Management of dental caries lesions in Latin American and Caribbean countries

Abstract: Caries management at the lesion level is dependent on the lesion activity, the presence of a cavitation (either cleanable or non-cleanable), and lesion depth as evaluated via radiographic examination. A variety of non-invasive, micro-invasive, and minimally invasive treatment (with or without restoration) options are available for primary and permanent teeth. Non-invasive strategies include oral hygiene instructions, dietary counseling, and personal as well as professional use of fluoridated products that reduce demineralization and increase re-mineralization. Micro-invasive procedures include the use of occlusal resin sealants and resin infiltrants, while minimally invasive strategies comprise those related to selective removal of caries tissues and placement of restorations. Deep caries management includes indirect pulp capping, while exposed pulp may be treated using direct pulp capping and partial or complete pulpotomy. The aim of the present study was to review available evidence on recommended preventive and restorative strategies for caries lesions in Latin American/Caribbean countries, and subsequently develop evidence-based recommendations for treatment options that take into consideration material availability, emphasize ways to adapt available treatments to the local context, and suggest ways in which dentists and health systems can adopt these treatments.

Keywords: Dental Caries; Evidence-Based Dentistry; Latin America; Caribbean Region.

Introduction

The lack of consensus on dental caries management was recently recognized during a discussion between various expert authors from the Latin American and Caribbean countries (LACC), and the aim of this review was to address this gap by developing relevant evidence-based recommendations and strategies that took geographical factors as well as the patient’s individual needs into consideration. Therefore, a critical literature review of international evidence, with a specific focus on studies conducted in LACCs, was carried out using a narrative strategy, and the research question of interest was as follows: What are the best treatment options currently available for the management of caries lesions in LACCs?

Dental caries is a multi-factorial, non-communicable, non-infectious, chronic, biofilm-induced disease modulated by various biological,
behavioral, psychosocial, and environmental factors. Caries lesions are typically characterized by the active loss of tooth minerals, induced by the metabolic activity of dental biofilm formed by frequent consumption of a sugar-rich diet. In the absence of any intervention, the cumulative effects of alternating demineralization and re-mineralization cycles (favoring the former) leads to the development of a clinically visible lesion, and defensive reactions such as increased intra-tubular dentin formation and initial pulps may occur in the dentin-pulp complex upon lesion progression. When left untreated, caries lesions may slowly progress into the deep dentin and pulpal tissue and, in severe cases, profoundly affect the general health and decrease the quality of life of the patients. Severe caries lesions represent the primary cause of oral pain and tooth loss globally.

Despite significant advances in oral-health sciences, the World Health Organization have highlighted the high prevalence of dental caries in various developing countries and particularly those in the LACC region where caries represent a major unmet need of the population. Numerous studies have reported prevalence rates of 40% to 90% among children, teenagers, and adults in this geographic region, and the management of dental caries is often beyond the financial capabilities of low-income countries where limited resources hinder access to high-quality dental treatments. Therefore, better use of financial resources through the development of evidence-based protocols recommending non-invasive or minimally invasive restorative treatments is essential.

Dental caries need to be managed at the patient and lesion levels. Patient-level interventions include non-invasive strategies that aim to control disease progression and lesions becoming clinically detectable. This can be achieved through dietary counseling and comprehensive oral hygiene measures such as mechanical removal of the dental biofilm through daily tooth-brushing using fluoridated dentifrices which promote re-mineralization by re-establishing the mineral balance between the tooth surface and the surrounding aqueous phase (represented by the saliva and dental biofilm fluid). However, the success of these interventions is directly dependent on patient adherence to the treatment protocol, and it has been suggested that the best practice for dental caries management should include a more patient-centered model consisting of individualized caries risk assessment and early detection of non-cavitated caries lesions. This approach aims to achieve personalized treatment for the individual patient, and focuses on the treatment and prevention of dental caries at the patient level.

Dental caries management at the lesion level includes a wide range of non-invasive, micro-invasive, and minimally invasive interventions that vary depending on the lesion activity, presence of cavitation (cleanable or non-cleanable), and lesion depth (shallow/moderate/deep - evaluated using radiographic examination). These interventions aim to arrest lesion progression, preserve pulpal health by creating a hermetic seal against microbial invasion (through placement of a restoration), and re-establish the tooth’s structure and function for as long as possible. The management protocol for deep caries lesions with a high risk of pulp exposure should include selective removal of caries tissues followed by the placement of new and improved pulp capping biomaterials if necessary. This contemporary approach to management of caries lesions results in less expensive and more predictable outcomes from the histological and clinical points of view.

Therefore, this review aims to describe current strategies for the management of dental caries at the lesion level for primary and permanent dentition, and make evidence-based recommendations targeting dental practitioners in LACCs.

Strategies for the management of caries lesions: Scientific evidence from LACCs

A direct comparison of studies was hindered by the lack of consensus on the management of caries lesions and variations in methodologies and study designs adopted. Therefore, prior to commencement of the evidence-based review, the authors first defined the primary objective by means of a set of questions focusing on the management of all caries lesions (ranging from non-cavitated lesions to deep cavities) while taking socioeconomic and cultural factors of LACCs into consideration.

Based on evidence from various clinical trials (some of which were conducted in LACCs), practitioners and health policy-makers should adopt caries management strategies that take the depth of the
lesion into consideration as these techniques tended to be cost-effective and could, therefore, be adopted by conventional public dental health service in LACCs. This would be particularly beneficial for the enhancement of oral-health care in deprived communities by increasing accessibility to preventive and restorative treatments. Some of the strategies for caries lesion management have been presented below. Selection of an appropriate strategy should begin with a careful and precise diagnosis at the lesion level. Inactive lesions are typically characterized by the presence of shiny whitish/brownish areas of discoloration on non-cavitated lesions as well as of shiny, smooth, hard on gently probing, and discolored brownish in cavitated lesions reaching dentin. These lesions typically do not require any intervention other than monitoring as they are disease scars, although restorations can be placed in cavitated lesions in order to protect the pulp-dentin complex or restore the tooth’s function, form, and esthetics. Conversely, opaque, rough and whitish tissue on non-cavitated lesions and the presence of soft or leathery (to gently probing) humid and yellowish/light-brownish tissue in cavitated lesion reaching dentin are clinical signs of active lesions that need to be controlled. Clinicians must be trained to identify early signs of active demineralization which will enable them to intervene in a timely manner using non-invasive and micro-invasive strategies. For cavitated lesions, it is essential to first take into consideration whether the cavity can be cleaned or not as it will help with the decision-making process and selection of the best treatment strategy. Non-invasive strategies are sufficient for the management of cavities that can be cleaned, while those that cannot be cleaned may require a combination of non-invasive, micro-invasive, or minimally invasive strategies coupled with restorations. This decision-making process should be biologically informed, evidence-based, and should take the needs of the patient into consideration.

Management of non-cavitated lesions—Non-invasive/micro-invasive strategies

The primary prevention of dental caries typically involves inhibition of lesion initiation as indicated by the recent consensus on the term dental caries care/management/control as “all actions taken to interfere with mineral loss at all stages of the disease process” This includes primary, secondary, and tertiary preventive measures that incorporate both non-operative and operative treatments. Disease triggering factors must be controlled in order to prevent formation of caries lesions and arrest progression of existing ones. Therefore, preventive strategies should take biological, behavioral, psychosocial, and environmental factors into consideration in order to avoid negatively affecting the oral environment. Oral hygiene measures, dietary counseling, and other non-invasive strategies (such as the application of fluoride and chlorhexidine varnishes and the use of xylitol lozenges) have been shown to be effective in controlling active non-cavitated lesions in children. Some of these strategies will be reviewed in the subsequent section to highlight the need for simultaneous management of the disease and lesion. Various experimental and clinical studies have demonstrated that caries lesions originate in the enamel or exposed root dentine beneath accumulated and stagnated dental biofilms. The dental caries process initiation and progression depend on the metabolic activity of the dental biofilm which, in turn, is enhanced by frequent intake of dietary sugars. Therefore, regular and meticulous mechanical removal of the dental biofilm aids in arresting lesion progression. However, previous studies have shown that personal oral hygiene protocols (by means of supervised tooth-brushing) lacking fluoride administration, either via dentifrices or community-based methods, were effective in controlling gingivitis but failed to prevent coronal caries in children aged 10-13 years old. This reinforces the importance of fluoridated products (e.g. dentifrices) and/or community-based methods for fluoride delivery in lesion control. The selection of appropriate strategies for the prevention of lesion formation and inhibition of disease progression can be challenging for the dental professional, and the decision-making process should be based on scientific evidence focusing on when and how to implement the strategy while taking the needs of the patient and the availability of financial and technical resources, especially in public health systems, into consideration. Selection of multiple
strategies may be necessary, and the risk of caries exhibited by the patient may even be considered on the decision-making process.18

The recent global decrease in the prevalence of dental caries can be attributed to the widespread use of fluoride-containing dentifrices,19,20 with numerous clinical studies showing that mechanical removal of the dental biofilm by daily tooth-brushing using fluoridated dentifrices in concentrations of 1,000–1,500 ppm F significantly contributed to controlling enamel, dentin, and/or root caries lesions.20,21

Moreover, tooth-brushing twice a day using fluoride dentifrices at concentrations of 5000 ppm F was shown to be more effective in arresting root caries in the elderly population compared to dentifrices with concentrations of 1,000–1,500 ppm F.21,22 Professional dental biofilm management should be also considered as a treatment option for dental caries.

In addition to dentifrices, a wide range of topical fluoride-based agents are available for individual use,23 including high-concentration fluoride products (such as acidulated phosphate gels, varnishes and solutions) which allow deposition of greater amounts of calcium fluoride globules onto the tooth surface forming fluoride reservoirs in the oral cavity. Progression of non-cavitated caries lesion in primary and permanent teeth can be significantly controlled by 5% NaF varnishes,24 while 38% silver diamine fluoride (SDF) represent a more effective strategy for the control of cavitated caries lesions reaching dentine when compared to other active treatments (e.g. atraumatic restorative treatment (ART) restorations or NaF varnish).22 SDF has also been shown to be effective in inactivating root caries lesions.22,25

Among non-fluoridated agents, casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) is a bioactive agent that has been shown to be effective in re-mineralizing tooth structures in vitro and in vivo. A recent meta-analysis suggested that CPP-ACP, conventional fluoride toothpastes, and fluoride varnishes had similar efficacy with regard to controlling lesion development, and clinical parameters such as enamel micro-hardness, DMFS/dmfs (decayed, missing, filled surfaces) index scores, and Enamel Decalcification Index scores did not differ significantly between CPP-ACP and fluoride products.26 Moreover, a combination of CPP-ACP and fluoride varnish was shown to have superior anti-caries effect, particularly in enamel lesions on young permanent teeth, as CPP-ACP could carry fluoride ions deeper into the lesions, enhancing re-mineralization. Nevertheless, there is insufficient evidence on whether CPP-ACP agents are more effective in controlling caries lesions when compared to fluorides, and high quality, well-designed randomized controlled trials are necessary.20

The cariostatic effects of non-fluoridated chemical agents such as arginine, chlorhexidine, triclosan, and xylitol have been evaluated in vitro and compared with conventional fluoride in several randomized controlled trials. A recent systematic review compared the efficacy of non-fluoridated agents and fluoride in controlling caries in primary teeth and found no evidence of the former being superior. However, this could be attributed to a high risk of bias in most studies reviewed,31 and well-designed randomized controlled trials are necessary in order to make conclusive recommendations. Chlorhexidine varnish was found to be more effective in controlling root caries lesions compared to placebos, and the results were consistent.32

An in vitro study examined the use of theobromine (3,7-dimethylxanthine), a primary alkaloid derived from the cacao plant commonly found in LACCs, as a re-mineralizing component of dentifrices and found it to be less effective than those containing fluoride.33

The use of nanotechnology to enhance the anti-caries effects of dentifrices, varnishes, surface coating agents, and fluoride-releasing materials have also shown promising results, with the use of oral medicine nanosystems for individual prophylaxis showing significant progress with regard to ensuring bacterial symbiosis and maintaining good oral health. Nano-particles have also been integrated into various cosmetic products targeting enamel re-mineralization, thus creating opportunities for new research into the development of enhanced delivery systems that serve as carriers for minerals and/or biomaterials. Their clinical use for control of caries lesions remains under evaluation.34

Current evidence also recommends the use of pit and fissure sealants as a micro-invasive strategy for the prevention and control of caries lesions.22 Resin-based fissure sealants act as a physical barrier between the tooth surface and the stagnated dental biofilm and
Management of cavitated dentine lesions

As mentioned above, the decision-making process for the management of active cavitated lesions is dependent on whether the cavity can be cleaned (where mechanical biofilm removal can be carried out at home by tooth-brushing) or not. The former can be managed non-invasively, and it is assumed that the disease process is halted and lesion progression is arrested upon adequate removal of the biofilm. Accessibility for adequate cleaning can be increased by slightly widening the cavity margins to remove overhanging enamel/dentine. However, patient motivation is crucial in this case, and regular monitoring for proper mechanical removal of biofilm is essential. This is particularly applicable in the case of primary dentition where the child’s oral hygiene is the responsibility of their parents or caretakers who must also be adequately informed and motivated. Periodic clinical examination is necessary for assessment of lesion activity, and treatment success is achieved once the remaining tissues become hard indicating halting of lesion progression. The use of SDF solution (applied biannually) as an adjunct to mechanical biofilm removal may be recommended for the management of coronal cavitated caries lesions in primary and permanent dentition. Not all cleaned cavities require restorations, and this method is usually preferred when there is a need to protect the pulp-dentin complex or restore the tooth’s function, form, and esthetics.

In contrast, active cavitated lesions that cannot be cleaned, such as those on proximal or other poorly accessible surfaces, are understood to be prone to progression and, therefore, may require restorative procedures facilitating dental biofilm control. Cavities on proximal surfaces or in any other surfaces where the biofilm cannot be properly removed should be assessed by visual-tactile methods (with the aid of tooth separators in the case of proximal surfaces) and/or by bitewing radiographs to assess depth. Proximal cavitation on lesions restricted to the enamel only are unlikely, while lesions extending to the enamel-dentin junction or to the outer third of the dentin may or may not be cavitated and those extending into the middle or inner third of the dentin are likely to be cavitated. Non-cavitated lesions should be managed using non-invasive or micro-invasive interventions as described in the previous section, while cavitated lesions that are difficult to clean should be managed as described below.

Cavitation indicates severe contamination of the dentin with cariogenic microorganisms, although arresting lesion progression is possible through adequate sealing that stopped further microbial growth. Therefore, removal of all caries tissues in order to reach a hard and virtually cleaned and disinfected remaining dentin (non-selective removal of caries tissue up to hard dentin or NSRHD) is no longer promoted, and several strategies for the management of non-cleanable cavitated lesions with dentinal involvement have been presented below. However, it is important to highlight that these are applicable only in case of absence of spontaneous pain, signs of pulpal exposure or irreversible pulpitis, or radiographic evidence of periapical lesions.
Cavitated lesions with dentinal involvement can be managed without prior removal of caries tissue tissues. The Hall technique, which involves placement of a pre-formed metal crown on decayed cavities without tooth preparation (as a mixed non-invasive and restorative treatment) and anesthesia, has been shown to have high success rates in occlusal and occluso-proximal lesions arrestment in primary molars, particularly when compared to conventional restorative treatments over 2-5 years of follow-up.

Upon comparing direct placement of resin sealants or flowable resin composites without prior removal of caries tissues (as a mixed micro-invasive and restorative treatment) to conventional composite restorations placed after selective removal to firm/leathery dentine, the two were seen to exhibit similar efficacy with regard to controlling lesion progression in occlusal cavities of primary molars radiographically shown to extend to the outer half of the dentine after 18 months and 2 years of follow-up.

Additionally, placement of resin sealants without prior caries tissue removal and conventional resin composite restorations without selective removal of carious tissue over the pulp roof (as described below), hard tissue should be left at the cavity surrounding walls (whose tactile characteristics are similar to sound dentin) using hand and/or rotatory instruments for allowing a proper bonding and sealing of the restorative materials with cavity walls. Taking the depth of the lesion and hardness of the remaining dentin into consideration, caries tissues should be removed based on the following recommendations:

a. Shallow to moderate deep lesions where the radiolucency extends to the outer pulpal two-thirds or three-quarters of the dentine (estimated using a bitewing radiograph): selective removal to leathery/firm dentin (SRFD), retention of leathery/firm caries tissue resistant to hand excavator over the pulpal roof, and completion of restoration in one session;

b. Deep lesions where the radiolucency extends to the pulpal third or quarter of the dentin (estimated using a bitewing radiograph): selective removal to soft dentin (SRSD; easily scooped up with a sharp hand excavator) so as to leave some soft caries dentinal tissue over the pulpal roof to reduce the risk of pulp exposure, followed by completion of restoration in one session. For many years, stepwise excavation (SW) was the treatment of choice for such deep lesions. It consisted of caries excavation in two steps, wherein SRSD and temporary restorations were carried out initially, followed by a second round of caries tissue excavation up to firm/hard dentin over the pulpal roof after several months. However, this treatment is no longer being advocated for primary teeth.
Restoration of the cleaned cavity can be carried out using chemically activated high-viscosity glass-ionomer cement (HV-GIC), commonly indicated for ART restoration where the caries tissue is removed with hand instruments only. The decision to remove dentin up to soft or firm consistency over the pulpal roof depends on the lesion depth. A margin of sound dentin (hard tissue) should be retained on the surrounding cavity walls to allow proper sealing, and a sharp hand excavator may be used to widen the entrance of small cavities by removing overhanging enamel. A recent meta-analysis reported high survival rates for single-surface ART restorations carried out using HV-GIC in primary (94.3% over 2 years) and permanent (87.1% over 3 years) posterior teeth. The survival rates for multi-surface restorations were lower in primary (65.4% over 2 years) and permanent teeth (77% over 5 years), although “cavity size” and “cavity depth” were not taken into consideration. The authors concluded that there was insufficient evidence to draw definitive conclusions regarding the survival of multi-surface ART restorations placed on permanent teeth. However, the success of this strategy is directly dependent on the restorative material used. Two clinical trials concluded that ART restoration of primary molars using low-cost GIC presented lower success rates over 1–2 years of follow-up when compared to conventional HV-GIC, suggesting that the overall cost of treatment may be increased by the need for re-interventions and replacement of defective restorations. These studies suggest that ART restoration using a high-quality material represented a suitable treatment option for coronal caries lesion management, particularly for single-surface restorations.

Concerns regarding pulpal vitality and the longevity of restorations placed over remaining caries tissues may be raised, especially after selective tissue removal in deep cavities. A similar success rate (assessed both clinically and radiographically) was observed over a 2 year follow-up period for both techniques [selective removal of caries tissue (92%) and NSRHD (96%)] conducted on deep lesions in primary teeth, although the occurrence of pulpal exposure and overall operative time were lower during selective caries tissue removal compared to NSRHD. Moreover, restoration survival was lower for selective removal of caries tissue (66%) compared to NSRHD (86%). A recent systematic review and meta-analysis reported a greater risk of failure for restorations placed after SRSD on primary teeth when both occlusal and occluso-proximal restorations were analyzed together, although the limited number of studies included along with their high risk of bias prevented formation of definitive conclusions. Nevertheless, dentists should not be discouraged from conducting selective removal of caries dentine on deep lesions of primary teeth as this approach allows avoidance of more invasive interventions. Shorter intervals between recall visits to evaluate the quality of restorations has been recommended. A multicenter randomized controlled trial examining permanent teeth for a period of 5 years in public health services and public universities in Brazil showed that pulpal necrosis was less likely to occur after SRDS than after SW on molars presenting deep cavitated lesions radiographically shown to extend beyond the inner half of the dentin thickness. Similar success rates (in terms of pulp vitality) were observed between complete SW (75%) and SRSD (80%) but the success rate of SRSD was higher when both complete and incomplete SW treatments were combined (56%). The authors also reported very low success rates (5%) for incomplete SW, and emphasized that the success of SW is highly dependent on patient commitment to recall visits. Furthermore, as recall visits for SW are associated with cavity re-opening and placement of long-lasting restorative materials, the risk of pulpal exposure during the second step of excavation and related treatment costs and patient discomfort are higher. Additionally, SRSD and restoration in one session exhibited higher success rates with regard to maintenance of pulpal vitality in permanent molars when compared to SW and NSRHD. Given the low risk for pulp exposure, the high success rates in terms of maintenance of pulp vitality over time, and the lower operative time, selective removal of caries tissue followed by definitive restoration in a single visit a recommended strategy for less invasive management of deep lesions. With regard to the longevity of restorations, a 3 year retrospective study examining restoration survival in young permanent
molars of children at a high risk of caries reported similar outcomes for both selective removal of caries tissue and NSRHD. Poor oral hygiene and multi-surface restorations (involving three or more surfaces) were regarded as risk factors for restoration failure. Additionally, restorations placed after SRSD (79%) and SW (76%) exhibited similar success rates after 5 years of follow-up. Generally, resin composite restorations are superior than resin-modified glass-ionomer cements (RM-GIC) and similar to amalgam restorations in terms of longevity. Fracture, loss of marginal integrity, wear, and partial or total loss were the most common reasons for restoration failure, and recent studies have suggested that a high risk for developing of caries lesions and the presence of active caries lesions are condition that negatively impact restoration longevity.

Dental restorations tend to undergo deterioration and degradation over time, making regular clinical assessments for localized repair or complete replacement if necessary. Restoration replacements often lead to loss of tooth structure, making the tooth remnants more fragile and increasing the risk of harm to pulpal tissue. Hence, attempts to repair defective restorations (e.g. by sealing localized marginal defects, polishing, re-contouring) should be considered before opting for immediate replacement. In case of restoration repair, any caries tissue around the defective part should be removed. A retrospective study demonstrated that the repair of defective resin composite or RM-GIC restorations in primary teeth increased their longevity over 3 years, even in high-risk children. Moreover, repaired resin composites (presenting localized defects up to 3 mm diameter and restricted to the occlusal surface) and amalgam restorations (presenting localized marginal defects not wider than 1 mm and restricted to the occlusal surface) acted similarly in terms of marginal integrity and demineralization around the restoration when compared to new restorations in permanent molars over a 10 year follow-up period. The anatomy and color of resin composites and marginal staining in case of amalgam restorations were also similar between repaired and replaced restorations, indicating that the former were clinically acceptable even after 10 years. These studies suggest that restoration repair increases the longevity of restorations and should be preferred and encouraged where possible. Table shows a summary of studies examining caries management in LACC. Figure 1 shows a decision-making diagram for the management of non-cavitated and cavitated dentine lesions in the context of LACCs. These recommendations are intended to assist clinicians and stakeholders in the decision-making process, and it is important to re-emphasize that strategies should be selected based on clinical judgment as well as the patient’s needs.

“Ultra-conservative Treatment” (UCT) of caries lesions often involves placement of bound and sealed restorations directly over frank cavitated lesions extending into the dentine. However, it may also include combined use of ART restorations for small cavitated lesions as well as enlargement of medium-sized cavities to facilitate biofilm removal under supervised toothbrushing. These variations in definitions and approaches associated with UCT increased the risk of misunderstanding and as a result this terminology was not included in the present manuscript.

Management of deep caries lesions with exposed pulpal tissue

To avoid further compromising the pulpal tissue, deep caries lesion management should follow scientifically proven approaches. However, in many cases the depth of the caries cavity may not be as conservative as expected, resulting in pulpal exposure which may be either strictly iatrogenic (mechanical exposure of pulp tissue after caries removal) or caused by the severity of the dental caries per se.

Initial clinical and radiographic examination is essential in order to avoid possible pulpal exposure during the management of deep cavities. The presence of spontaneous pain, tenderness to thermal stimuli, or painful occlusal contact may indicate the extent of pulpal inflammation, although a complete absence of symptoms in the presence of profound damage is often more worrying. In such cases, the two possible diagnoses include pulpal necrosis or asymptomatic irreversible pulpitis. In case of necrosis, the patient must be informed immediately and a complete
Table. Evidence for the management of non-cavitated and cavitated dentine lesions carried out in LACC.

<table>
<thead>
<tr>
<th>Type of intervention</th>
<th>Strategies</th>
<th>Study/Country</th>
<th>Type of study/Scenario</th>
<th>Lesion severity and dentition</th>
<th>Outcomes</th>
<th>LACC/local barriers for discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro-invasive x non-invasive</td>
<td>Resin infiltration × proximal sealing × placebo</td>
<td>Martignon et al., 2012/Colombia</td>
<td>RCT/University clinic</td>
<td>Non-cavitated proximal lesions</td>
<td>Proportion of caries progression was 32% from the infiltrated, 41% from the sealed, and 70% from the placebo over 3 years follow-up. Infiltration and sealing were significantly more efficacious than placebo. No significant difference was observed between infiltration and sealing</td>
<td>Careful selection of cases as well as periodical radiographic and clinical examination is encouraged</td>
</tr>
<tr>
<td></td>
<td>Resin infiltration + dental floss × dental floss</td>
<td>Jorge et al., 2019/Brazil</td>
<td>RCT/University clinic</td>
<td>Non-cavitated proximal lesions</td>
<td>Caries progression was observed in 24.1% of the test lesions compared with 55.2% of the control lesions (p = 0.012) over 24 months follow-up</td>
<td>Data on the cost-effectiveness of resin infiltration in comparison with other treatment options are still scarce</td>
</tr>
<tr>
<td></td>
<td>Resin infiltration × no infiltration</td>
<td>Sarti et al., 2020/Brazil</td>
<td>RCT/University clinic</td>
<td>Non-cavitated proximal lesions</td>
<td>Caries progression was observed in 54.1% of the test lesions compared with 79.2% of the control lesions (p = 0.03)</td>
<td></td>
</tr>
<tr>
<td>Micro-invasive x restorative</td>
<td>Resin sealant without carious tissue removal × SRFD + composite resin restoration</td>
<td>Hesse et al., 2014/Brazil</td>
<td>RCT/University clinic</td>
<td>Occlusal cavitated dentine lesions on primary molars</td>
<td>Both strategies had similar efficacy in terms of lesion arrestment (100%) over 18 months follow-up. Lower longevity of resin sealant due to partial or total loss over the studied period was reported</td>
<td>Need of regular review visits for repairing/resealing the resin sealants restorations</td>
</tr>
<tr>
<td></td>
<td>Resin sealant without carious tissue removal × NSRHD + composite resin restoration</td>
<td>Alves et al., 2017/Brazil</td>
<td>RCT/University clinic</td>
<td>Occlusal cavitated dentine lesions on permanent posterior teeth</td>
<td>Both strategies had similar efficacy in terms of lesion arrestment (94% for sealant and 100% for composite resin) over 3-4 years follow-up</td>
<td>Need of regular review visits for repairing/resealing the resin sealants restorations</td>
</tr>
<tr>
<td></td>
<td>Flowable resin without carious tissue removal × SRFD + composite resin restoration</td>
<td>Dias et al., 2018/Brazil</td>
<td>RCT/University clinic</td>
<td>Occlusal cavitated dentine lesions on primary molars</td>
<td>Success rate in terms of restoration longevity was lower for sealants (76%) than for composite resin (94%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Deposition of tertiary dentine deposition was found in both groups</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ART (two types of GIC): Ketac-Molar × Vidrion</td>
<td>Menezes et al., 2006/Brazil</td>
<td>RCT/University clinic</td>
<td>Single- and multiple surface cavitated dentine lesions on primary molars</td>
<td>Ketac-Molar restorations involving 1 surface (occlusal) presented the best outcomes over 12-months follow-up</td>
<td></td>
</tr>
<tr>
<td>Minimally invasive x restorative</td>
<td>ART (HV-GIC × RM-GIC)</td>
<td>Cefaly et al., 2007/Brazil</td>
<td>RCT/Suburban public schools</td>
<td>Multiple surfaces cavitated dentine lesions on permanent molars</td>
<td>Survival rate of both HV-GIC (93%) and RM-GIC (100%) were similar over 12-months follow-up</td>
<td></td>
</tr>
</tbody>
</table>

Continue...
<table>
<thead>
<tr>
<th>Type of intervention</th>
<th>Strategies</th>
<th>Study/Country</th>
<th>Type of study/Scenario</th>
<th>Lesion severity and dentition</th>
<th>Outcomes</th>
<th>LACC/local barriers for discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>ART (HV-GIC × ZOE cement)</td>
<td>Zanatta et al. 99, 2011/Brazil</td>
<td>RCT/Public health centers</td>
<td>Single- and multiple surfaces cavitated dentine lesions on posterior permanent molars</td>
<td>The survival rate of single-surface (86.5%) was higher than multiple (57.6%) surfaces over 10 years follow-up. About 90.8% of ZOE cement restorations failed after 2 years.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ART (HV-GIC × NSRHD (amalgam restoration))</td>
<td>Mijan et al. 22, 2014/Brazil</td>
<td>RCT/Public primary schools</td>
<td>Occlusal and occlusoproximal cavitated dentine lesions on primary molars</td>
<td>Cumulative survival rates (up to 90%) over 3.5 years follow-up was similar between NSRHD and ART.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ART (HV-GIC × NSRHD (amalgam restoration))</td>
<td>Hilgert et al. 70, 2014/Brazil</td>
<td>RCT/Public primary schools</td>
<td>Single- and multiple surfaces cavitated dentine lesions on primary teeth</td>
<td>Cumulative survival rate of amalgam restorations over 3 years follow-up for single and multiple surfaces (93.4% and 64.7%) were similar to HV-GIC (90.1% and 56.4%).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ART (HV-GIC × NSRHD (composite resin restoration))</td>
<td>Molina et al. 71, 2018/Argentina</td>
<td>RCT/Special care service for patients with intellectual disability</td>
<td>Cavitated dentine lesions on primary molars and/or permanent teeth</td>
<td>The cumulative success rate of all ART (94.8%) was higher than all resin composite restorations (82.3%) over 3-years follow up. For both treatments, cumulative success rate was higher for single surface restorations.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30% silver diamine fluoride × ART</td>
<td>Valló et al. 72, 2019/Argentina</td>
<td>RCT/University clinic</td>
<td>Occlusal cavitated dentin lesions on primary molars</td>
<td>Lesion was considered arrested in 89% of the SDF and 96% of the ART with no significant difference.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ART (HV-GIC × low-cost GIC)</td>
<td>Moura et al. 51, 2020/Brazil</td>
<td>RCT/Daycare centers</td>
<td>Single- and multiple-surface cavitated dentine lesions on anterior or posterior primary teeth</td>
<td>Restorations performed with HV-GIC were more successful over 12-months follow-up.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ART (HV-GIC × two brands of low-cost GIC)</td>
<td>Olegário et al. 93, 2020/Brazil</td>
<td>RCT/Public schools</td>
<td>Occlusal cavitated dentine lesions on primary molars</td>
<td>Survival rate of HV-GIC was higher (72.7%) than for the other low-cost GIC (46.5 and 39.6%) over 2 years follow-up.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRSD + restoration (composite resin) × NSRHD (composite resin restoration)</td>
<td>Ribeiro et al. 75, 1999/Brazil</td>
<td>RCT/University based</td>
<td>Occlusal and occlusoproximal cavitated dentine lesion on primary molars</td>
<td>No restorative failures were found over 12 months of follow-up.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type of intervention</td>
<td>Strategies</td>
<td>Study/Country</td>
<td>Type of study/Scenario</td>
<td>Lesion severity and dentition</td>
<td>Outcomes</td>
<td>LACC/local barriers for discussion</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------</td>
<td>---------------</td>
<td>------------------------</td>
<td>------------------------------</td>
<td>----------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>SRFD (leathery) + restoration (composite resin) × NSRHD (composite resin restoration)</td>
<td>Franzon et al., 2014, 2015/Brazil</td>
<td>RCT/University clinic based</td>
<td>Occlusal and occlusoproximal cavitated dentine lesion on primary molars</td>
<td>Success rate (clinical and radiographic) for SRFD (92%) was similar to NSRHD (96%) over 2 years of follow-up</td>
<td>More pulp exposure after NSRHD (27.5%) than after SRFD (2%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Case et al., 2017/Brazil</td>
<td>Retrospective/clinical records of University clinic</td>
<td>Single- and multiple surface cavitated dentine lesions on young permanent molars</td>
<td>The overall survival rate of restorations was 57.9% over 3-years</td>
<td>Annual failure rate for SRFD (17.3%) and for NSRHD (13.1%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Longevity of restorations was similar for both treatments</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Casagrande et al., 2017/Brazil</td>
<td>Multicenter RCT/University and public health services</td>
<td>Single- and multiple surface cavitated dentine lesions on permanent molars</td>
<td>Success rate in terms of pulp vitality was higher for SRSD compared with SW over the following times:</td>
<td>No pulp exposure was found after SRSD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maltz et al., 2012, 2013, 2018/Brazil; Jardim et al., 2020/Brazil</td>
<td></td>
<td></td>
<td>18 months: SRSD (99%) × SW (86%)</td>
<td>Authors reported that success of SW is highly dependent on completion of the treatment. Different success rates were observed between completed and uncompleted SW:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3 years: SRSD (91%) × SW (91%)</td>
<td>3 years: 88% (complete); 13% (incomplete)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5 years: SRSD (80%) × SW (76%)</td>
<td>5 years: 75% (complete); 5% (incomplete)</td>
<td></td>
</tr>
</tbody>
</table>

Management of dental caries lesions in Latin American and Caribbean countries

Invasive root canal treatment must be conducted prior to placement of a restoration.

Once pulp vitality is confirmed and possible pulpal compromise is recognized, the clinician must try to preserve the pulpal health status as much as possible. Selective removal of caries tissues in deep caries lesions may result in i) close proximity to the pulp tissue, ii) direct exposure of the superficial dental pulp, or iii) deeper pulpal involvement. The most common treatment measure for the first scenario often adopted in LACCs involves the use of liners or base materials (indirect pulp capping) such as calcium hydroxide pastes or glass-ionomer cements followed by direct restoration using bioactive composites. However, recent studies have questioned the benefits of calcium hydroxide liners, and have suggested that a possible overestimation of their clinical benefits may have occurred.

Exposure of the superficial pulp will require manipulation of the tissue and different kinds of vital pulp treatment (VPT), including direct pulp capping and partial or complete pulpotomies using bio-ceramic materials. Direct pulp capping is typically recommended for class I (no prior presence of a deep caries lesion; pulp exposure surrounded by sound dentine; expectation that the underlying pulp tissue is healthy) or class II (preoperative presence of a deep caries lesion; pulp exposure judged to have occurred in a zone of bacterial contamination; expectation that the underlying pulp tissue is inflamed) lesions and is preferred over complete root canal treatment. However, its feasibility depends on local clinical findings such as adequate bleeding control and extension of the exposure. Hemostasis and disinfection can be successfully achieved by cleaning the wound with sodium hypochlorite, although other irrigating solutions such as chlorhexidine may also be used.

Although this intervention is typically recommended for permanent dentition, recent evidence also supports its use in primary teeth with promising results. Although calcium hydroxide is the most commonly used material for VPT, the introduction of calcium...
silicate-based cements such as mineral trioxide aggregate (MTA) and tricalcium silicate cement (Biodentine) increases possibilities with regard to clinical performance. A recent clinical trial that compared calcium hydroxide, MTA, and Biodentine for direct pulp capping demonstrated similar clinical outcomes for all three materials, with calcium silicate offering certain clinical advantages such as improved manipulation and acceptable setting time.

Circumstances where the inflammation process has spread beyond the pulp exposure and the bleeding is not reddish on clinical observation, conventional root canal treatment and further restoration may be the treatment of choice. This is a popular treatment procedure as it provides positive outcomes and allows immediate control of the patient’s symptoms. However, recently introduced treatment alternatives with promising outcomes include a mid-step treatment involving partial or complete pulpotomy instead of a complete root canal for permanent teeth. Although pulpotomies are frequently used in primary teeth, the application of calcium/silicate cement offers a suitable alternative for the treatment of deep caries lesions with exposed pulp. Interestingly, a systematic review comparing partial/full pulpotomies with direct pulp capping in permanent teeth showed that the former provided more predictable outcomes. Specifically, partial pulpotomies were seen to exhibit high success rates in exposed caries permanent molars up to 2 years post-operatively. Recent evidence shows that full pulpotomies obturated with Biodentine resulted in immediate pain relief and presented excellent clinical and radiographic outcomes after one year, even in cases previously diagnosed with symptomatic irreversible pulpitis. Figure 2 shows a decision-making diagram for pulp protection and the management of exposed pulp in deep caries lesions in the context of LACCs.

There are a wide range of treatment options for pulp protection and the management of exposed pulp; however, some of these options remain controversial and their success depends on the practitioner’s clinical skills as well as the availability of modern equipment and bioactive materials (often limited in LACCs). Greater global efforts and further research are essential in order to improve access to the most current technologies and achieve standardization of treatment options for both primary and permanent teeth.

![Figure 2](image-url)
Figure 2. Decision-making flowchart for treatment of deep caries lesions compromising the dental pulp. Strategies for the treatment of primary dentition must be adapted to the patient’s age, their orthodontic and exfoliation status, and the risk of affection of the subjacent permanent teeth.
Social perspectives and challenges of caries lesion management in LACC

Accurate diagnosis of caries lesion activity and extension is crucial for selection of the best management strategy. Caries lesions can be appropriately managed and tooth functionality can be preserved long-term with the help of less invasive strategies that take caries biology as well as the individual patient’s socioeconomic circumstances into consideration. LACC clinicians can restore the health and esthetics of primary or permanent dentition satisfactorily using a range of treatment options, and the implementation of adequate oral care services can help overcome the majority of associated challenges despite limited public resources in these countries. Modern dental academics institutions and clinical practitioners are encouraged to reshape their approach to caries lesion management by adopting evidence-based practice, and prioritization of cost effective, feasible, less invasive, and safer strategies that are well-supported by published evidence is essential. The knowledge and application of these management approaches may help address persisting barriers to change and minimize the unnecessary use of more invasive interventions.

Although the prevalence of dental caries in permanent teeth among adolescents is decreasing in LACCs,\(^8\) it remains a relevant public health problem as more than half of the population of 12-year-old adolescents exhibit one or more cavitated caries lesions. No significant decrease in caries prevalence has been observed among primary teeth since the year 2000, and efforts to control the disease should be focused on lower socioeconomic strata that exhibit the highest prevalence.\(^8\) These strategies must be cost effective and based on reliable evidence.

Assessment of the cost-effectiveness of any strategy aimed at the management of untreated caries lesions, which are increasingly prevalent among high-risk populations, is essential in order to reduce the financial burden in LACCs. These should be evidence-based and range from early preventive interventions to the management of non-cavitated and cavitated caries lesions. With regard to community-based strategies, programs such as water and salt fluoridation have been shown to be economically beneficial, with DMFT scores decreasing drastically in the Chilean population after 6 years of program implementation.\(^8\) Moreover, both water and salt fluoridation were also reported to be cost effective, with the latter being slightly superior to the former.

Strategies that combine biological approaches with the best preventive practice (B+P; based on either non-caries tissue removal or selective caries tissue removal followed by restoration) for the management of caries lesions in the primary dentition have been found to be the most cost effective in studies conducted in developed countries.\(^8\) Although clinical trials using similar approaches have been conducted in deprived communities in LACCs,\(^2\) evidence on their cost-effectiveness is still scarce. Conversely, controversial results regarding the cost-effectiveness of preventive measures for first permanent molars have shown some dependency on the application of fluoride varnishes and pit and fissure sealants.\(^8,8\) Regardless of the strategy, any of these resources should be advisable for high-risk patients.

The best strategies for the management of dental caries, a multifactorial disease, address a range of issues instead of focusing on isolated management options only. Therefore, structured preventive programs such as CMS (Caries Management System: based on regular monitoring and non-invasive management for the control of lesion progression and promotion of re-mineralization in non-cavitated lesions),\(^9\) BPOC (Basic Package of Oral Care that is recommended for deprived communities and is based on ART and widespread use of affordable fluoride dentifrices);\(^7\) OHPP (Oral-Health Promotion Program: based on screening children’s teeth, supervised tooth-brushing with fluoride dentifrices, and dietary control); Hall technique; and ART\(^9,94\) have been shown to be the most cost-effective tools for provision of optimal oral-health care and management of caries lesions. Therefore, the implementation of tailored and individual oral healthcare packages would be a desirable approach for LACCs considering the sociodemographic characteristics of this region.

The findings of this review showed selective caries tissue removal limited to softened dentin
over the pulpal roof was the most cost-effective strategy for the management of deep caries lesions, particularly in high-risk individuals.95,96 However, it may take some time for professionals in LACCs to accept and incorporate such changes, with one study showing that older dentists in public services in southern Brazil were more likely to choose strategies with higher risk of pulp compromise or poorer prognosis for the management of deep caries lesions when compared to their younger colleagues, possibly because the latter had been educated in a more conservative manner.97

In case of root caries lesions, mechanical removal of dental biofilm with the help of 5000 ppm F dentifrices has been shown to exhibit high efficacy in older adults.23 SDF is also considered to be an excellent cost-effective resource in case of such lesions,98 although there are currently no standardized guidelines for its effective use in arresting dentin lesions in primary and permanent dentition.

From the perspective of oral-health practitioners in LACCs as well as educational institutions and national dental associations in the region, what are the specific actions for the management of dental caries and dental caries lesions in this geographic region? Firstly, continuing education through regular updates of clinical training is a crucial part of our responsibility to promote change in the profession and curriculum. Secondly, reviewing and adapting programs that emphasize preventive tasks, improve public oral health, promote the use of materials and techniques adapted to the personal needs of the patients, and favor evidence-based dentistry is essential. Therefore, dental education and practice as a whole must be adapted to the current reality of LACCs.

Oral-health care systems differ in structure and scope around the world and also within LACCs, and these differences are influenced by various economic and political factors. Despite the efforts of many countries to build national policies that make primary health care accessible to the whole population; this goal has not been achieved in most LACCs as yet. Proper social and health data about the prevalence and severity of dental caries, which are essential for health policy-makers, are still not available in all countries.99 Decisions on how to manage and control caries lesions should be guided by clinical protocols based on the available evidence on effectiveness as well as a comprehensive understanding of the local oral-health scenario and available resources.100 Strategies should be effective, affordable, and should contribute to providing equity in access to oral-health services. Assessment of the cost-effectiveness of caries management strategies should take into consideration initial treatment costs as well as those associated with success/failure rates and the possible need for retreatment.

Conclusions

a. Individualized treatment based on the risk management,101 of the disease process and on the control of the caries lesion activity/development is important for adequate and effective condition control.

b. Daily use of fluoride dentifrices (1000-1500 ppm F) is highly recommended as a preventive and therapeutic strategy for the management of dental caries lesions. Some studies have recommended use of fluoride dentifrices at concentrations of 5000 ppm or SDF for the management of root caries. Pit and fissure sealants as well as resin infiltrants may be used for the management of non-cavitated lesions.

c. Restorative treatments that focus on filling cavities only without controlling the disease are not beneficial. Individuals should always be motivated and encouraged to improve their oral hygiene and acquire healthy dietary habits.14

d. Restorative treatments allowing maximum preservation of tooth structure should be indicated whenever lesion progression cannot be arrested by non-invasive/micro-invasive interventions,11 such as in the case of active cavitated lesions that cannot be cleaned. The Hall technique is recommended as a mixed non-invasive and restorative strategy for primary molars.42,43,44,102 Selective removal of caries tissues over the pulp chamber roof (up to leathery/firm dentin in case of shallow/
moderate deep lesions or to soft dentin in case of deep lesions) should be carried out when necessary.11

e. Selective removal of caries tissues up to soft dentin over the pulp chamber roof followed by definitive restoration in one session must be the recommended treatment of choice for symptomless deep caries lesions.11,53,56,57,58,59

f. ART restorations exhibit higher survival rates over time, especially for single-surface restorations, in both primary and permanent teeth. This method may be considered as a feasible strategy for places without a proper clinical set-up or at public health systems/private practices with budget restrictions. However, the use of high-quality standardized materials is necessary to ensure restoration longevity.22,50,51,52,64,68,69,70,71,72

g. There is limited evidence in support of the direct placement of restorative materials over evident cavitated lesions (shallow to moderate depth) without prior caries tissue removal in LACCs,45,46,48 and further well-designed studies are necessary in order for a definitive recommendation to be made.

h. Invasive restorative treatments should be postponed in favor of restoration repair whenever possible. Moreover, replacement of restorations should be discouraged or only recommended in the absence of other viable options. Shorter intervals between recall visits should be adopted after taking the patient’s caries risk and/or activity into consideration to allow repair of any restoration defects in a timely manner.

i. As per the International Association for Dental Research (IADR), dental amalgam continues to present adequate longevity and cost-effectiveness, despite development of new adhesive and aesthetic restorative materials. Therefore, when other restorative materials are less optimal due to clinical, economic, and practical reasons, amalgam should be considered as an acceptable option for the general population provided they do not exhibit any allergies to its constituents or present with severe renal diseases. As per the IADR, currently there is insufficient evidence in support of a causal relationship between mercury from amalgam restorations and adverse systemic health outcomes. Furthermore, the available evidence does not preclude the use of amalgam as a tooth restoration material nor suggest the need for replacement of pre-existing amalgam restorations.103 However, we do acknowledge that current evidence suggests that both amalgam and resin composites exhibit equal clinical success and that it is fair to state that the philosophy behind amalgam restorations does not comply with the paradigm of Minimally Invasive Dentistry. In this context, amalgam should not be considered as a gold-standard restorative material.

j. Non-invasive vital pulp therapies such as direct and indirect pulp capping have been shown clinical and radiographically to be useful for the treatment of primary and permanent (mature and immature) teeth with deep caries lesions.74

k. Pulpotomy procedures have been extensively employed as a routine treatment option for primary teeth with reversible pulpal inflammation. Moreover, pulpotomies have exhibited high success rates when used for the management of pulp exposure in deep caries lesions in permanent teeth. Therefore, this procedure is currently considered as a suitable substitute for root canal treatment, even in cases diagnosed with irreversible pulpitis, as it offers time, clinical, and cost-effectiveness advantages.104,105

l. Despite evidence from randomized controlled trials and systematic reviews, the choice of strategies for caries lesion management at the population level must take into consideration the cost-effectiveness, available financial and technical resources, and the needs of public health systems and private practices. Moreover, there is a lack of pragmatic data confirming whether the evidence provided by randomized controlled trials is reproducible in real settings where dental treatments are delivered by clinicians (such as public health systems and private practices).
Recommendations

a. Let’s go back to the basics: Before opting for new alternatives for the treatment of dental caries, consideration of the biological processes of dental caries development will allow the clinician to make treatment decisions with the expected outcome.

b. Consider the sociodemographic context: Various attractive therapeutic options such as novel biomaterials or techniques may be unavailable in some LACCs, and this must be taken into consideration by clinicians when selecting a treatment strategy.

c. Always analyze the individual patient’s needs: the target affected population typically belongs to the lower socioeconomic strata in developing LACCs and, therefore, may be unable to access a wide range of treatment options. In such situations, the preservation of public health and assurance of oral-health care provision must supersede any secondary outcomes.

d. The gap between industry, academia, and the clinical sector must be bridged in LACCs: International as well as local industries in LACCs must monitor the clinical outcomes of various treatment options and, where possible, develop new materials to further improve the caries lesion management process. These developments must be carried out in collaboration with academic organizations under strict ethical control, and well-trained clinicians may contribute to the process through the provision of pragmatic information.

e. Generate high-quality scientific and pragmatic evidence: The present manuscript highlights the need for more high-quality scientific evidence adapted to the local geographical region. Moreover, it is also complemented by the recognition of severe deficiencies in the existing oral public health systems of LACCs including inequalities in access to services among the general population, financial limitations of the governments, and lack of standardized clinical guidelines for adequate preventive and restorative treatment of caries lesions adapted to the local geographical and cultural context.

f. Never stop learning: Dental caries management is a dynamic process characterized by the development of new emerging trends replacing dated paradigms. As a result, it is imperative that clinicians equip themselves with the most recent, reliable evidence so as to prepare themselves for the adoption of new treatment alternatives as and when they become locally available.

Acknowledgments

This paper was prepared for the consensus meeting titled “Dental Caries Prevalence, Prospects and Challenges for LACC”, promoted by the Latin American Oral Health Association and Colgate Palmolive Co. with the support of the Federación Odontológica Latinoamericana, Sociedade Brasileira de Pesquisa Odontológica (SBPqO/Brazilian Division of IADR), and the participation of experts from the region including representatives from national, regional and international dental associations. All participants had the opportunity to review the manuscript and make their own contributions. This paper contributed to the summary and final recommendations of the Dental Caries Regional Consensus.

References

Management of dental caries lesions in Latin American and Caribbean countries

77. Brignardello-Petersen R. Calcium hydroxide seems to not result in important benefits compared with other liners for treating deep carious lesions in primary teeth. J Am Dent Assoc. 2019 May;150(5):e55. https://doi.org/10.1016/j.adaj.2019.01.013

