term and that migration in this direction will
require hybrid services, Gbaguidi et al.[22] propose that
services should be outside the scope of H.323/H.450. In their
model services are provided by the vendors of network
equipment allowing for easier integration. They also suggest
JavaBeans for implementation and focus on several low level
components. Our approach in contrast is H.323 oriented and
emphasizes a more open environment in which third party
services may be offered, found, and may dynamically
contribute to higher level services.

III. ADVANCED SERVICE ARCHITECTURE

A. Overview

 As a consequence of the drawbacks of the existing service
architecture defined by H.323 described earlier, we propose a
MA-based advanced service architecture for implementing
H.323 advanced services using the widely accepted service
provisioning basis (IN), and enabling technologies (MA,
Jini/JavaBeans)
 As is illustrated in Fig. 1, H.323 gatekeepers and H.323
terminals (Users) are connected to the Enterprise LAN. User
terminals join one gatekeeper’s zone through H.323
gatekeeper discovery and an endpoint registration process.
Mobile agent platforms, called Agencies, are introduced into

the devices, gatekeepers and terminals, that are connected to
the enterprise LAN to provide an agent execution
environment. Agencies can vary considerably in their
capabilities but as a minimum, they allow for code to be
asynchronously pushed on to the node and executed, and they
provide for code migration to another target.

Fig. 1. Mobile Code for IP Telephony

 The main idea behind this architecture is to provision
H.323 advanced services in a uniform, but very flexible way,
supporting dynamic deployment of services. H.323 advanced
services are realized by means of mobile service agents. The
key to this approach is to deploy service agents to the service
users; i.e., the call parties, which makes this service
architecture open, distributed and flexible. As we shall see
later in more detail, the User Service Agent (USA) is
constructed for a user when the user subscribes to one or
more advanced services. It is subsequently updated each time
the user subscribes to additional services. Its purpose is to
record the user's service requirements and to manage services
for the user, and it normally resides in the user terminal.
Another kind of agent, called the Call Agent (CA) is
constructed dynamically at service execution time and is
deployed to carry out actual call processing and related
activities which may call for mobility. These are discussed
more fully in the next two subsections.
 Lookup Services (LUSs) are more like blackboards where
all the available services’ specifications and proxy code
(interface of a service not the actual service code) is placed. A
Service Component Creator (SCC) is responsible for creating
generic service components and advertising its services on a
LUS, where all the service components are stored in the
Service Component Repository (SCR). An SCC can assemble
these service components into new higher level services. End
users can not subscribe to services from an SCC directly.
Rather, they are made available to an Enterprise Service
Creator (ESC) who is responsible for customizing
/assembling the service components into services it provides
to end users through the code it makes available in a Service
Implementation Repository (SIR). The SCC and SCR bring
opportunities for third party service creators and providers,
making them able to compete in the service market. LUSs can

LUS
[e-

service]

Service
Component

Creator

[service]

LUS

Enterprise Service
Creator

LUS
[e-service]

Service
Component
Repository

Service
Implementation

Repository

 Gatekeeper1
 SMU

 Gatekeeper2
 SMU

User11

Enterprise LAN

User12 User13 User21 User22 User23

Internet

A
ge

nc
y

A
ge

nc
y

A
ge

nc
y

A
ge

nc
y

A
ge

nc
y

A
ge

nc
y

A
ge

nc
y

A
ge

nc
y

 VPN
Generic Service
 Object
 (Proxy)

URL of SCR

be local or remote. In our implementation they are provided
by Jini and are linked by the Internet
 This service architecture allows for open service creation.
A different Service Component Creator (SCC) using Service
Components from a Service Component Repository (SCR)
can create advanced services.

 A Service Management Unit (SMU) is an entity that can
be placed in the gatekeeper, or completely separated from the
gatekeeper. It manages service subscription using protocols
not defined by H.323; e.g., HTTP. If a service were to be
dynamically upgraded, the SMU would be involved. Also, the
SMU could be involved in ongoing network management of
the services. An SMU can discover an enterprise LUS using a
multicast protocol; a unicast protocol is used to discover
remote LUSs that are outside of the enterprise LAN. In the
latter case, the SMU has to know where the LUS is before it
sends out a request to the remote LUS
 Service utilization is realized by activating a caller’s User
Service Agent (USA) and ultimately activating the callee’s
USA. A Call Agent (CA) will be instantiated by the result of a
USA creating a new CA. Using terminology from the Design
Patterns community, the USA represents a Factory for Call
Agents. The USA has responsibility for service management
while the CA embodies the call processing functionality
required to set up the call, e.g., it interfaces with an H.323
protocol stack for call setup. In this way we have clear
separation of service management and call processing
responsibilities.
 This architecture supports universal access to the service
through the Jini Lookup process. A level of service
customization by the end user is also supported by this service
architecture. Each user connected to the network can define
his or her own services and service data. An example of such
data could be the number to which calls might be forwarded
in a forwarding service like CFU. Service logic is not
embedded in the network nodes but ultimately in the end
user’s terminal. This makes this service architecture highly
distributed.
 In summarizing the roles of the participant components
introduced above, Jini is used to provide access to service-
related code and Service creators generate service
components which they advertise by storing them in a Jini
lookup service. Enterprise service creators who generate
value-added services specific to their own enterprise needs
discover these components. These value-added service
components in turn are made available to users through the
SMU by advertising them in Jini lookup services visible from
inside the enterprise network. The SMU also is responsible
for maintaining a user profile of subscribed services and USA
information for all registered users

 In the next two subsections, we will describe in more
detail service subscription and utilization with our
architecture when only one gatekeeper is involved, and at the
same time we will explain the related components’
functionality. These scenarios are presented as they represent
familiar H.450.x standard services. However, the architecture
proposed in this paper is considerably more flexible.
Examples of services which take advantage of CA mobility
are discussed later in the paper.
 There are four phases in the life cycle of a service; they are
service creation, subscription, utilization, and ongoing
management and withdrawal. We shall begin by discussing

the middle two which we implemented using Jini and the
Grasshopper mobile agent system.

B. Service Subscription Using Jini

Let us assume for illustrative purposes that the service we are
dealing with is a Virtual Private Network or VPN. A VPN is a
private enterprise telephone network established by the
enterprise administrator. Such a VPN can be used, for
example, to control who has access to VPN services such as
long-distance calling etc. A VPN can be thought of as a
service comprising feature sets that have been customized for
a particular enterprise. More specifically the Outgoing Call
Allowance (OCA) and Outgoing Call Restriction (OGR) VPN
features allow an enterprise administrator to restrict the
numbers that may be called from within an enterprise. For
example, an easily accessible terminal might be restricted to
numbers within the enterprise whereas a terminal on an
employee's desk might have unrestricted dialing privileges.
For these features access to a Restricted Destination Database
is needed. Another VPN feature, an extended hunt group, is
discussed later in section IV.
 Referring again to Fig. 1 and then Fig. 2, service
subscription consists of four major steps. The steps are:

1. The Service Component Creator advertises a generic
VPN service proxy object using the Service LUS.

2. The Enterprise Service Creator discovers the Service
LUS, downloads the VPN service proxy object to its
machine, and uses its graphical User Interface to
customize the VPN service for its enterprise users.

3. The Enterprise Service Creator uploads its customized
service proxy object to the e-Service LUS. This
completes the preparatory steps. The service proxy will
now be available for downloading to the Service
Management Unit in the next step whenever needed.

4. Finally, any User can send a request to its SMU to
subscribe to services as shown by the top arrow in Fig. 2.
which expands the actual form filling interaction

Fig. 2. Service Subscription

 There is some degree of activity resulting from a
subscription request. After the SMU receives a service
subscription request from the end user, it multicasts the
request in the network, discovering enterprise LUSs which
have advanced services. Following discovery, the SMU gets a
response from the LUS listing all the advanced services it has
on the network and the addresses/URLs of other LUSs
outside of the enterprise which have the same kind of services
available. Using this list and service list proxy code, the SMU
constructs a service subscription form and sends it to the end
user stating that these are the advanced services available.
The end user selects the services that it wants, fills in the form
and sends it back to the SMU. The form includes facilities for
the user to specify service related data. The user may not find
all the services it wants. In this case, the user should send a

End User Agency Gatekeeper Agency

Subscription Request

End User SMUSubscription Form

Filled Form

message to the SMU indicating that it wants particular
services that are not in the form, the SMU then queries other
available LUSs external to the enterprise LAN using the
addresses/URLs from the last query. After the SMU receives
the completed form from the user, it checks its User Profile,
which contains all the services that are already in use by the
user. Then it sends a request to the lookup service to
download the proxy code (interfaces) of the services to which
this user has subscribed. When the SMU checks the user
profile, the following things may occur:
� The service / services that the user wants to subscribe to is

already there; then the SMU sends a notification to the
user indicating that the requested service or services are
already provisioned.

� Some of the services the user requested are already
available to the user; then the SMU sends a notification
to the user, and it also sends the proper request to the
LUS.

� If all the services are new to the user, the SMU sends a
request to the lookup service to download the proxy code
of the services that the user has requested.

 The service proxy code will be downloaded to the SMU.
The proxy code contains the interfaces that a gatekeeper
needs to construct a USA, and the location of a SIR where the
actual service code can be found. There may be many URLs
for the addresses of multiple SIRs. If it is the first time the
user is subscribing to services a customized USA is created
and sent to the user agency where it resides in the user’s
terminal. If it is not, the USA, which is already in the user's
terminal, is either replaced by a new one or updated in order
to be able to handle the new services to which the user has
subscribed. In the rest of this paper we assume that it is the
first time the user subscribes to services. Once the user
receives the USA, it acknowledges the SMU whereupon the
User Profile may be updated. Note that if a user does not
subscribe to any advanced services, its terminal will rely on
built in basic call functionality and will not have a USA.

Fig. 3. User Service Agent

 As is illustrated in Fig. 3, a USA consists of ServiceClass,
Code Repository URL, and User Logic and Data. It defines
how a call will be processed; e.g., the management of feature
ordering. It handles service management and other aspects of
network management; e.g., fault management.
 Referring again to Fig. 3, the ServiceClass (Call Model) is
a call model specific to an end user. We view the Call Model
as a basic service, nothing more. The Call Model component

of the USA is an IN call model consisting of two separate sets
of call processing logic: Originating and Terminating call
models. The Originating call processing logic provides
support to the Calling Party, and is modeled by the
Originating Basic Call Model (O-BCSM). The Terminating
call processing logic provides support to the Called Party, and
is modeled by the Terminating Basic Call Model (T-SCSM).
 The call model provides support for a finite state machine
with points of interaction with advanced service
implementations. In the traditional IN view of advanced
services, these points of interaction would be implemented
using detection points. In the approach proposed here, using
component-based technology, we would expect Java Beans to
be used with well-known interfaces and the interaction mode
would be via method call.
 The User Logic in Fig. 3 represents processing that is
required for subscribed services. For a specific service, in one
call processing state, it specifies how we deal with this
specific service and what the next step is in the call
processing. For sophisticated services, the Call Model may
have provision for the Enterprise Service Constructor or user
to write scripts (rules, perhaps) that add a degree of
intelligence to the service. Choosing an example from the e-
mail domain, we might choose to write scripts that filter out
particular callers, or calls from a specific set of network
addresses.
 The User Data in the above figure is the service-related
data. For example, after a user chooses a service (e.g.; CFU),
he will also be asked to fill in the phone numbers to which he
would like to forward calls.
 To reiterate, the User Service Agent (USA) consists of a
Call Model, one or more Service Implementation Repository
URLs (references to where the service code can be found)
and User Logic and User Data.
 A USA is constructed when the end user sends a request
for service subscription. The call model will be unique to the
user according to its subscribed services. For example, user12
may subscribe to Call Forwarding Unconditional (CFU) and
Call Transfer (CT). In this case, the ServiceClass component
of the USA will be a call model that has different detection
points at different points in the call. For CT, the detection
point would be in the originating call model. For CFU, the
detection point would be in the terminating call model. Once
constructed, the USA moves to the user local agency from the
gatekeeper. When the user has several services, the
construction of a USA could be a tricky endeavor due to
potential interactions between the services.

C. Service Utilization Using Mobile Agents

 The Call Agent is a mobile agent, dynamically constructed,
that implements the specific call model for a particular end
user and makes use of basic call processing functions to
control the call setup. It is generated using the USA as a
factory at call time, and may do fairly basic call processing.
For more sophisticated features like the VPN hunt group, it
could use its mobility to carry out its task in a flexible way. It
can execute in the gatekeeper agency, in the end user agency,
or in the agency of another required resource like a database.
 Call Setup and Service Utilization in a simple case where
gatekeeper routed call signaling is used are shown in Fig. 4
Assume for this discussion that call originator user11 has not
subscribed to any advanced services but that user12 has
subscribed to Call Forwarding Unconditional (CFU). User12
would have a USA containing info about the subscribed

Service Class

 User Logic & Data

Call Model

1

2

CFB
CT

USA

Service Implementation
Repository URL

services. User11 on the other hand would not have a USA and
would initiate a call by invoking the Basic Call Processing
(BCP) function in the user terminal. As a result of the
function call, a setup message

Fig. 4. Call Setup and Service Utilization

is sent to the called party (user12) via the gatekeeper (1). The
gatekeeper immediately returns a call proceeding message to
the originator (2) and routes the setup message to the called
endpoint (3).
 For the called endpoint, as soon as it receives the first
setup message, its USA moves to the gatekeeper’s agency (4)
if gatekeeper routed call signaling is being used. The SMU
checks its user profile - user12 has subscribed to CFU - and
hence there must be a USA for user12. So user12’s USA is
activated and a Call Agent (CA) which implements the call
model is instantiated. The USA instantiates a CA by
performing a new CallAgent (USA) call which retrieves
necessary code from the SIR (5). At this time, the USA and
CA reside in the same agency and the CA is ready to take
over signaling for user12. The CA sends call signaling to the
called endpoint via the gatekeeper. Since CFU is in play, the
CA sends a setup message (6) to the diverted-to party user13.
And so on. The fine details and H.323 signals are shown in
section V
 Note that for endpoint–to–endpoint call signaling, the
USA will remain in the user local agency instead of moving to
the gatekeeper’s agency. The CA will reside in the user's
terminal also.
 Call control messages are sent between the CA on behalf
of user12 and user13. Thus, the CA will know that whenever it
gets an incoming call, it will forward the call the phone
number (IP Address) of user13 that user12 has specified during
the service subscription process.

D. Ongoing Service Management

 The intention with the architecture proposed in this paper
is to meet more of the needs of the phases of the life cycle of
a service. So far we have discussed the phases up to and
including utilization. Service Proxy Code downloaded to the

SMU contains different service interfaces according to the
services the user has registered for. There are four types of
interfaces for service to discuss:
� Service Instantiation Interface. The call agent builds the
 operating service code in three steps. First of all using
 information from the proxy previously downloaded from
 an LUS, it now downloads the actual service code. It then
 loads the code using load methods also supplied by the
 LUS. Finally the Call Agent has access to an API
 (constructors) which it uses to create an actual instance of
 the service class
� Service Operation Interface. Here the service provides
 methods that are used to run the service- i.e. get it to do
 something.
� Ongoing Service Management Interface. This
 interface built into the service code itself provides the
 classical FCAPS management behavior (Fault,
 Configuration, Accounting, Provisioning, Security)
� Service Programming Interface. Manipulation and
 programming of the service logic can be applied
 through this interface. It also enables the composition of
 complex services, or stringing together of several
 features. This the point at which an algorithm like DFC
 (Dynamic Feature Composition discussed in IV.B) would
 interact with the service code.

 Using the Ongoing Service Management Interface, an
administrator issues SNMP-like GET/SET requests to
manage the service. The administrator may also withdraw (or
set status of) a service for maintenance purposes through this
management interface. This management interface itself
extends many interfaces, corresponding to the functional
areas designated for Network Management. For example:

public interface ManagementInterface
extends ConfigurationManagementInterface,

FaultManagementInterface,
SecurityManagementInterface,
PerformanceManagementInterface,
AccountingManagementInterface {

public Object get(Object attribute, SecurityInterface
 adminSecurityInfo);

public boolean set(Object attribute, Object value,
 SecurityInterface adminSecurityInfo);

public boolean withdrawService(SecurityInterface
 adminSecurityInfo);

…..}

 When subscribing to specific services, users may ask to be
notified of changes to that service. User Service Agent
registration with the services in the LUS enables notification
of service changes. Jini event services are particularly useful
in this regard. For example, should a service need to be taken
off line for maintenance purposes or withdrawn, the users
subscribing to this service can be notified thereby making
possible the identification of alternate service providers. This
notification of service changes takes place through the SMU
which is notified by the LUS and then in turn deals with the
end user. Such notification allows for enhanced user-
controlled service management and calls for an appropriate
interaction interface in the USA. Examples of the use of such
interfaces have been described in the context of plug and play
networking[26].

LUS

[e-service]

LUS

[e-service]
Service

Implementation
Repository

User11

Enterprise LAN

User12 User13A
ge

nc
y

A
ge

nc
y

A
ge

nc
y

 Gatekeeper1
 SMUA

ge
nc

y

1
2

34

5

6

 As mentioned earlier, if a service is to be dynamically
upgraded, the SMU would be involved. In fact, through
software hot-swapping[25] it is often possible to dynamically
upgrade a service and change certain classes while it is still in
use. This is important because with many users, there may
never be a time when a particular service is never in use by
some user.

IV. APPLICATIONS AND EXTENSIONS OF THE
ADVANCED SERVICE ARCHITECTURE

A. Using XML to Support Advanced IN and Multimedia
Services

The eXtensible Markup Language (XML) is used to
format data into structured information containing both
content and semantic meaning. Most importantly, XML
provides a convenient and highly effective way to encode a
service specification in such a way that an application can
quickly determine the attributes of that service and the
operations it can perform. There is an enormous potential that
a structured service specification holds for revolutionizing
how IN and multimedia services are created and deployed. By
storing all of the semantic information for the feature with the
feature itself a whole host of new applications are possible.
One of the more interesting applications is Open Service
Composition (OSC).

This involves constructing new IN and multimedia
services from a library of component-based services or
building blocks. These new services could be created using
modified versions of existing H.323 telephony services or
they could be built from a series of highly optimized feature
engines. A feature engine is simply a component that
performs a commonly used operation such as call setup; call
redirection, access list management, billing, or linking
multiple calling parties. In the next section, we will explore
how the Advanced Service Architecture could be modified to
support OSC.

B. Extending the Advanced Service Architecture to
Facilitate Open Service Composition

 The LUS currently provided with Jini is useful for finding
and retrieving simple services. It uses a basic wildcard
matching system for service lookup. This means that it either
succeeds or fails to locate a service that corresponds to the set
of attributes that form the search criteria. This will not be
sufficient for Open Service Composition since there are
potentially many ways to construct a new service. The LUS
will always return no match for the attributes of the service
described if it is indeed a new service. In other words, OSC is
useful when a service is required that doesn’t currently exist
in the Service Component Repository. For this reason, a more
fuzzy LUS will be required that allows the architecture to
make intelligent decisions on which feature engines can be
combined together to provide the functionality required.
Creating a structured specification in XML of each feature
engine and storing that specification with the feature engine
itself can realize this fuzzy search. In order to support this,
several changes will need to be made to the Advanced Service
Architecture.
 Currently, Jini services in our architecture are simply Java
objects with well-defined interfaces that are stored for lookup
and retrieval. However, in order to move to a component-

oriented architecture, JavaBeans will be used. JavaBeans is a
commonly used software component model for Java where
each JavaBean is housed in standard container called a Java
ARchive (JAR). The principal components of this JAR file
are the properties and methods of that component and a
BeanContext API, which allows these properties, and
methods to be discovered and extended. Our architecture
would require an addition to each JavaBean that would allow
these properties and method descriptions to be stored in XML
format. Additional information that may be useful for OSC
could also be stored in this XML document such as
dependencies on other components and information on
potential conflicts with other components. The Jini LUS in
the Advanced Service Architecture would be modified to
allow the JavaBeans for all available services and feature
engines to be stored and retrieved. This would involve adding
an XML parser to the LUS so it can search through the
specifications for each service for matches.

Finally, in order to facilitate open composable services, a
distributed collaboration environment such as JavaSpaces or
Tspaces could be used. While direct communication between
Jini LUSs is possible, a Jini service such as JavaSpaces would
allow services stored in multiple environments to
communicate with each other. This added communication
could facilitate software composition and coordination of
services from multiple vendors assuming the services were
based on widely used industry standards such as H.323 or
SIP. Clearly, many more new services could result if a
distributed tuplespace was available in the architecture.
 Feature interaction and coordination is a rather difficult
problem. In our prototype implementation, with a limited
number of features/services available, feature interaction can
be analyzed and solved by simple priority sequencing of
services. There are no miracle solutions for the general
problem but in a fuller developmental system we would
anticipate exploring a more systematic architecture such as
Distributed Feature Composition or DFC [23] within our
advanced service architecture. DFC offers a more
comprehensive pipeline filtering mechanism for ordering
(rather than constructing) services with interesting
possibilities for distribution.

C. Mobile agent based applications

 No one has demonstrated a major application that can only
be implemented with mobile agents. H.323 however, brings a
host of opportunities for investigating applications that
depend on mobile agents, maybe not in an essential way but at
least in an important way. In the future we will investigate
applications, in which, in the context of H.323, call agents
visit a series of processors to complete their tasks. We will
prototype them and show how they depend in an important (if
not essential) way on mobile agents. These applications can
be grouped in two categories that we term “advanced
telephony services” and “Non telephony services”.

Advanced telephony services

 As previously mentioned in the paper, telephony services
are provided today using the IN framework. The features as
perceived by end users are often rudimentary and not very
user friendly. The implementation is not time efficient.
Mobile agents could help in not only enhancing the features
but also in making the implementation much more efficient.
This is illustrated below by the hunt group service. The IN

based hunt group is described first. A sketch of an advanced
mobile agent based hunt group service follows this
description. It could be included as a VPN feature and could
offer more features than the traditional one. Furthermore it
would be more time efficient.
 The traditional hunt group consists of a pilot number that
corresponds to a group of end users. When the number is
called, the end users that make up the group are tried one by
one, following a predefined order, until the call is answered.
In general, it is the first end user who is not busy who takes
the call. In a pure IN implementation, the service is triggered
in the switch and the switch consults the SCP that gives back
the first number to try. The switch tries the number, and if the
end user is busy, it gets back to the SCP to get the next
number to try. The process is iterated until an end user
answers the call.
 The features of the traditional hunt group are rather
rudimentary in the sense that it is the first end user that is not
busy who takes the call. More advanced features could be
offered in the context of Internet Telephony. Mobile agents
can play an important role in the advanced hunt group. They
can carry, for instance, a succinct description of the reason for
the call (e.g. description of the problem to be solved) and
display this it to the end user and ask if he/she is willing to
take the call. The end user who picks up the call could be the
first who thinks he can solve the issue. The traditional
implementation is not very efficient in the sense that end users
are tried sequentially The hunt group could be divided into
sub-groups and several agents dispatched in parallel on the
basis of an agent per sub-group. Several end users will then
be tried simultaneously and when an end user decides to take
the call, appropriate measures will be taken to stop the search
in the other sub-groups. This implementation will certainly
be more efficient and we will try to demonstrate this in future
work.

 Non-telephony services

 Non-telephony services are commonly offered today by
telephony services providers and more and more will be
offered in the future. Examples in mobile telephony include
access to the Web via the General Packet Radio Services
(GPRS) and the Wireless Access Protocol (WAP). Internet
Telephony service providers will certainly tap into that wealth
of non-telephony services in order to enhance their service
portfolio. Potential services to be offered include electronic
commerce, information retrieval and office task automation.
 It has already been demonstrated in the literature that
mobile agents can play an important role in electronic
commerce and information retrieval. In the case of electronic
commerce, they can visit virtual stores, bargain, and purchase
goods on behalf of end users. In the case of information
retrieval, they can visit the site where the information resides
and filter huge amounts of data close to the source. This can
improve performance in a significant manner.
 Internet Telephony will probably be first deployed in
Intranet environments including PBX environments. This
leads us to first focus on the non-telephony services that will
help in automating routine office tasks. A first application we
have in mind is the travelling administrative assistant. An
administrative assistant handles many tasks but sometimes in
an inefficient way due to the lack of appropriate tools. Mobile
agents could play an important (if not essential) role in some
applications that automate office tasks.

 Booking a suitable time for a conference call or a face to
face meeting involving several “over booked” executives can
easily become a nightmare. It usually triggers a flow of
emails and phone calls between the executives’ administrative
assistants and between these assistants and the executives.
The process could be automated by the use of mobile agents.
Let us imagine a mobile agent, perhaps a call agent, which
visits each executive, accesses directly the appointment book,
suggests (directly to the executive) alternative time slots and
so on …We will explore this in future work.

V. SERVICE UTILIZATION SCENARIOS

 In this section, several advanced service scenarios are
presented. To illustrate the USA's and CA's movement on
deployed advanced services using H.323 messaging. Several
examples are provided, without a gatekeeper and with one
gatekeeper involved and gatekeeper routed call signaling; i.e.,
Call Forwarding Unconditional (CFU) in sections A and B,
and VPN in Section C. CFU is defined by ITU-T standard
H.450.3; VPN is not currently defined in the standards.

A. Call Forwarding Unconditional Using End-to-end Call
Signaling

Fig. 5. CFU (End-to-end Call Signaling)

Fig. 5 is explained as follows:

Assumption: The client application will be responsible for
sending messages specified by the Call Agent to the other
applications that are dealing with the call setup process. The
Call Agent can accomplish this by calling a client
application’s interfaces.
Description:
1. An Originator (Caller) application sends a SETUP message
to the Called party (Callee), a flag will be set in SETUP

Originator CallAgent Called Diverted-to

SETUP

CA instantiated

RELEASE COMPLETE

FACILITY(divertingLegInfo1. inv)

CONNECT (divertingLegInfo3. inv)

CONNECT (divertingLegInfo3. inv)

ALERTING

ALERTING(7)

SETUP(divertingLegInfo2. inv)

1

2

3

3

4

5

5

6

7
7

8
9

9

message’s NonStandardControl field to activate the USA, so
that a Call Agent is instantiated.
2. After the call agent is instantiated -- it resides in the
callee’s user agency -- it takes over the call processing from
the client application, sending out all the call setup related
call signaling messages.
3. The Call Agent sends RELEASE COMPLETE to the
caller.
4. The Call Agent sends SETUP with divertingLegInfo2.inv
to the diverted-to party.
5. The Call Agent sends FACILITY with
divertingLegInfo1.inv to the calling party.
6. The Diverted-to party sends ALERTING to the Call Agent.
7. The Call Agent sends ALERTING to the calling party.
8. The Diverted-to party sends CONNECT to the Call Agent.
9. The Call Agent sends CONNECT to the calling party.

B. Call Forwarding Unconditional Using Gatekeeper
Routed Call Signaling

Fig. 6. CFU (Gatekeeper Routed Call Signaling)

Fig. 6 is described as follows:

Assumptions: Same as CFU using end-to-end call signaling.
NonStandardData can be used to transport a USA.
Description:
1. The originator sends a SETUP message to the Gatekeeper.
2. The Gatekeeper responds with CALL PROCEEDING.
3. The Gatekeeper sends SETUP with diveringLegInfo4.inv
 to the called endpoint.
4. The called endpoint sends RELEASE COMPLETE with
 USA in the NonStandardData field.
5. Once the Gatekeeper receives the USA, a Call Agent is
 instantiated.
6. The Call Agent sends SETUP with divertingLegInfo2.inv
 to the diverted-to endpoint.
7. The Call Agent sends FACILITY with
 divertingLegInfo1.inv to the calling endpoint.
8. The Diverted-to endpoint sends ARQ to the Gatekeeper
 indicating it will accept the call.

9. The Gatekeeper sends ACF to the Diverted-to endpoint
 with Gatekeeper’s call signaling transport address.
10. The Diverted-to endpoint sends ALERTING to the Call
 Agent via the Gatekeeper.
11. The Call Agent sends ALERTING to the originator.
12. The Diverted-to endpoint sends CONNECT with
 divertingLegInfo3.inv to the Call Agent via the Gatekeeper.
13. The Call Agent sends CONNECT with
 divertingLegInfo3.inv to Originator.

C. VPN - Outgoing Call Allowance (OCA) / Outgoing Call
Restriction (OGR)

 VPN services are illustrated here by OCA/OGR. The OCA
and OGR VPN features allow an enterprise administrator to
restrict the numbers that may be called from within an
enterprise. For example, an easily accessible terminal might
be restricted to numbers within the enterprise whereas a
terminal on an employee's desk might have unrestricted
dialing privileges. It should be noted that steps 3 and 4 below
offer opportunities for a wide variety of services like the
Hunt Group or other non-telephony services. Fig. 7 is
explained in the following:

Assumptions:
Since the VPN service is not defined by H.323, here we are
using the H.225.0 call signaling in order to illustrate the call
management sequence using a Call Agent, and also to make it
easier to understand by using the same style of call sequence
diagram. The messages used here need to be identified in the
future.

Fig. 7. OGA/OGR (Gatekeeper Routed Call Signaling)

Description:
1,2. The originator and its gatekeeper exchange admission
messages.
3,4. The originator (Caller) application sends a SETUP
message to the Called party and a flag will be set in the
SETUP message’s NonStandardControl field to activate the
USA residing in the gatekeeper, so that a Call Agent is
instantiated. After the call agent is instantiated, it resides in

Diverted-ToOriginator Gatekeeper CalledCallAgent

SETUP

SETUP
CALL PROCEEDING

diveringLegInfo4.inv

RELEASE COMPLETE (NonStandardData = USA)

divertingLegInfo2.inv

FACILITY(divertingLegInfo1.inv)

ARQ

ACF

ALERTING

ALERTING
CONNECT

divertingLegInfo3.inv

CONNECT
divertingLegInfo3.inv

SETUP

CA Instantiated

1

2

3

4

5

6
6

7

8

9

10

10

11

12

12

13

Originator Gatekeeper CalledCallAgent

SETUP

CALL PROCEEDING

ARQ

ACF

ALERTING

ALERTING

CONNECT

SETUP

CA Instantiated

1

Check allowed/Restricted phone
number listSETUP

CALL PROCEEDING

ARQ

ACF

CALL PROCEEDINGCALL PROCEEDING

CONNECT CONNECT

CONNECT

ALERTING

ALERTING

3

2

4

6’

6

5’

7’ 7

9

10’

8

10

11’ 11

12’
12

13’ 13

5

the gatekeeper’s agency. It checks the allowed/restricted
phone number list first. If the called number is in the allowed
phone number list or not in the restricted phone number list,
then the CA takes over the call processing from the client
application, sending out all the call setup related call
signaling messages. (If the called number is denied, then the
CA will send CALL RELEASE to the originator).
5. The Call Agent sends a SETUP message to the called party
via the gatekeeper.
6. The Called party sends a CALL PROCEEDING message
to the CA via a gatekeeper.
7. The CA sends a CALL PROCEEDING message to the
Originator via the gatekeeper.
8, 9. The Called party and its gatekeeper exchange admission
messages - ARQ, ACF.
10,11. The Called party sends an ALERTING message to the
CA via the gatekeeper, and the CA sends an ALERTING
message to the originator via the gatekeeper.
12,13. The Called party sends a CONNECT message to the
CA via the gatekeeper, and the CA sends a CONNECT
message to the originator via the gatekeeper.

VI. CONCLUSIONS

 The mobile agent based advanced service architecture
solution proposed in this paper provides the following
features and benefits. The architecture can:

Enable the provision of flexible software solutions, where
H.323 advanced services software is partitioned into mobile
service agents realizing dedicated functionalities (e.g., IN
service features).

It enables on demand provision of customized advanced
services by open construction of a user service agent that uses
downloaded service code from the SEC or ESC to the
gatekeeper.

It allows for decentralized realization of advanced
services, by means of bringing the user service agents directly
onto the user terminals.
 We have demonstrated that mobile agents may be
successfully integrated with H.323 IP telephony protocols for
the provision of advanced services. The architecture that this
paper proposes seeks to address the entire service lifecycle,
an important consideration in opening the IP telephony
marketplace to non-traditional telephony service providers.
 Our future work consists of the construction of IP
telephony services not currently defined by the existing
H.450.x specifications in order to further validate the
architecture. We are also currently evaluating the traditional
IN SIBs with a view to re-factoring the behavior provided by
them. Finally, a performance evaluation of the existing
architecture using typical hardware and software platforms
needs to be performed. Result of these activities will be
communicated in future publications.

ACKNOWLEDGEMENT

This work was supported in part by Ericsson Research,
Canada and Communications and Information Technology
Ontario (CITO). The contribution of David Mennie is also
appreciated.

 REFERENCES

[1] A. Gary, “H.323: The Multimedia Communications Standard for

 Local Area Networks”, IEEE Communications Magazine, Dec. 1996
[2] “Internet Telephony”, http://www.webproforum.com/siemens2.
[3] ITU-T Rec. H.225.0, “Media Stream Packetization and
 Synchronization for Visual Telephone Systems on Non-Guaranteed
 Quality of Service LANs”, 1997.
[4] T. Magedanz, “Intelligent Networks”, International Thomas Computer
 Press, 1996.
[5] CCITT Recommendation M.3010 "Principles for a
 Telecommunications Management Network" 1992.
[6] R. Minetti, E. Utsunomiya, “The TINA Service Architecture”,
 http://www.tinac.com/specifications/abstract.htm.
[7] D. Clark, "A Taxonomy of Internet Telephony Applications."
 http://itel.mit.edu/itel/publicaions.html.
[8] ITU-T Rec. H.323, “Visual Telephone Systems and Terminal
 Equipment for Local Area Networks which Provide a Non-Guaranteed
 Quality of Service”, 1996.
[9] M. Handley et al., "SIP:Session Initiation Protocol" IETF
 RFC2543, March 1999
[10] H. Schularinne, J. Rosenberg, “Comparison of H.323 and SIP”,
 http://www.cs.columbia.edu/~hgs/sip/h323.html.
[11] B. Pagurek, and T. White, "A Quick Evaluation of H.323/H.450",
 Technical Report SCE-99-02, Systems and Computer Engineering,
 Carleton University, April 1999.
[12] “The Problems and Pitfalls of Getting H.323 Safely Through
 Firewalls”,
 http://support.intel.com/support/videophone/trial21/H323_WPR.HTM.
[13] ITU-T Recommendation H.450.1 "Generic Function Protocol for the
 Support of Supplementary Services in H.323" and H.450.x Series
[14] T.Magedanz, K. Rothermel, S.Krause, “Intelligent Agents: An
 Emerging Technology for Next Generation Telecommunications?"
 INFOCOM 96, San Francisco, USA.
[15] J. Kiniry and D. Aimmerman, “A Hands – On Look At Java Mobile
 Agents”, http://computer.org/internet/ic1997/w4021abs.htm.
[16] M. Breugst and T. Magedanz, “Mobile Agent - Enabling Technology
 for Active Intelligent Network Implementation”, IEEE Network,
 May/June 1998.
[17] D. B. Lange, “Present and Future Trends of Mobile Agent
 Technology”, Second International Workshop on Mobile Agents '98
 (MA '98) Stuttgart, Germany, September 1998.
[18] Jini specifications, http://www.sun.com/jini/specs
[19] T. Jan, “Intelligent Networks”, Artech House, Mass., 1994.
[20] A. Limongiello, R. Melen, M. Rocuaao, V. Trecordi and J. Wojtowicz,
 “An Experimental Open Architecture to Support Multimedia Services
 based on CORBA, Java and WWW Technologies”, Proceedings,
 Fourth International Conference on Intelligence in Services and
 Networks, IS&N’97 Cernobbio, Italy, May 1997.
[21] O. Miauno, J. Urata, Y. Sueda, and Y. Niitsu, “Advanced Intelligent
 Network and the Internet Combination Service and Its Customization”,
 IEICE Transactions on Communication, No.8, August 1998.
[22] Gbaguidi, C., Hubaux J-P., Pacifici G., and Tantawi A., "An
 Architecture for the Integration of Internet and Telecommunication
 Services", Proceedings of IEEE Openarch '99,
[23] Jackson M., and Zave. P., "Distributed Feature Composition: A Virtual
 Architecture for Telecommunications Services" IEEE Transactions on
 Software Engineering, Vol.24 No. 10, October 1998.
[24] A.Park, A. Kupper, S. Leuker, “JAE: A Multi-Agent System with
 Internet Services Access”, Proceedings, Fourth International
 Conference on Intelligence in Services and Networks, IS&N’97
 Cernobbio, Italy, May 1997.
[25] N.Feng, G. Ao, T.White, and B. Pagurek, "Software Hot-swapping
 Technology Design" , Technical Report SCE-99-04, Systems and
 Computer Engineering, Carleton University, Ottawa, June 1999.
[26] S. K. Raza, , “A Plug and Play Approach with Distributed Computing
 Alternatives for Network Configuration Management" M.Eng. Thesis,
 SCE Dept., Carleton University, Ottawa, Canada, April 1999.

