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Abstract

Measuring total testosterone level is the first-line approach in assessing androgen excess in women. The main 

pitfalls in measuring testosterone relate to its low concentration and to the structural similarity between circulating 

androgens and testosterone, requiring accurate techniques with high specificity and sensitivity. These goals can be 

achieved by immunoassay using a specific anti-testosterone monoclonal antibody, ideally after an extraction step. 

Liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS) will be commonly used for measuring 

testosterone, providing optimal accuracy with a low limit of detection. Yet, the pitfalls of these two techniques are 

well identified and must be recognized and systematically addressed. In general, laboratories using direct testosterone 

immunoassay and mass spectrometry need to operate within a quality framework and be actively engaged in external 

quality control processes and standardization, so as to ensure appropriate interpretation irrespective of the particular 

laboratory. Circulating testosterone is strongly bound to sex-hormone-binding globulin (SHBG), and SHBG levels 

are typically low in overweight hyperandrogenic patients. Thus, low SHBG may decrease circulating testosterone to 

normal values, which will mask androgen excess status. One way to avoid this pitfall, awaiting direct free testosterone 

assays that are yet to be developed, is to measure SHBG and calculate free testosterone. A few other pitfalls will be 

discussed in this review, including those of adrenal androgen exploration, with the aim of helping clinicians to better 

handle laboratory investigation of androgen excess disorders in women.
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 Introduction

Hyperandrogenic states are the clinical manifestation 
of excess androgen disorder in women. They 
encompass excess androgen production associated 
with exceptional androgen-secreting tumors, rare 
genetic diseases that impair adrenal steroidogenesis, 
and the very common polycystic ovary syndrome 
(PCOS) (1, 2, 3, 4, 5, 6). Hyperandrogenic states also 
include increased peripheral androgen metabolism 
and clearance that enhance androgen cell availability 
and bioactivity (7, 8). Finally, they may also involve 
increased androgen activity within the cell, through 
active intracellular metabolism and/or enhanced 
androgen receptor machinery (9). Overall prevalence 
of hyperandrogenic states is significant, at 6–12% 
worldwide (10, 11) and raises the question of how 
laboratory investigations should be conducted for 
diagnosis (12, 13, 14).

Endocrine diseases are typically suspected on clinical 
symptoms, a combination of which suggests excess or 
deficient hormonal secretion and/or action. Excessive 
or deficient endocrine gland activity is associated with 
activation or inhibition of the specific regulatory system 
maintaining endocrine function homeostasis and/or 
limiting the consequences of surplus or deficiency in 
the considered hormone (15). This robust paradigm of 
feedback regulation assumes that it is usually possible 
to identify most endocrine disorders by measuring 
hormones from thyroid, adrenal and gonadal sources 
and their specific pituitary regulatory factors, in 
blood, saliva or urine samples or even within cells. 
However, although this paradigm is well adapted to 
laboratory thyroid investigation, balancing thyroid 
hormone (T4/T3) and thyroid-stimulating hormone 
(TSH) data, it is less consistent when applied to female 
androgen disorder: changing hormonal profile during 
the menstrual cycle, the positive rather than negative 
feedback of estradiol regulation on luteinizing hormone 
(LH) regulation and the inhibitory effect of androgens 
on LH inhibitory regulation of progesterone have been 
puzzling for consensual recommendations on how 
to evaluate gonadotropin profile in androgen excess 
women (16, 17).

This review will challenge the concept that androgen 
investigation can accurately identify the origin of 
hyperandrogenic states in females, by identifying the 
pitfalls and how to circumvent them so as finally to 
succeed in diagnosis.

Consensus and recommendations for the diagnostic 
approach to hyperandrogenic states

Hyperandrogenic state is identified on excessive hair 
growth with a male pattern (hirsutism) and is suspected in 
patients with recurrent acne with seborrhea or androgenetic 
alopecia (9). Rapid onset of virilizing symptoms such as 
voice masculinization, abnormal muscle development 
and clitoris enlargement are suggestive of rare androgen-
secreting tumors and must be promptly identified (5, 9).

Most consensus statements recommend measuring 
total testosterone as first-line investigation of 
hyperandrogenic states (Figure  1). These include the 
1990 NIH-sponsored conference on PCOS (2, 14), the 
Rotterdam ESHRE/ASRM-sponsored PCOS consensus 
workshop group (3), the Androgen Excess and PCOS 
Society (4), the French Endocrine Society Consensus (13) 
and the PCOS Special Interest Group of the European 
Society of Endocrinology (18).

Is total testosterone the relevant hormone for 
identifying hyperandrogenic states? Testosterone 
circulates in the blood, loosely bound to albumin but 
tightly and specifically bound to sex hormone-binding 
globulin (SHBG). According to the law of mass action, a 
small steroid fraction is protein-unbound and available 
for target cells; in women, this fraction is less than 
2%, while the albumin-bound complex is 41% and the 
SHBG-bound complex is 57% (19). There is no definitive 

T < 3.5 nmol

Non classical form
of 21 OH deficiency

ACTH test

17OHP > 1000 ng/dl

PCOS

17OHP < 1000 ng/dl

DHEAS

Ovarian androgen secreting tumor
or hyperthecosis

DHEAS normal

Total testosterone

T > 3.5-7.0 nmol (>2–3 SD)

Adrenal carcinoma

DHEAS > 16000 nmol/l

Figure 1

Paradigm for identifying androgen excess in women.
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evidence for a specific transit of the SHBG-bound steroid 
complex, although it has been shown that SHBG, by 
interacting with megalin, the main endocytic receptor 
(20), may provide a specific pathway for cellular uptake of 
biologically active SHBG-bound androgens and estrogens. 
This has been reported for trophoblastic cell lines and 
might be an important pathway for androgen transport 
to the placenta for aromatization during pregnancy. 
Moreover, human SHBG is found in human breast and 
prostate cancer cells (21) and, by interacting with fibulin, 
a matrix-associated protein, can be sequestered from the 
blood into the stromal matrix of the uterine endometrium 
(22). Taken together, these intriguing findings challenge 
the free-hormone hypothesis (see below).

The rationale for measuring testosterone is 
essentially based on the assumption that testosterone 
is the main active circulating androgen. Testosterone 
has a strong ‘media profile’ for the public, students and 
physicians. It is primarily produced as an androgen 
precursor: androstenedione from thecal cells and 
dehydroepiandrosterone (DHEA) from the adrenal cortex 
(23), which are converted into testosterone, especially in 
adipose tissue. The production rate (PR) of testosterone, 
including direct ovarian secretion and peripheral 
metabolism from both ovarian and adrenal precursors, 
maintains circulating testosterone concentration. 
Conversely, the metabolic clearance rate (MCR), defined 
as the volume of blood cleared irreversibly per unit of 
time, is the main process decreasing circulating androgen 
concentrations. The strong binding affinity of SHBG 
to dihydrotestosterone, testosterone and estradiol (in 
decreasing order of magnitude (19)) is inversely correlated 
to their respective MCRs, which are 315, 485 and 720 L/
day respectively (23, 24, 25, 26). In contrast, DHEA and 
androstenedione show low binding affinity and bind 
weakly to SHBG, with much higher MCRs of 2200 and 
1200 L/day respectively (Table 1).

Pitfalls in measuring total testosterone by 
direct immunoassay

Testosterone level is poorly correlated with the severity 
of hirsutism. This point has been documented using a 
reference testosterone assay (27). Severely hirsute patients 
may have normal testosterone levels, suggesting high 
androgen sensitivity or increased testosterone clearance. 
Conversely, the Rotterdam consensus (3) pointed out 
that patients with polycystic ovarian morphology on 
ultrasound may show increased testosterone levels 
without increased hair growth or recurrent acne.

Variations in testosterone levels over the menstrual 
cycle are fairly insignificant. Although it is recommended 
that testosterone be measured in the early follicular phase, 
in practice, blood sampling in fasting conditions at any 
time of day or point in the cycle is effective for measuring 
testosterone.

Low testosterone concentration and the structural 
similarity between circulating androgens and testosterone 
require accurate and sensitive techniques (28). This can 
be achieved by competitive immunoassays that rely 
on the inherent ability of an antibody to bind small 
molecules. To assay testosterone, antibodies are developed 
that match its particular structure, at the price of their 
specificity, as the configuration of testosterone is similar 
to that of other circulating androgens. An extraction 
step, using an organic solvent, followed by purification of 
the extract by chromatography (Celite, HPLC, Sephadex 
LH20), eliminates steroids likely to interfere with the 
immunological reaction because of their similar structure 
and/or insufficient antibody specificity (12, 13). Steroid 
extraction also eliminates much of the matrix effect, 
mainly related to steroid transport proteins (albumin and 
SHBG).

Precision and specificity are mainly dependent on 
the quality of the antibodies used to capture testosterone 
and on the technique used to reveal the antibody-bound 
testosterone complex.

The low limit of detection or sensitivity of the 
immunoassay is in part dependent on the labeled probe 
and the system used to immobilize the immune complex. 
The chief markers are radioactive (iodine 125 and tritium), 
enzymatic (HRP and PAL), fluorescent (europium) and 
chemiluminescent. Steroid immunoassays using time-
resolved fluorometric detection of europium (Delfia 
Technology) usually exhibit higher sensitivity than 
tritiated or enzyme-conjugated tracers, and challenge 
immunoassays using 125-iodine-labeled steroids, with 
the advantages of a stable non-radioactive tracer (29). 

Table 1 Half-life (T1/2), metabolic clearance rate (MCR) and 

binding affinity constant at 37°C according to Longcope et al. 

(23, 24), Mahoudeau et al. (25) and Dunn et al. (19).

  
T1/2 (min)

 
MCR (L/day)

SHBG binding 
affinity* 

Dihydrotestosterone 53 315 5.5
Testosterone 34 485 1.2–1.3
Estradiol ND 720 0.7
Androstenedione 50 2200 0.03
Dehydroepiandrosterone 60 2040 0.07

*Ka: 10−9 × M−1 at 37°C.

Downloaded from Bioscientifica.com at 08/27/2022 03:15:24AM
via free access



Eu
ro

p
ea

n
 J

o
u

rn
al

 o
f 

En
d

o
cr

in
o

lo
g

y
178:4 R144Review M Pugeat and others Laboratory diagnosis of 

hyperandrogenic states

www.eje-online.org

In addition, immunoassays exploit the high-affinity 
streptavidin-biotin system by incorporating the small 
biotin molecule in enzymes or in the hormone to 
be measured. The high binding affinity (Ka = 1015) of 
streptavidin for biotin and biotinylated compounds is 
exploited to immobilize immune complexes in the solid-
phase matrix. This approach has considerably enhanced 
the precision of immunometric assays.

Nowadays, chemiluminescence and fluorescence are the 
major detection principles in modern automated analyzers, 
whereas radioactive systems are less widely used. The 
main advantages, disadvantages and pitfalls of measuring 
testosterone by direct immunoassay are listed in Table 2.

Novel pitfalls associated with advances in  
hormone immunoassay

Hormone immunoassays using the streptavidin-biotin 
system can be affected by high levels of circulating 
biotin, leading to a risk of misdiagnosis. This risk of false 
diagnosis has long been recognized for thyroid diseases 
(30, 31, 32, 33). Biotin (vitamin B7) is a water-soluble 
vitamin with a recommended daily intake (RDI) in the 
order of milligrams per day. High-dose biotin (10  000 
times the RDI) is currently indicated to improve clinical 
outcome and quality of life in patients with progressive 
multiple sclerosis. An excess of biotin in the blood 
sample, by competition with the trace of biotinylated 
hormone or the biotinylated specific antibody, depending 
on the system used, will bind to streptavidin-coated 
microparticles in the solid phase and interfere with the 
signaling system, leading to over- or under-estimation. To 
overcome this pitfall, it has been shown that adsorption 
of biotin in magnetic streptavidin-coated microparticles 
efficiently eliminates biotin interference, when included 
in assays kits (34). A potential benefit has been claimed for 
biotin treatment in various diseases, including alopecia 
and diabetes mellitus, and patients may sometimes use 
biotin as a complementary medicine. In these conditions, 
false high results for testosterone and DHEAS have been 
reported (33), but this remains to be further documented.

Measuring testosterone by mass spectrometry: 
a must

This chapter refers to comprehensive reviews (35, 36, 
37, 38, 39, 40) that readers are encouraged to consult 
for more information on mass spectrometry principles, 
components and software.

Gas chromatography (GC) coupled with MS was 
the initial analytical approach for simple molecular-
mass-selective detection and is the reference method 
for measuring testosterone (35, 36). GC–MS requires a 
large blood sample (>2 mL) for a step of extraction and 
derivatization. The development of liquid chromatography 
(LC) and the emergence of atmospheric pressure chemical 
ionization and of electrospray ionization has allowed 
direct coupling of LC and MS. LC–MS constitutes a 
remarkable progress, since the eluent phase is liquid, 
making derivatization unnecessary for measuring most 
steroids, including testosterone, which possess unsaturated 
carbonyls that are readily ionized without derivatization.

The introduction of tandem MS, which involves 
coupling 2 quadrupole mass filters with an interposed 
collision cell to reveal the fragmentation pattern of 
target steroids, has greatly increased the selectivity of 
LC–MS. Presently, LC–MS/MS offers the best quality for 
steroid measurement. It has substantially improved our 
current approach to and understanding of congenital 
steroid metabolism disorders, including 21-hydroxylase 
deficiency (37).

Although LC–MS/MS is not widely used in laboratories 
in Europe, because the high cost of the equipment, 
the special expertise required and the time-consuming 
procedure make large series of assays impractical, it may 
in the near future be suitable for routine use, as costs 
decrease, becoming an alternative to immunoassay when 
automated analysis platforms are available.

Ultra-performance liquid chromatography (UPLC) is 
now enhancing analysis speed, sensitivity and resolution 
(38). The precision and accuracy of LC–MS/MS and its 
low limits of detection argue for it being the reference for 
assessing androgen status in women and children (28, 36).

Table 2 Main advantages, disadvantages and pitfalls with direct immunoassay.

Advantages Disadvantages and pitfalls

• RIAs and chemiluminescence immunoassays are the most 
widely used methods (>80% of labs)

• Easy to use, requiring small sample volume, short assay time
• Suitable for automated platforms that reduce the risk of 

human error
• Precision: good intra- and inter-assay reproducibility
• Increased effort by manufacturers to calibrate their assays

• Low accuracy
• Lack of specificity, which depends on the quality of 

testosterone antibodies
• Potential interference with binding proteins
• Potential interference and matrix effects, despite good 

specificity of the antibodies used
• Unexpected interference: e.g., biotin
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Pitfalls in measuring testosterone by mass spectrometry

Application of LC–MS/MS should provide accurate 
measurement of total testosterone levels. Yet, pitfalls 
must be recognized and systematically addressed (38, 
39). The selectivity of MS/MS detection was originally 
overestimated. The inaccuracy of LC–MS/MS methods 
may be related to the ionization process and matrix 
effects with differential influence on target analytes and 
internal standard compounds. Most potential sources of 
inaccuracy can be controlled by sufficient LC separation-
based sample workup before MS analysis.

Finally, important sources of unreliable results include 
human error, the risk of which can likely be minimized 
by automated clinical chemistry analyzers. Only a few 
commercial LC–MS/MS assay kits are presently available, 
and their instrument configurations are extremely still 
heterogeneous. Automating the LC–MS/MS processes, 
with the final goal of developing fully automated  
MS/MS-based analyzer systems, is not only a prerequisite 
for more widespread use of this powerful technology 
in clinical laboratories but also essential to increase 
reliability. The main advantages and drawbacks of  
LC–MS/MS for measuring testosterone are listed in Table 3.

Current recommendations for total testosterone assay

The current position advocates appropriate use of both 
immunoassay and mass spectrometry-based methods 
for measuring total testosterone for the diagnosis of 
hyperandrogenic states in women. This realistic approach 
was defended by Taylor et al. (40), echoing Franz Kafka’s 
philosophy: ‘Start with what is right rather than what 
is acceptable’. With this aim in view, LC–MS/MS allows 
highly accurate analyses with enhanced specificity. 
However, pitfalls must be recognized and addressed, and 
they equally echo Voltaire’s maxim that ‘The best is the 
enemy of good’, arguing that replacing all immunoassays 
by MS technology would be ‘an unrealistic and 
unnecessary goal’, because the availability of MS is limited 

by cost and technical demands. Recommendations for 
measuring testosterone can realistically be founded on 
this attitude. An ultimate consensus will be possible when 
MS equipment becomes available all around the world  
(3, 4, 13, 18).

The free-hormone hypothesis

The free-hormone hypothesis (41, 42) states that the 
protein-unbound or free circulating hormone fraction 
is bioactive. There is good evidence that free-hormone 
concentration reflects the clinical situation more 
accurately than total plasma hormone level. This concept 
has been widely developed for routine investigation 
of thyroid function, to allow for changes in thyroid 
hormone-binding globulin (TBG) level, notably during 
pregnancy and under oral contraception.

Similar considerations should be applied to SHBG, 
the main transport system for testosterone and estradiol, 
which modulates their bioactivity by restrictive diffusion 
into target tissue. The free-hormone hypothesis has 
been re-validated on a mouse model overexpressing 
hSHBG (43). In this model, a remarkable increase in 
circulating SHBG was associated with prolonged half-life 
of SHBG-bound testosterone and consequently increased 
testosterone concentration. In contrast, free testosterone 
was essentially unchanged, likely the consequence of 
adaptive feedback regulation with a significant increase 
in LH level. Nevertheless, male transgenic mice exhibited 
a mild hypogonadal phenotype that was possibly due 
to low bioavailability of sex steroid hormone to target 
cells, as shown using tritium-labeled probes. These results 
strongly substantiate the concept that a key physiological 
function of SHBG is to maintain testosterone levels and 
to regulate cell bioavailability. This model is translatable 
to human male physiology, where feedback regulation of 
gonadotropin maintains free testosterone levels within 
the normal range.

In women, however, androgens show minimal if 
any negative feedback regulation of LH secretion (44). In 

Table 3 Main advantages vs disadvantages and pitfalls with LC–MS/MS for measuring testosterone.

Advantages Disadvantages and pitfalls

• Accuracy
• High specificity owing to its ability to 

select for the mass of the compound of 
interest (parent ion) and to fragment 
the parent ion into specific, smaller ions 
(daughter ions)

• Sensitivity
• Potential for simultaneous measurement 

of several different steroids

• Expensive equipment
• Technical demands
• Variability between labs (risk of human error, automata are not yet available)
• Technical pitfalls: high degree of variation in the efficiency of atmospheric 

pressure ionization, standardization mandatory, ‘isotope effects’ of internal 
standards, differential impact of matrix effects on analyte and isotope internal 
standard, interference from in-source transformation of conjugate metabolites, 
isobaric congeners, matrix compounds sharing mass transitions, etc. 
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contrast, the positive feedback regulation of LH pulsatile 
secretion by estradiol, observed in the late follicular phase 
(44), may increase LH levels and maintain androgen excess. 
This is especially the case in patients with low SHBG, which 
contributes per se to clinical hyperandrogenism. It is well 
documented that insulin resistance (45), liver lipogenesis 
and/or inflammation (46, 47) decrease SHBG levels by a 
well-identified mechanism in the liver expression of SHBG 
gene. In addition, it is also documented that androgen 
excess reduces the inhibition of gonadotropin-releasing 
hormone pulse frequency normally exerted by progesterone, 
causing rapid LH pulse secretion and further maintaining 
or increasing ovarian androgen production (48). Thus, 
increased LH secretion maintains high ovarian androgen 
production, in a vicious circle that was early described by 
Samuel Yen (49). The current concept is that androgen excess 
promotes abnormal neuroendocrine LH secretion, which 
in turn perpetuates the hyperandrogenic state (48). It is 
noteworthy that administration of flutamide, a non-steroid 
androgen receptor blocker, has essentially no effect on 
gonadotropin regulation in normal women (50) but restores 
some progesterone feedback sensitivity in adolescent PCOS 
subjects, with decreased LH pulsatility (51).

Measuring or calculating free 
testosterone concentration

According to the free-hormone hypothesis, measuring 
the protein-unbound fraction of testosterone provides 
a better index of overall production and a marker of 
biological activity (41, 42). The technical challenge is to 
develop a methodology that does not disturb the binding 
equilibrium between steroids and binding proteins, 
and accurate and highly sensitive assays for measuring 
the free concentration, which is much lower than total 
testosterone.

Equilibrium dialysis has long been the standard 
method to separate protein-bound from free testosterone 
prior to quantification (52) and is considered to provide the 
best estimate of free testosterone plasma concentration, 
despite technical difficulties (53). By adding a trace of 
3H-testosterone to the serum sample, with an appropriate 
incubation time at 37°C, the SHBG- and albumin-bound 
testosterone fractions can be separated from the free 
testosterone through a membrane in a small dialysis 
tube or chamber. This method allows measurement of 
the percentage of free 3H-testosterone, which is usually 
2–3% of the total testosterone circulating in the blood. 
It also allows measurement of the actual concentration 
of free testosterone in the dialysate, using a reliable 

testosterone assay. It requires highly purified radioactive 
3H-testosterone as tracer (54, 55).

Centrifugal ultrafiltration dialysis has been validated 
and found to be faster, with fewer technical requirements 
than equilibrium dialysis (56). A reference method, 
coupling ultrafiltration to GC–MS detection, has been 
recently developed (57) with further improvement 
in analytical sensitivity, convenience and sample 
requirements when coupled with LC–MS/MS (58).

Awaiting routine availability of these promising 
techniques, clinicians must bear in mind that the current 
commercially available immunoassays for free testosterone 
show inadequate accuracy and precision (59).

Surrogate methods to calculate free  
testosterone concentration

Calculation of free testosterone from testosterone and 
SHBG concentrations using accurate assays has been 
claimed to be a reliable approach for routine clinical 
practice (60). Using the laws of mass action, it provides 
a surrogate for direct free testosterone measurement, 
but is dependent on the equation that is used (61, 62). 
The calculation assumes that there is no inter-individual 
variability in SHBG-binding affinity and that albumin 
concentrations and albumin-binding affinity for 
testosterone are constant. It also considers that interaction 
with endogenous ligands that may significantly displace 
testosterone from SHBG-binding sites is negligible. 
Various derived testosterone calculations to estimate 
free testosterone have been proposed, including a 
free testosterone index (FTI), defined as the ratio of 
total testosterone to SHBG, expressed as a percentage. 
Theoretically, FTI corresponds to free testosterone when 
the molar ratio of total testosterone to SHBG is low, which 
is the case in women but not in adult men (61, 62). In 
general, calculated values for free testosterone correlate 
well with equilibrium dialysis results (60, 63).

Pitfalls in calculating free testosterone should be 
recognized. SHBG gene polymorphism, associated with 
change in SHBG-binding affinity, has been identified (64) 
and one study reported an effect of SHBG concentration 
on apparent affinity (65). More importantly, the Dunn 
model of the binding equilibrium of natural endogenous 
ligands (19) provides evidence that potential SHBG 
binders, such as drugs or endocrine disrupters, may 
disturb SHBG-binding sites and consequently the free-
hormone fraction (66).

Bioavailable testosterone encompasses albumin-bound 
and SHBG-bound testosterone and has been claimed to 
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be the bioavailable fraction of circulating testosterone for 
target cells (67). The use of saturated ammonium sulfate 
to precipitate the globulins, including SHBG, before 
centrifugation to separate SHBG-bound 3H-testosterone 
from albumin-bound plus free 3H-testosterone, has been 
reported to be effective in a few laboratories (68). A 
major limitation of the ammonium sulfate precipitation 
assay method is incomplete precipitation of globulins, 
including SHBG, which may increase intra- and inter-
assay variability. With some technical precautions, non-
SHBG-bound testosterone is a reliable instrument for 
routine evaluation of androgen excess (69, 70).

Free vs total testosterone in hyperandrogenic patients

Most studies reported in the literature calculated free 
testosterone from total testosterone, SHBG or albumin, 
according to Vermeulen et  al. (53). In a consecutive 
population of clinically hyperandrogenic patients, Azziz 
et  al. (71) reported that overall total testosterone was 
elevated in 38% of cases, while for free testosterone was 
increased in 55.5%; in this study, one-fifth of patients 
had normal androgen levels. In a consecutive series 
of hirsute patients, Carmina et  al. (72) reported PCOS 
on the Rotterdam criteria in two-thirds of patients, 
total testosterone being the most commonly elevated 
androgen; free testosterone was similarly discriminating 
for PCOS diagnosis, but not superior. Interestingly, one 
study showed that serum SHBG levels showed good 
sensitivity and specificity (87%) for diagnosis of PCOS 
(73). Using a MS-based technique, Stener-Victorin et  al. 
reported that free testosterone concentration was useful 
for PCOS diagnosis, but that estrone concentration, alone 
or in combination to elevated free testosterone, was more 
discriminating (74).

Alternative approach: measuring androstenedione

O’Reilly et  al. (75) reported, in PCOS patients on 
the Rotterdam criteria, that high testosterone levels 
correlated with high androstenedione and free androgen 
index; however, high androstenedione level was a more 
sensitive marker in PCOS-related androgen excess. They 
also reported a strong negative association between 
serum androstenedione and insulin sensitivity, and a 
high incidence of glucose intolerance correlating with 
the severity of the androgen phenotype. Interestingly, 
Lerchbaum et  al. (76) reported that elevated free 
testosterone, unlike isolated androstenedione elevation, 
was associated with an adverse metabolic phenotype.

The combination of total testosterone, androstenedione 
and free testosterone provides good accuracy for diagnosis 
of PCOS and its hyperandrogenemic sub-phenotypes  
(76, 77, 78). However, application for predicting metabolic 
risk in PCOS needs further investigation (79).

Adrenal androgen excess investigation

The adrenal cortex produces DHEA in the zona reticularis 
under the control of adrenocorticotropic hormone 
(ACTH), with no evidence of negative feedback regulation 
of pituitary ACTH secretion by DHEA. DHEA has a short 
half-life of ~50 min, with high clearance of 2040 L/day 
(80). A significant portion of DHEA is sulfated through the 
action of DHEA sulfotransferase (81). DHEAS is strongly 
bound to albumin and is cleared from the circulation at a 
very slow rate of 12.8 L/day, with a long half-life of ~17 h 
(80). Consequently, in women, DHEAS concentration is 
relatively stable throughout the day (82). DHEAS is the 
precursor of active androgens and can be taken up by 
ovarian follicles to synthesize testosterone (83) and even 
converted into dihydrotestosterone in peripheral tissues 
once converted to androstenedione, without requiring 
prior formation of testosterone (84).

DHEA production varies with aging and starts 
decreasing after 30 years (85), with no change in ACTH 
secretion. This aging profile of androgen secretion might 
be associated to decline activity in selected enzymatic 
activities, such as cytochrome-b5-dependent 17,20 lyase 
(CYP17), in the reticularis zone of the adrenal gland 
(85), but remains to be further investigated. SULT2A1 
is the major enzyme responsible for DHEA sulfation in 
the adrenal glands and liver. The sulfate donor PAPS is 
required for sulfotransferase activity. In humans, PAPS is 
synthesized by the two isoforms of PAPS synthase, PAPSS1 
and PAPSS2. Sulfation of DHEA to DHEAS is the major 
pathway of DHEA metabolism, suggesting that increased 
DHEA sulfation may limit the amount of DHEA available 
for androgen synthesis. By contrast, mutations of the 
gene encoding human PAPS synthase 2 (PAPSS2) have 
been reported in patients with very low DHEAS levels but 
increased androgen levels. This represents one monogenic 
adrenocortical cause of androgen excess (86).

Immunoassay for DHEAS measurement

Since DHEAS is a water-soluble antigen present in human 
plasma in large quantities (around 6 µmol/L in young 
subjects), immunoassay is performed on plasma sample 
with or without dilution, depending on the method 
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used (radioimmunoassay, automated immunoassay with 
a non-radioactive marker, etc.). Using highly specific 
antibodies renders interference from other steroids very 
unlikely, given the typical concentration (12).

DHEAS in hyperandrogenic states

Approximately 20–30% of hyperandrogenic and/or PCOS 
women show excess adrenal androgen production (AAP) 
when DHEAS is used as a marker of AAP (87). Hirsute 
patients with high DHEAS levels may show a PCOS-like 
phenotype. Inherited defects in the enzymes responsible 
for abnormal steroidogenesis account for only a very 
small portion of patients with increased DHEA/DHEAS. In 
contrast, many PCOS patients under ACTH stimulation 
display a generalized increase in the adrenal steroid 
production with no evidence of hypothalamic–pituitary 
axis dysfunction (88). In vivo studies have reported that 
insulin amplifies adrenal steroidogenesis in response 
to ACTH in PCOS (88, 89), which is consistent with in 
vitro data (90, 91). In an opposite way, metformin (92) 
and thiazolidinedione treatment decrease DHEAS levels 
in correlation with decreased insulin resistance and 
hyperinsulinemia in PCOS patients (93, 94). Studies in 
monkeys agree with these findings (95), although there 
are also some contrasting results in the field (96).

Regarding the influence of ovarian androgens on the 
secretion of adrenal androgens, the effect of testosterone 
is controversial in both in vivo and in vitro studies (97); 
in PCOS, it was concluded that ovarian androgens, and 
particularly testosterone, have only limited impact on 
adrenocortical function (87). Preliminary results from the 
MEDIGENE study support the concept that some genes 
associated with insulin resistance may be associated with 
excess AAP (98).

Screening for nonclassical congenital adrenal  
hyperplasia (NCAH) in hyperandrogenic states

Most if not all guidelines suggest that diagnosis of NCAH 
should be ruled out in hirsute and PCOS patients based on 
morning plasma 17-hydroxyprogesterone (17OHP) levels, 
optimally sampled during the first stage of the cycle. Basal 
17OHP level should be assessed in the absence of or well 
after any glucocorticoid treatment that might cause false 
negative results. The largest multicenter trial, reported by 
Moran et al. (99), showed that baseline 17OHP level above 
10 ng/mL is a sensitive criterion for NCAH diagnosis; in 

agreement with a more recent single-center study (100), 
morning baseline 17OHP <2 ng/mL was associated with 
8% false negatives: i.e., patients with genetically proven 
NCAH. To enhance screening efficiency, an ACTH challenge 
test has been developed, using 250 µg cosyntropin. With 
a >10 ng/mL cut-off, Morel and Tardy (101) showed that 
nearly 100% of patients with genetically proven NCAH, 
regardless of the type of mutation, could be identified. 
This very accurate cut-off value is routinely used for 
NCAH screening in hyperandrogenic women (102, 103, 
104, 105, 106). In the near future, the development of 
sequencing platforms should enable routine sequencing 
of the CYP21A2 gene.

Perspectives in assessing hyperandrogenic states

The identification of androgen metabolites

Dihydrotestosterone, which is generated from testosterone 
by 5α-reductase, and its major glucuronidated androgen 
metabolites have been measured by MS (74). They could 
provide significant comprehensive profiles that merits to 
be further investigated. Interestingly, DHEAS was found 
to be a strong independent predictor of glucuronidated 
androgen in PCOS patients (74).

The identification of 11-oxygenated steroids 
with androgenic activity, and especially the recent 
characterization of 11-keto-testosterone and 11-keto-
dihydrotestosterone, challenges the paradigm that 
testosterone is the main potent natural androgen (107). 
In addition, the abundance of adrenal C19 steroid 
11β-hydroxyandrostenedione (11OHA4) as a precursor 
of 11-oxygenated steroids, and the development of ultra-
performance convergence chromatography-tandem mass 
spectrometry (UPC2-MS/MS) for their analysis, have 
opened up new perspectives for understanding androgen 
excess disorders (108). O’Reilly et al. (109) elegantly showed 
that 11-oxygenated androgens constitute the majority 
of circulating androgens in women with PCOS and that 
obese PCOS women have higher 11OHA4 levels than non-
obese PCOS women, who show close correlation between 
11OHA4 and metabolic disorder markers (BMI, fasting 
insulin and Homa index). The direct influence effect of 
insulin that increases the androgen-activating enzyme 
aldo-ketoreductase type 1 C3 (AKR1C3) expression, 
together with the lipogenic effects of androgens reported 
in PCOS women open new fields of investigation for 
establishing the mutual influence of androgen excess on 
metabolic dysfunctions in women (110).
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Main recommendations for laboratory investigation 
of hyperandrogenic states

Assay standardization is crucial for correct interpretation 
of results. Progress has been achieved through the 
introduction of homogeneous hormone standards. 
However, many automated methods for determination 
of steroid hormones do not provide satisfactory results. 
Interpretation requires knowledge of normal concentration 
ranges and deviations in a population of normal women 
free of ovarian or metabolic disorder (111, 112).

External quality assessment (EQA) of hormone assays

Since the 1980s, the trend has been for in-house assays 
to be superseded by automated assays, and this places a 
special responsibility on manufacturers to ensure reliable 
assay design and calibration. Since the 1980s, the trend has 
been for in-house assays to be superseded by commercial 
automated assays, and this places a special responsibility 
on manufacturers to ensure reliable assay design and 
calibration as well as for the hospital laboratories to 
validate the analytical performance of these assays.

Obviously, the infrastructure and management of 
hospitals and health care systems vary according to 
national policies and accreditation system. Ensuring correct 
implementation is a multidisciplinary responsibility 
involving clinicians, laboratory staff, manufacturers 
of diagnostic systems and healthcare regulators. All 
these professional groups therefore have an interest in 
external quality assessment (EQA). EQA is an audit tool 
that can identify the improvements required to reduce 
the risk of inaccurate hormone assessment that are of 
central importance for the diagnosis of endocrine disease 
(112). EQA has been undertaken in several countries, 
including France since 1977 by a Lyon-based association 
of biologists (ProBioQual) (13). Participating laboratories 
receive lyophilized control sera 6 times per year, for assay 
of numerous analytes, including testosterone. Analysis 
of results obtained over time has prompted a number of 
observations. The vast majority of laboratories (over 95%) 
carrying out total testosterone are using in routine various 
immunoassays without prior extraction or purification. 
There is considerable scatter in control serum values 
exhibiting concentrations close to those found in women. 
This variation is due to differences between assay kits 
and to the lack of precision of most assay kits at these 
concentration levels. Scatter decreases with increasing 
control sample concentration and becomes acceptable for 
concentrations comparable to those found in men (13). 

The limitations of testosterone assays were summarized 
in a position statement by the Endocrine Society (28), 
and a CDC Hormone Standardization Project has been 
promoted (113, 114, 115). Table 2 lists the pros and cons 
of direct testosterone immunoassay.

Decision-tree for evaluating the origin of androgen 
excess founded on a single total testosterone assay

Where testosterone is 2-fold higher than the upper normal 
limit (or >2 s.d. of the mean normal range), it is suggestive 
of an androgen-secreting tumor. In this case, DHEAS 
must be measured. DHEAS level >600 µg/dL indicates 
androgen-secreting adrenal carcinoma (often associated 
with hypercorticism). In unusual circumstances, 
dexamethasone test to suppress androgens arising from 
a functional adrenal source and gonadotropin-releasing 
hormone (GnRH) agonist could be helpful, in identifying 
ovarian androgen-secreting tumor and hyperthecosis.

Where testosterone is just above the upper normal 
limit, the most likely diagnosis is PCOS. However, 
screening for the nonclassic form of 21-hydroxylase 
deficiencies should be performed (17OH-progesterone 
assay on basal or ACTH-stimulated conditions) and, 
depending on the clinical setting, Cushing disease should 
be ruled out. Lastly, ∆4-androstenedione has been studied 
comparatively with testosterone, and dissociations have 
been reported in patients having isolated elevation 
of androstenedione but no elevation of testosterone 
particularly in case of reduced SHBG concentration that is 
essentially associated to metabolic syndrome.

Remarks in conclusion

Increased total testosterone level is the main indicator of 
hyperandrogenic states in women. By its high accuracy, 
mass spectrometry provides the best tool for measuring 
testosterone. There is debate on how to measure free 
testosterone, which has the advantage of taking account 
of the fact that SHBG, the main testosterone transport 
protein, is low in many circumstances, including 
overweight, insulin resistance and moderate inflammatory 
state. However, a recent review challenged the hormone-
free hypothesis and its interpretation and proposed a 
multi-step dynamic allosteric model of testosterone’s 
binding to SHBG assuming variability of SHBG-binding 
affinity and crystallography data showing that each SHBG 
homodimer binds two testosterone molecules rather than 
one (116). This concept is yet to be independently verified.
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One alternative would be to measure only SHBG as 
a marker for these disorders, which play a part, notably 
in the pathophysiology of PCOS. The most exciting 
perspective could be to access to the complete profile 
of androgen precursors as well as metabolites by using 
performances of MS, not only in the blood but also in 
urine and various tissues. This future would open a new 
domain in the comprehension and treatment of androgen 
excess disorders in women.
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