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Abstract Invasive plant management (largely

mechanical and chemical) consumes an ever-increas-

ing portion of budgets for land management organiza-

tions, but metrics of success, other than extent of areas

treated or resources expended is rarely available. Here

we assess success of managing 346 populations of

invasive Phragmites australis (range 0.36–4134 m2;

cover 37–75%) in the Adirondack Park in upstate New

York, USA. We began by treating 18 patches in 2010

using herbicide; gradually adding patches treated

annually or intermittently for a total of 334 by the

end of the project period. We monitored each popu-

lation annually and if P. australis was present mapped

its spatial extent and estimated cover. We considered

P. australis eradicated when live stems were absent

from a site for at least three consecutive years. Our

treatments reduced size and cover of P. australis

populations and eradicationwas achieved at 104 of 294

sites. However, probability of eradicating P. australis

over a 7-year project timeframe was 0.83 for the

smallest patches (0.36 m2), whereas at medium

(45 m2) and large patches ([3000 m2) probability of

eradication decreased to 0.26 and 0.02, respectively.

Our results question efficacy of managing large P.

australis populations with the goal of eradication. We

urge conservation organizations to clearly articulate

management objectives beyond short-term suppres-

sion of target plants and to promote accountability by

providing quantitative measurements of outcomes.
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Introduction

Conservation and land management organizations

spend an ever-increasing amount of their limited

resources to manage threats to native biodiversity

caused by spread of non-indigenous species (hence-

forth NIS) (D’Antonio et al. 2004; Pullin et al. 2004;

Chornesky et al. 2005; Abella et al. 2015). For

example, the 2002 U.S. federal budget for NIS control

and related activities was reported at $777 million, and
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expenditures have increased to[$2.2 billion by 2016

(https://www.doi.gov/invasivespecies/nisc-resources,

accessed 16 January 2017). Threats, or at least antic-

ipation of impending impacts, continue to increase

with arrival of new NIS (Mills et al. 1994, 2003; van

Wilgen et al. 2012; Liebhold et al. 2013; Langor et al.

2014). NIS may negatively impact native species,

communities, ecosystem processes such as fire

regimes, nutrient cycling, decomposition, pollination,

hydrology, food webs, and the ability to manage

habitats for declining native species (Mack et al. 2000;

Zuefle et al. 2008; Burghardt et al. 2009; Kessler et al.

2011; Powell et al. 2011, 2013; Simberloff 2011;

Gaertner et al. 2014; Downey and Richardson 2016).

The ultimate goal of engaging in management of

non-indigenous plant species is to either prevent future

or reduce current negative impacts. However, decid-

ing which plant species to target for control is difficult,

especially when multiple species co-occur and each is

associated with or facilitated by other biotic or abiotic

stressors (Simberloff and Von Holle 1999; Bertness

et al. 2002; Minchinton and Bertness 2003; Nuzzo

et al. 2009; Fisichelli et al. 2013; Kuebbing et al. 2013;

Dávalos et al. 2014, 2015; Craven et al. 2016). An

abundance of prioritization schemes exist, largely

developed by scientists, to help land managers make

better informed decisions that focus control efforts

(Robertson et al. 2003; Fox and Gordon 2009;

Downey et al. 2010; Esler et al. 2010b; Darin et al.

2011; Barney et al. 2013; Abella et al. 2015; Adams

and Setterfield 2015; Lindenmayer et al. 2015).

Depending on a particular scheme’s focus, species,

habitats, ecosystem services, control strategies, prob-

ability of achieving success, expected impacts, and

costs may be evaluated. The majority assume that

evidence of non-indigenous plant impacts is available

and control feasible, yet despite repeated and persis-

tent calls for detailed assessment of impacts (Blossey

1999; Downey 2011, 2014) we lack such information

except for a few well-studied systems (Peh 2010;

Barney et al. 2013). Furthermore, many management

interventions remain un/under evaluated, or results are

not readily accessible and managers continue to rely

on experience-based learning (Pullin et al. 2004;

Foxcroft et al. 2014, and references therein).

For conservation to be successful, decision makers

need to know which management actions will be

effective or ineffective. Ideally, decisions should be

based on effectiveness as demonstrated by scientific

experiment, systematic review of evidence (Pullin

et al. 2004; van Wilgen et al. 2012), and/or long-term

assessment of outcomes (Blossey 1999; Downey

2011, 2014). Targeting a species for control, assumes

the target is wholly or partially responsible for

undesirable ecosystem change (MacDougall and

Turkington 2005). Any successful management

should result in decreased negative impacts, declining

NIS populations, and a return to more desirable

conditions. Yet there is surprisingly little evidence to

assess success of invasive plant management beyond

superficial metrics of areas treated and resources

expended (Reid et al. 2009; Buckley and Han 2014;

Foxcroft et al. 2014; Blossey 2016b).

We implemented a 7-year management effort

targeting introduced Phragmites australis in the

Adirondack Park of New York State using a combi-

nation of herbicide treatments. The species is one of

the most widespread and successful NIS in North

America (Chambers et al. 1999; Kettenring et al. 2012;

Saltonstall and Meyerson 2016) and has a long history

of management (Marks et al. 1994; Martin and

Blossey 2013b; Hazelton et al. 2014). Targeting P.

australis is usually justified due to its ability to

dominate wetland plant communities with widespread

anticipated and documented negative impacts on

native plant, invertebrate, fish, reptile and bird com-

munities (Benoit and Askins 1999; Able and Hagan

2000; National Research Council 2004; Bolton and

Brooks 2010; Kessler et al. 2011; Dibble and Meyer-

son 2016). The situation in regards to P. australis

management in the Adirondack Park is unique with

extensive forests, clear and limited dispersal corridors,

and low human population density that limit distur-

bance. Hence, we were able to survey and map the

large majority of P. australis populations in the park

interior, resulting in a comprehensive inventory of

hundreds of populations. Furthermore, the vast major-

ity of P. australis populations are very small, with only

a few exceeding 1000 m2, thus limiting impacts the

species currently has on local ecosystems. This

scenario provided the opportunity to focus on target-

ing all but a few identified populations while reducing

the likelihood of exceeding available resources.

As a result of our treatment and monitoring efforts

we expected: (1) P. australis patch area and cover to

increase in the absence of herbicide application; (2) P.

australis patch area and cover to decrease with

repeated herbicide application and number of
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treatment years; and (3) to locally eradicate P.

australis populations with number of eradicated

populations increasing as a function of number of

years under treatment.

Methods

Study species

Phragmites australis is a tall, clonal grass able to

thrive under a wide range of habitat conditions, from

oligohaline tidal wetlands to freshwater wetlands,

marshes, ditches, and roadsides, where it produces

annual 2–5 m tall cane like stems. First shoots emerge

in early spring and following rhizome growth new

stems are added throughout the growing season.

Clonal expansion after establishment occurs through

an extensive rhizome system producing up to

200 stems/m2 (Haslam 1958). Approximately two

thirds of the biomass is allocated to the rhizome-

system that can reach a depth of 2 m (Haslam 1972).

Stems elongate until they reach their final height and

produce inflorescences in late summer and early fall.

Seed set is variable and not all stems or even

populations produce viable seed each year. But in

addition to rhizome expansion and fragment transport,

seeds, which are dispersed by wind, water, and

adhesion to waterfowl throughout the fall and winter,

are now recognized as important in dispersal and

colonization of new habitats (Baldwin et al. 2010;

McCormick et al. 2010; Albert et al. 2015; Galatow-

itsch et al. 2016; Kettenring et al. 2016).

Present day populations of P. australis in North

America consist of three different lineages: (1)

introduced genotypes overwhelmingly of European

origin introduced in the 1800s at Atlantic Coast

seaports (Saltonstall 2002) that are now widespread

throughout North America from southern Canada to

the Gulf Coast and southern California (Saltonstall

and Meyerson 2016), but absent from Mexico (Colin

and Eguiarte 2016); (2) a genetically diverse native

and endemic subspecies P. australis americanus that

is widespread in North America except in the south-

eastern US but now confirmed in northern Mexico

(Colin and Eguiarte 2016; Saltonstall and Meyerson

2016); and (3) a Gulf Coast lineage P. australis

berlandieri that occurs throughout the southern US,

throughout Mexico, and into South America (Colin

and Eguiarte 2016; Saltonstall and Meyerson 2016).

Introduced European genotypes have long been con-

sidered invasive with widespread detrimental impacts

(Marks et al. 1994), while populations of native

genotypes are lost (Saltonstall 2002) and are consid-

ered of conservation concern in some eastern states.

The status of the Gulf Coast lineage as native or

introduced remains unresolved (Lambertini et al.

2012; Colin and Eguiarte 2016). Recently the exis-

tence of hybrids between European and North Amer-

ican lineages, long suspected due to common garden

evidence (Meyerson et al. 2008), has been confirmed

in wetlands in NewYork and Nevada (Saltonstall et al.

2014, 2016).

The ability of introduced P. australis to colonize

and then dominate wetland plant communities has

been variously linked to shoreline development in

New England (Bertness et al. 2002; Burdick and

Konisky 2003; Silliman and Bertness 2004), preva-

lence of agriculture and nutrient loading (Kulmatiski

et al. 2010; Sciance et al. 2016), salt tolerance

(Vasquez et al. 2005), roadside disturbance and

dispersal corridors (Jodoin et al. 2008; Brisson et al.

2010), hydrology (Hudon et al. 2005), and superior

competitive traits paired with absence of specialized

natural enemies (Park and Blossey 2008). This has

given rise to research to assess feasibility of biological

control for the introduced lineage in North America

(Tewksbury et al. 2002a; Blossey 2003; Häfliger et al.

2006a, b; Blossey and Casagrande 2016). Interest-

ingly, there appears to be important biotic resistance to

the non-native lineage in less disturbed areas further

from human impact (Taddeo and De Blois 2012) and

with thriving native plant competitors (Peter and

Burdick 2010).

The setting

The Adirondack Partnership for Regional Invasive

Species Management (PRISM), located in Northern

New York (NYSDEC 2016), includes the Adirondack

Park Forest Preserve (Fig. 1) the largest publicly

protected area in the contiguous United States. The

region contains over 4060 km2 of protected ‘‘forever

wild’’ forest preserve lands with an additional

6000 km2 held in private ownership. Supporting over

100 towns and villages, the Adirondack region is a

global conservation model; a place where human

communities live side by side and within protected

Management of invasive Phragmites australis in the Adirondacks 61

123



areas. Over 3000 lakes and ponds, nearly 50,000 km

of rivers and streams, and approximately 2500 km2 of

wetlands are contained within the Park’s boundary.

Elevation varies from near sea level to New York’s

highest mountain peak, Mount Marcy, at 1628 m. The

region supports various ecosystems and habitats

including oak-hickory forests, boreal bogs, and, in

the higher elevations, alpine zones. These varied

habitats sustain a diverse assemblage of plants and

animals (Jenkins and Keal 2004).

The Adirondack Park Invasive Plant Program

(APIPP) was founded in 1998 and became the first

New York PRISM in 2008. Founding partners of

APIPP include the New York State Department of

Environmental Conservation (NYSDEC), New York

State Department of Transportation, Adirondack Park

Agency, and the Adirondack Chapter of The Nature

Conservancy (TNC). APIPP’s mission is to protect the

Adirondack region from negative impacts of NIS by

coordinating invasive species education and outreach,

prevention, surveillance, early detection, rapid

response, management, and monitoring efforts. The

jurisdictional boundaries of the Adirondack PRISM

encompass the[10,000 km2 landscape of the Adiron-

dack Park as well as the northern portions of Clinton

and Franklin Counties (Fig. 1). The program has

expanded since its founding and now partners with

over 30 different cooperating organizations and hun-

dreds of volunteers representing academic institutions,

environmental advocacy groups, lake associations,

and other non-governmental organizations. APIPP is

funded by New York State’s Environmental Protec-

tion Fund through contracts with NYSDEC.

APIPP prioritized introduced P. australis for man-

agement and monitoring in 2010 based on its ‘‘very

high’’ New York threat ranking assessment, ability to

quickly invade wetland systems, and relatively low

distribution and abundance within the Adirondack

Fig. 1 Documented Phragmites australis locations within the interior Adirondack Park, New York, USA
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PRISM interior (Jordan and Weldy 2008). The

Adirondack region is also home to populations of the

native P. australis americanus that are in decline due

to invasive P. australis spread across much of North

America (Saltonstall 2002; Perez 2005).

Surveys

We began documenting and inventorying P. australis

populations in 2000 using annual roadside surveys due

to the species’ propensity to spread along roads and

subsequently invade adjacent wetlands. At each site,

we confirmed species identity as well as invasive

versus native status and used a handheld Global

Positioning System (GPS, Trimble GeoXT field

computers, Waypoint Technology Group, Albany,

New York, USA) to collect basic information (date of

discovery, coordinates, town and county, and patch

size in m2). In 2009 we began using TNC’s Weed

Information Management System (WIMS 3) which

allowed collection of additional spatial and treatment

data (Buttrick et al. 2007).

We used theWIMS 3 assessment polygon feature to

map patch extent by circumnavigating the exterior

boundary and including outlier stems to generate patch

size (m2). The minimum patch size that could be

accurately mapped was approximately 0.36 m2, there-

fore, any smaller patches were automatically mapped

as 0.36 m2. We estimated P. australis cover (%) by

visual inspection and assigned each site one of five

cover classes (\1, 1–10, [10–25, [25–50, or

[50–100%). We used the median of the selected

cover class to designate patch cover. We used photo

documentation to verify that appropriate cover classes

were assigned and to document patch size/cover

development over time. We repeated size and cover

(%) assessments annually for each site. If we observed

no P. australis stems upon follow-up assessment, area

and cover was recorded as zero.

Herbicide treatments

We did not obtain sufficient resources or permits to

begin comprehensive treatment efforts until 2010.

Throughout the study period, and in accordance with

variable resources (annual staffing and funding), our

survey and treatment efforts fluctuated. Furthermore,

varying patch sizes required different treatment

approaches to achieve desired effectiveness. We

monitored but did not treat 12 populations, which

were considered controls throughout the study period.

For smaller patches we first applied herbicide via

foliar spray attempting to wet at least 75% of leaf

surface area on both sides of each stem. For larger

patches, especially those with high P. australis stem

densities, we often used a combination of foliar spray

and stem injection in the first treatment year. We cut

parallel spray access lanes every 1–3 m through the

patch and filled or injected each cut P. australis stem

with herbicide. We also used this technique around

intermixed native trees and shrubs to reduce potential

non-target effects of foliar spray drift. After treating

spray lanes and/or around native vegetation, we applied

a foliar spray application to the remainder of the patch.

The specific treatment approach deployed on each site

was strongly influenced by pre-treatment patch size and

stem density, but was performed under each staff

member’s judgment of predicted treatment efficacy.

All herbicide treatments, regardless of application

method, utilized glyphosate-based products with

varying percentages of active ingredient (41–53.8%).

We selected products based on their approved use in

upland or wetland settings. We incorporated marker

dyes into all herbicide applications and added surfac-

tants when performing foliar sprays. Stem injection

involved cutting each P. australis stem 10–30 cm

above the soil surface and filling the remaining hollow

cavities with herbicide solution using a stem injection

system (JK1000 Injection System, JK International,

LLC, Battle Ground, Washington, USA; for details on

herbicide products and adjuvants see Supplementary

Table 1).

Over the course of the study period we advanced a

site-specific adaptive management approach. The

majority of sites required follow-up herbicide treat-

ments as a result of P. australis persistence. When

resprouts were abundant and in close proximity to each

other, we usually continued with foliar spray. Con-

versely, if resprouts were rare, isolated and/or inter-

mixed with native vegetation we usually used stem

injection to reduce likelihood of non-target impacts. In

rare circumstances where a single liveP. australis stem

remained we manually removed the plant.

All herbicide treatments took place between 8 July

and 6 October of each year. We made every effort to

perform our treatments during periods of favorable

weather and avoided extreme heat or cold, precipita-

tion, and/or high wind. We also avoided treating
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within two weeks of the first expected fall frost to

allow sufficient time for herbicide to translocate to

below ground tissues. Although larger sites usually

required multiple days of herbicide application, we

made every attempt to treat each individual site, with

any remaining P. australis stems therein, in its entirety

once each year. Over the course of the project period

only 33 sites did not receive treatment in any given

year due to logistical challenges or resource

constraints.

Each spring, we cut down or removed dead,

standing P. australis stems at previously treated sites

using brush cutters (STIHL Incorporated, Virginia

Beach, Virginia, US) or hand loppers to open the

canopy, expedite native plant recovery and facilitate

detection of P. australis re-sprouts.

Statistical analyses

We fitted linear mixed models to evaluate effect of

years of treatment (or years monitored for untreated

sites), pre-treatment area (or initial area for untreated

sites), treatment continuity (annual or intermittently),

disturbance regime (human or non-human), and site

geographical location on P. australis patch area (m2)

and cover (%). We used polynomial contrasts to

evaluate effect of treatment years. We conducted

separate analyses for foliar spray and for combined

application (foliar plus injection) due to the fact that

sites targeted for each method differed in initial

average size. We make no inferences about success of

different treatment methods since our work and

analyses were not designed to assess efficacy of

different herbicide application methods. To satisfy

model assumptions we log-transformed patch area and

arcsine square-root transformed cover. All models

included random intercept effects (site effects) and

random slope effects (year effects per site). To

evaluate significance of explanatory factors, we

started with a full model and then compared it with a

model without the tested factor via log likelihood tests.

We checked assumptions of all models at each step of

the model procedure. We fitted all mixed models with

package lme4 (Bates et al. 2014) in statistical package

R (R Core Team 2016).

For untreated sites, we applied a Cumulative Link

Mixed Model to evaluate the effects of initial area and

years monitored on P. australis cover. We inputted

cover as a categorical response (low:\18%; medium:

18.1–74.9%; and high: [74.9%) and fitted models

using the clmm command in package ordinal (Chris-

tensen 2015).

We evaluated probability of P. australis relapse and

eradication with separate generalized linear models

with binomial errors. Relapse models evaluated

effects of number of consecutive years of absence

and pre-treatment area. Eradication models evaluated

effects of pre-treatment area and number of treatment

years only. We did not evaluate treatment methods to

avoid confounding patch size with treatment

approach. We defined eradication as a minimum of

3 years of continuous P. australis absence (Rejmánek

and Pitcairn 2002). Therefore, only sites managed for

more than 3 years were included in this analysis.

Results

Change in P. australis without management

We monitored but did not actively treat P. australis at

10 sites and collected pre-treatment data at an addi-

tional 114 sites over a 3–6 year period (2009–2016).

This allowed us to assess annual rate of increase in

patch area and P. australis cover in the absence of

active management. Initial patch area ranged from 0.36

to 4314 m2, averaging 422.92 ± 744.78 m2. Patch

area was significantly and positively correlated with

initial area and increased with years monitored (Sup-

plementary Table 2). We also found a significant

interaction between years monitored and initial area

due to the fact that smaller patches showed a greater

rate of increase than larger patches (Fig. 2; Supple-

mentary Fig. 1). Phragmites australis percent cover

varied across control sites ranging from 38 to 75%

(mean 64%), but was not correlated with initial patch

area and did not change significantly over time. Human

disturbance and site geographical location had no

significant effect on P. australis area or cover.

Change in P. australis under management

Foliar application

We treated 243 sites exclusively with foliar spray over

a 7-year period (2010–2016) with an average of 4.5

treatment years per site. Average pre-treatment patch

size for these sites was 80.7 ± 253.2 m2
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(means ± 1SD, range 0.36–3574.6 m2). We treated

the majority of these small sites intermittently

(N = 205), often because P. australis was absent in

a given year (N = 187 sites) or because resourcing

levels or permitting limitations prevented manage-

ment (N = 18 sites).

Size of P. australis patches after 1–7 years of

treatment was positively correlated with pre-treatment

area, significantly decreased with number of years

managed (polynomial effect), and decreased at a faster

rate at sites treated intermittently than at sites treated

annually (Fig. 3; Supplementary Table 3). We found

significant interactions between number of treatment

years and initial area and between treatment continuity

and number of treatment years (Supplementary

Table 3). Percent cover of P. australis was positively

correlated with pre-treatment patch size and decreased

with years of treatment (polynomial effect; Fig. 3).

Cover of P. australis was significantly higher at sites

treated annually than at sites treated intermittently, but

treatment continuity did not interact with other factors

(Supplementary Table 3). Human disturbance and site

geographical location had no significant effect on P.

australis area or cover. A separate analysis excluding

sites not visited due to project constraints indicated

similar results.

Combined application

We treated 91 sites with a combined application of

foliar spray and stem injection (in the same year or

over multiple years), with 65 sites treated intermit-

tently and 26 sites treated annually. Average pre-

treatment patch size was 471.8 ± 765.8 m2

(means ± 1SD; range 0.36–5553 m2). We did not

perform treatments in a given year at 50 sites when P.

australis was temporarily absent and at 15 sites due to

funding or permit limitations.

Patch size of P. australis was positively correlated

with pre-treatment area and significantly decreased as

the number of treatment years increased (Fig. 4). We

found a significant interaction between treatment

continuity and number of treatment years (Supple-

mentary Table 4): P. australis area decreased at a

faster rate for sites treated intermittently. Similarly, P.

australis cover also decreased with treatment years

and was positively correlated with pre-treatment area.

However, cover was not significantly affected by

treatment continuity (Supplementary Table 4). We

found a significant interaction between pre-treatment

area and number of years treated (Fig. 4). Human

disturbance and site geographical location had no

significant effect on P. australis area or cover. A

separate analysis excluding sites not visited due to

project constraints indicated similar results.

Local eradication of P. australis

After herbicide application (foliar or combined) P.

australis was absent for 1–6 consecutive years at 238

of 332 managed sites. At 62 sites P. australis re-

appeared, after one (N = 45), two (N = 17), or 3–4

(N = 8) years of absence. At the remaining sites, P

australis did not re-appear over the study period

(N = 24). The probability of reappearance signifi-

cantly decreased as number of consecutive years of

absence increased, with no re-appearance documented

after 4 years of absence (Estimate = -1.12;

SE = 0.18, P\ 0.001; Fig. 5). This result was not

significantly affected by patch pre-treatment area.

We considered a minimum three consecutive years

absence as an indicator of successful eradication, and

therefore only evaluated eradication success on sites

managed[3 years (N = 294). Following this criterion,

we successfully eradicated P. australis at 104 of 294

sites. At remaining sites (N = 190), P. australis was

absent for 1–2 years (N = 58 and 50, respectively) or

present throughout the study period (N = 82).

The majority of sites where P. australis was

eradicated (N = 88) received exclusively foliar spray

Fig. 2 Phragmites australis patch area (m2, log-transformed)
at sites not treated with herbicide (N = 124) as a function of
years monitored and initial patch area. Initial patch areas (38,
201 and 467 m2) correspond to 1st, 2nd and 3rd quartiles. Lines
depict model predictions and the grey area represents 95% CI
according to linear mixed model effects. For model results see
Supplementary Table 2
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(we did not evaluate different herbicide treatments;

see Statistical analyses section for details), and all sites

were treated intermittently. Average patch size where

we were able to successfully eradicate P. australiswas

significantly smaller (28.3 ± 48 m2; N = 59)

(F1,292 = 19.4, P\ 0.001) than average patch size

Fig. 3 Phragmites australis patch area (m2, log-transformed,
top) and cover (%, arcsine square-root transformed, bottom) as a
function of number of years treated and pre-treatment patch area
(6, 25 and 66 m2). We treated sites annually (right) or
intermittently (left) with foliar spray over a 7-year period

(2009–2016). Pre-treatment patch area corresponds to 1st, 2nd
and 3rd quartiles. Lines depict model predictions and the grey

area represents 95%CI according to linear mixed model effects.
For model results see Supplementary Table 3

Fig. 4 Phragmites australis patch area (m2, log-transformed,
top) and cover (%, arcsine square-root transformed, bottom) as a
function of number of years treated and pre-treatment patch area
(55, 235 and 542 m2). We treated sites with a combination of
foliar spray and stem injection annually (right) or intermittently

(left) over a 7-year period (2009–2016). Pre-treatment patch
area corresponds to 1st, 2nd and 3rd quartiles. Lines depict
model predictions and the grey area represents 95% CI
according to linear mixed model effects. For model results see
Supplementary Table 4
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where we failed to eradicate P. australis over the

7-year study (309.4 ± 649 m2; N = 131). The prob-

ability of eradicating P. australis significantly

decreased with an increase in pre-treatment area

(Estimate = -0.74; SE = 0.1, P\ 0.001), but was

not affected by years of treatment or interaction

between both factors (Fig. 6). According to model

predictions, probability of eradicating P. australis in a

7-year project timeframe at the smallest patches

(0.36 m2) is 0.85, whereas at medium (45 m2) and

large patches ([3000 m2) probability of eradicating

decreased to 0.3 and 0.02, respectively. Human

disturbance and site geographical location had no

significant effect on probability of eradicating P.

australis.

Discussion

Our results of treating invasive P. australis in the

Adirondacks offer both encouragement and reason for

caution for those managing the species. Eradication is

clearly a possibility when addressing small infesta-

tions and a long-term commitment is made. We were

able to eradicate P. australis from approximately 35%

of treatment sites and our success is likely to increase

substantially (to approx. 72%) if sites where the

species is currently absent for 1–2 years are deemed

eradicated in the future. This success was achieved

with a financial investment of\$100,000. However,

extending the monitoring period did not affect our

findings regarding patch sizes that can be effectively

eradicated. Rapidly responding to new, small popula-

tions not only increases the likelihood of eradicating

P. australis, it also reduces resource requirements and

potential future detrimental non-target impacts. This

approach is supported by early theoretical models

(Moody andMack 1988), empirical evidence from our

study, and other investigations (Taylor and Hastings

2004; Delanoy and Archibold 2007; Simberloff 2009;

Buhle et al. 2012).

Conversely, the likelihood for eradicating larger

populations drops to 0.1 for those exceeding 300 m2

and to 0.06 for those exceeding 500 m2, indicating that

for large populations eradication appears a ‘‘pipe

dream’’ (Simberloff 2014). This finding is supported

by others (Lombard et al. 2012; Martin and Blossey

2013b) and it is likely that eradication will be even

more elusive in areas with high patch connectivity

(Chambers et al. 1999; Kulmatiski et al. 2010;

McCormick et al. 2010; Kettenring et al.

2012, 2016; Hazelton et al. 2014) or in areas with

longer invasion histories. For example, the Michigan

Department of Environmental Quality has developed a

management prioritization tool (MIDEQ 2014) using

multiple ecological, human values, and feasibility

criteria where populations covering \100 m2 are

assigned a score of 9 and areas of 4000–80,000 m2 a

score of 5, with sites scoring higher receiving priority

for management. In the Adirondacks, the largest

population we surveyed covered\4000 m2 and as a

result, our management efforts avoided significant

impacts and expense associated with managing larger

infestations.

While eradication of larger populations was elu-

sive, we were able to greatly reduce P. australis patch

Fig. 5 Probability ofP. australis reappearance in treated patches
as a function of the number of years (1–6) the species was not
detected. Lines depict model predictions from a generalized
linear model with binomial errors and shaded areas repre-
sent 95% CI based on model predictions from 238 sites where P.
australiswas absent for at least 1 year. Numbers indicate number
of sites at which P. australis reappeared in a given year

Fig. 6 Probability of P. australis eradication according to pre-
treatment patch size (m2). Lines depict model predictions from a
generalized linear model with binomial errors and shaded areas
represent 95% CI based on model predictions
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size and particularly cover, with dramatic effects

materializing within the first few years of treatment

before reductions stabilized. However, incremental

reductions continued suggesting that if treatments can

be maintained, progress over decades may achieve

eradication for these larger, but still comparatively

small, sites. We attribute being able to sustain

treatments and assessment of outcomes to uninter-

rupted availability of sufficient resources for the small

overall area P. australis has invaded in the Adiron-

dacks compared to other regions. The available

evidence from across North America suggests that

most management agencies are unable to sustain such

financially and logistically demanding management

strategies once P. australis populations are larger and

more numerous. The resulting intermittent manage-

ment and temporary reductions may provide potential

short-term ecological benefits, but at enormous long-

term expense (Blossey and McCauley 2000; Martin

and Blossey 2013b). For example, the Great Lakes

Restoration Initiative shows an expenditure of[$25

million for P. australis management from 2010 to

2015 (https://www.glri.us//) but provides no docu-

mentation of outcomes or success beyond expendi-

tures and areas treated (GLRI 2016).

We were surprised by low rates of clonal expansion

at sites that did not undergo treatment. Patch expan-

sion rates of 11–46% for sites that extended over

hundreds or even thousands of square meters are

reported (Kettenring et al. 2016). In our study only the

smallest sites expanded rapidly and we attribute

failure of P. australis to achieve higher expansion

rates to lack of disturbed habitat in the Adirondacks.

Except along major roadways, lack of human distur-

bances is limiting P. australis seedling establishment

(Byun et al. 2015; Kettenring et al. 2015) and regional

encroachment (Bertness et al. 2002; Silliman and

Bertness 2004). Large populations may have also

reached local limits of available wetland habitat within

the forest matrix despite[240,000 ha of wetlands in

the Adirondacks. We cannot exclude the possibility

that biotic resistance by wetland plants (Sakai et al.

2001; Levine et al. 2004; Byun et al. 2013; Zenni and

Nuñez 2013), native herbivores (Parker and Hay

2005), or even negative soil feedback (van der Putten

et al. 2013) are contributing to reduced local and

regional P. australis expansion.

Control of NIS is a means to achieve conservation

objectives assuming NIS are the driver of or a major

contributor to ecosystem deterioration (MacDougall

and Turkington 2005) and demise of native species.

Evidence from surveys and detailed experiments

assessing impacts of invasive P. australis is decidedly

mixed. Some species are negatively affected such as

native wetland plants (Crocker et al. 2017), birds

(Benoit and Askins 1999; Whyte et al. 2015), turtles

(Bolton and Brooks 2010), and small fish such as

Fundulus spp. (Able and Hagan 2000). However,

crustaceans (Able and Hagan 2000), Northern pike

(Larochelle et al. 2015), certain amphibians, (Cohen

et al. 2012; Rogalski and Skelly 2012; Martin and

Blossey 2013a; Cohen et al. 2014), and decomposition

processes or macroinvertebrate communities (Ken-

nedy et al. 2012) appear to show no negative response

to P. australis. This conflicting evidence of P.

australis impacts is sufficient caution to avoid con-

clusions that reductions in cover and area of patches

alone will produce benefits for native biota. We are in

the process of assessing outcomes of our herbicide

treatments, which appear to have had minimal nega-

tive consequences on native plants, with similar

diversity and abundance being documented in treat-

ment and adjacent untreated areas (Schwarzberg

2015).

We consider pre- and post-treatment quantitative

assessments an essential component of NIS manage-

ment, especially given increasing evidence that treat-

ments targeting NIS may have local unintended

consequences on non-target (Keeley 2006; Kettenring

and Adams 2011; Skurski et al. 2013) and even listed

species (Baker et al. 2009). In some instances native

species of conservation concern did better in the

presence of non-indigenous plants when areas

remained untreated compared to areas treated with

herbicide (Pearson and Callaway 2008; Rinella et al.

2009; Louhaichi et al. 2012; Lazaran et al. 2013).

Management of invasive P. australis, even when

sustained, may not result in the benefits managers are

seeking. Collecting, evaluating and publishing quan-

titative evidence of treatment outcomes is essential.

It has long been a concern to many scientists

(Blossey 1999; Downey 2011, 2014) that published

evidence on unintended impacts of NIS management,

whether biological, mechanical, physical or chemical,

is almost entirely absent (Reid et al. 2009; Buckley

and Han 2014; Foxcroft et al. 2014; Blossey 2016b)

including information on outcomes of P. australis

management (Hazelton et al. 2014). For example, half
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a million ha of public lands were sprayed with

herbicide in the US in 2010 alone to reduce popula-

tions of non-indigenous plants with practically no

information provided on outcomes (Wagner et al.

2017). Where data exist, assessments are of limited

duration (often only a single season) and plot sizes are

small, typically\1 m2. This minimal focus on post-

treatment monitoring and restoration is leading to

widespread management failures (Kettenring and

Adams 2011). We consider sustained and expanded

collaborations between land managers and academic

scientists a key mechanism for performing these

outcome assessments and improving success of NIS

management. Advancing these collaborations will

require changes in reward systems that currently differ

among managers, scientists, funders and the public at

large (Acharya 2010; Esler et al. 2010a; Kettenring

and Adams 2011; Matzek et al. 2014; Lavoie and

Brisson 2015; Matzek et al. 2015; Addison et al.

2016). If not improved, we can expect continuation of

systemic failures in how we approach and fund

invasive species management for conservation pur-

poses (Stocker 2004; Blossey 2016a, b).

In conclusion, our data suggest that land managers

interested in protecting native species and resources

under threat from P. australis invasion embrace an

approach that promotes sustained early detection and

rapid response to new, small populations. This may

not be feasible in many regions where invasive P.

australis is well established or rapidly expanding. In

these areas, suppression and containment strategies

may be warranted, but potential project benefits need

to be weighed against significant drawbacks. Man-

agement of large P. australis populations can divert

conservation resources from other projects, have

questionable efficacy, and may tax society beyond

what will be an acceptable long-term commitment

(Martin and Blossey 2013b; Hazelton et al. 2014). At a

minimum, outcome assessments of management are

essential to evaluate economic and ecological costs

and benefits of this approach. Current published

evidence, as well as our results, suggest that we lack

the ability to eradicate larger P. australis populations

and that containment and suppression strategies are

economically unsustainable and provide limited eco-

logical benefit (Martin and Blossey 2013b). Although

opportunities for successful early detection and rapid

response exist, promise for successful P. australis

management as found in the Adirondacks is rare,

reinforcing the reality of having to accept larger

populations of this NIS (Slobodkin 2001) or to

advance biological control (Tewksbury et al. 2002b;

Blossey 2003; Martin and Blossey 2013b; Blossey and

Casagrande 2016).
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