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Abstract 

Background: Recessive loss-of-function (LOF) alleles at genes which are essential for life, can result in early embry-
onic mortality. Cattle producers can use the LOF carrier status of individual animals to make selection and mate 
allocation decisions.

Methods: Two beef cattle breeding strategies i.e. (1) selection against LOF carriers as parents and (2) simultaneous 
selection and mate allocation to avoid the occurrence of homozygous offspring in three scenarios, which differed in 
number and frequency of LOF alleles were evaluated using the mate selection program, MateSel. Scenarios included 
(a) seven loci with high-frequency LOF alleles, (b) 76 loci with low-frequency LOF alleles, and (c) 50 loci with random 
high- and low-frequency LOF alleles. In addition, any savings resulting from the information obtained by varying the 
percentage (0–100%) of the herd genotyped, together with segregation analysis to cover ungenotyped animals, were 
calculated to determine (1) which percentage optimized net profit for a fixed cost of genotyping ($30/test), and (2) 
the breakeven cost for genotyping.

Results: With full knowledge of the LOF alleles carried by selection candidates, the most profitable breeding strategy 
was always simultaneous selection and mate allocation to avoid homozygous affected offspring (aa) as compared to 
indiscriminate selection against carrier parents (Aa). The breakeven value of genotyping depended on the number 
of loci modeled, the LOF allele frequencies, and the mating/selection strategies used. Genotyping was most valuable 
when it was used to avoid otherwise high levels of embryonic mortalities. As the number of essential loci with LOF 
alleles increased, especially when some were present at relatively high minor allele frequencies, embryonic losses 
increased, and profit was maximized by genotyping 10 to 20% of a herd and using that information to reduce these 
losses.

Conclusions: Genotyping 100% of the herd was never the most profitable outcome in any scenario; however, geno-
typing some proportion of the herd, together with segregation analysis to cover ungenotyped animals, maximized 
overall profit in scenarios with large numbers of loci with LOF alleles. As more LOF alleles are identified, such a mate 
selection software will likely be required to optimally select and allocate matings to balance the rate of genetic gain, 
embryonic losses, and inbreeding.
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Background
For commercial beef cow-calf operators, fertility is the 

most important economic trait among the breeding 

objectives and outweighs even growth and carcass traits 

[1, 2]. Beef cattle fertilization rates to a single artificial 

insemination (AI) service of about 90 to 100% have been 

observed, and yet the subsequent calving rates reach 

about 55%, which suggests that at least 35% of pregnan-

cies are lost between fertilization and calving [3]. The low 

frequencies of recessive loss-of-function (LOF) alleles of 

genes that are essential for life may be associated with 

part of this early embryonic mortality. Genomic tools 

have enabled the identification of early embryonic mor-

tality LOF mutations in dairy cattle that are evidenced 

by decreased fertility scores in genetic evaluations [4]. 

Recent studies have revealed additional lethal LOF alleles 

in beef and dairy cattle populations, and at least 17 hap-

lotypes have been identified [5], with carrier frequencies 

ranging from 2.2 to 23.4%, and recessive haplotype fre-

quencies ranging from 0.1 to 15.2% [5–8] (Table 1).

Genotyping provides an opportunity to evaluate the 

LOF allele status for individual animals, and this infor-

mation could be used to avoid matings that result in 

early embryonic losses due to the occurrence of homozy-

gous LOF offspring. However, as research identifies an 

ever-increasing number of essential loci that potentially 

harbor LOF alleles, computerized decision support pro-

grams will likely be needed to make optimal mating deci-

sions given the computational complexities associated 

with the incorporation of LOF information from multiple 

essential gene loci into genetic improvement programs 

[38].

Mate allocation, which is the process of selecting mat-

ing pairs from a population of females and some portfolio 

of males, can be used to help avoid pairing animals that 

carry LOF alleles at the same locus. A constrained mate 

selection algorithm, MateSel, was developed to opti-

mize mate selection decisions—to simultaneously opti-

mize both mate selection and mate allocation decisions 

[39]. For example, the program can maximize the rate of 

genetic gain towards a given breeding objective under 

the constraint of holding the inbreeding rate to a user-

defined level, plus other logistical constraints required 

by breeders. It allows breeders to simulate mate selection 

decisions and interactively constrain different variables 

to observe the impact of such constraints on the rate of 

genetic progress and other predicted outcomes. Thus, 

MateSel offers the opportunity to compare and contrast 

different approaches to the management of recessive 

conditions.

The purpose of this study was to test the effectiveness of 

both mate selection for reducing the detrimental impact 

of LOF loci on herd fertility, and segregation analysis 

for reducing the genotyping costs involved. Three sce-

narios with different numbers of essential loci and LOF 

allele frequencies were set up to compare two breeding 

strategies for selecting against recessive lethal alleles. 

The first strategy was (1) selection against LOF carriers 

as parents, and the second was (2) simultaneous mating 

and selection against the occurrence of homozygous off-

spring (i.e., matings between carriers at the same locus). 

This was carried out within a given population using a set 

of constraints, selection indices, and different propor-

tions of whole herd genotyping (0–100%). The weighting 

that maximized profit per mating ($P) from each mat-

ing strategy given perfect knowledge of genotypes was 

determined as described in Upperman et  al. [40], and 

then the effect of genotyping varying percentages, from 

0 to 100%, of the herd was examined. The percentage 

of herd genotyped that optimized net profit for a fixed 

cost of genotyping ($30/test) was determined, as well 

as the breakeven genotyping cost at which the expenses 

associated with genotyping different percentages of the 

herd equaled the value derived from using that genotyp-

ing information to avoid embryonic losses for the three 

scenarios.

Methods
Modeling of the dataset

PopSNP (version 1.6), a software program that popu-

lates single nucleotide polymorphisms (SNPs) into a 

given pedigree dataset according to Mendelian segrega-

tion laws [41], was used to create three scenarios that 

included varying numbers of essential loci and LOF allele 

frequencies. Scenario (A) included seven loci with LOF 

alleles at high frequencies (mean frequency 0.0847 rang-

ing from 0.0527 to 0.1001), scenario (B) included 76 loci 

with LOF alleles at low frequencies (mean frequency 

0.0112 ranging from 0.0004 to 0.0695), and scenario (C) 

included 50 loci with LOF alleles with random high and 

low frequencies (mean frequency 0.0488 ranging from 

0.0044 to 0.1436) (Table 2).

For scenario (B), 83 loci with LOF allele frequencies 

higher than 0 were simulated using PopSNP. Setting the 

cut-off value for allele frequency at 0.07 and higher elimi-

nated seven alleles, leaving a total of 76 “low” frequency 

variants in scenario (B).

The simulated LOF SNPs were populated into an Angus 

pedigree dataset provided by Mike Kasten with 85 male 

candidates, 169 female candidates, and 546 ancestors fol-

lowing a burn-in of 1000 generations to create a resource 

for populating foundation animals with initial genotypes. 

A genome size of 3 Gb across 29 chromosomes was mod-

eled based on the size and chromosome complement of 

the bovine genome [42]. The Kosambi mapping func-

tion was used to calculate recombination fractions. A 
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mutation rate of 2.2 × 10−9 was used to calculate genera-

tion and population size parameters [43]. Any candidates 

or ancestors that would have had a homozygous recessive 

lethal genotype (aa) were assumed dead and not allowed 

in the population. The dataset included American Angus 

Association’s expected progeny differences (EPD) and 

economic selection index values for each candidate. If 

EPD values were not reported for an animal, average val-

ues of the breed database were used.

Maternal economic selection index

Ochsner et  al. [44, 45] outlined procedures on how to 

develop a maternal economic selection index ($M) given 

EPD information. These procedures were followed based 

on selection objective weightings described by MacNeil 

[46]. These included heifer pregnancy, calving ease direct, 

calving ease maternal, weaning weight direct, weaning 

weight maternal (milk), and stayability. Selection crite-

ria included heifer pregnancy, calving ease direct, calving 

Table 1 Reported allele frequencies for recessive haplotypes in both dairy and beef cattle

Modified from Cole et al. [8] and Georges et al. [5]. Reproduced with permission via Copyright Clearance Center

Breed Haplotype frequency (%) Carrier frequency (%) Functional/gene name References

Ayrshire 13.0 PIRM/UBE3B [9, 10]

20 RPAP2 [11]

Belgian blue 10 MYH6 [7]

10.2 SNAPC4 [7]

3.8 RPIA [7]

2.6 EXOSC4 [7]

2.2 MED22 [7]

Braunvieh 14 [12]

13 (3.4) TUBD1 [13]

Fleckvieh 2.9 [14]

4.1 SLC2A2 [14]

3.3 [14]

3.3 SUGT1 [14]

Brown Swiss 6.67 – [4]

7.78 TUBD1 [13]

2.19 SDM/SPAST [15, 16]

3.61 SMA/KDSR(FVT1) [17, 18]

1.56 Weaver/PNPLA8 [19, 20]

Holstein 2.76 Brachyspina/FANCI [21, 22]

1.92 4.5 APAF1 [23, 24]

1.66 – [4, 25]

2.95 4.7 SMC2 [25, 26]

0.37 GART [24]

2.22 5.5 TFB1M [9, 27]

0.25 BLAD/ITGB2 [28]

1.37 8 CVM/SLC35A3 [29, 30]

0.1 DUMPS/UMPS [31]

Jersey 12.1 23.4 CWC15 [32]

1.3 – [33]

13.2 OBFC1 [7]

Montbéliarde 18 PFAS [34, 35]

14 SLC37A2 [35]

Normande 3.8 [35]

Japanese black 4.8 ANXA10 [36]

Angus 7.8 GEMIN2 [6]

15.2 ZFAT [37]

Charolais 14.4 – [37]

Simmental 8.8 – [37]
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ease maternal, weaning weight direct, weaning weight 

maternal (milk), and back fat thickness. Due to incom-

plete parameter estimations for the simulated dataset, 

estimates of heritability, genotypic variance, phenotypic 

variance, and genetic correlation were based on estimates 

in the literature that originated mainly from reference 

Angus or British breed populations [47–52] (Table 3).

An additional metric was developed to represent the 

number of recessive LOF alleles carried by each sire, 

referred to as the genetic load score (GLS). For each sire, 

the square of the minor allele frequency  (q2) at each LOF 

locus that was heterozygous were summed. The result-

ing values were divided by the number of matings (100) 

within each run and weighted based on the number of 

matings allocated to each sire. This approach was chosen 

to reflect the long-term impact of the current selection of 

sires on expression of LOF mortality.

Mate selection

MateSel (FortranDLL version 9.4) is a software program 

for tactical implementation of breeding programs based 

on an evolutionary algorithm [53]. It optimizes mate 

selection and allocation among a given group of females 

and males to maximize the rate of genetic gain towards a 

selection objective, while constraining parental coances-

try for controlling long-term inbreeding to maintain 

genetic variation for future improvement. The result-

ing mating list accommodates optimal contributions of 

parents to future generations, together with other fac-

tors such as progeny inbreeding, practical constraints, 

and management of the allele/genotype frequencies for 

nominated markers. Two strategies can be applied to 

select against multiple recessive lethal alleles. The first 

strategy is selection against LOF carriers as parents, and 

the second is simultaneous mating and selection against 

the occurrence of homozygous offspring (i.e., matings 

between carriers at the same locus). To compare these 

strategies, for selecting against recessive LOF alleles or 

LOF genotypes, two parameters LethalA and LethalG 

(see page 20 of [53]) were added to MateSel [54]. LethalA 

is the probability of mortality in grandprogeny due to LOF 

loci, given random mating of progeny and using current 

candidate frequencies for the LOF loci. Selecting against 

LethalA discriminates against the assignment of matings 

to animals that carry lethal recessive alleles, irrespective 

of the mates allocated, and essentially targets long-term 

reduction in mortality. LethalG is the probability of mor-

tality in progeny due to LOF loci. Mate selection against 

LethalG effectively selects against the occurrence of 

lethal homozygous genotypes (aa) resulting from carrier 

matings, and essentially targets short-term reduction in 

mortality. This allows for the use of carrier sires provided 

that they are not mated to females that are LOF carriers 

at the same essential loci [39].

These definitions of LethalA and LethalG differ from 

those of Van Eenennaam and Kinghorn [54], which 

related to numbers of LOF alleles and genotypes, rather 

than probabilities of mortality. The current definitions 

were used because of their more direct link to utility 

Table 2 Allele frequencies for  the  three scenarios 

with different numbers of loci

Scenario A uses high-frequency loss-of-function alleles at seven essential loci, 

scenario B uses low-frequency loss-of-function alleles at 76 essential loci, and 

scenario C uses both high- and low-frequency loss-of-function alleles at 50 

essential loci

Scenario Number 
of loci

Mean 
frequency

Standard 
deviation

Minimum 
frequency

Maximum 
frequency

A 7 0.0847 0.0151 0.0527 0.1001

B 76 0.0112 0.0125 0.0004 0.0695

C 50 0.0488 0.0307 0.0044 0.1436

Table 3 Genetic parameters with  estimated heritabilities on  the  diagonal (in italics) and  genetic correlations 

above the diagonal

HP heifer pregnancy, CED calving ease direct, CEM calving ease maternal, WWD weaning weight direct, WWM weaning weight maternal or milk, FT fat thickness, STAY  

stayability, GLS genetic load score (this reflects long-term impact on expression of LOF mortality; see text for details)

a Assuming total independence of GLS

HP CED CEM WWD WWM FT STAY GLSa

HP 0.21 0 0 0.29 0 0 0 0

CED 0.2 − 0.3 − 0.16 0 0 0 0

CEM 0.1 0 0 0 0.25 0

WWD 0.2 − 0.17 0.1 0 0

WWM 0.14 0 − 0.15 0

FT 0.4 0.53 0

STAY 0.15 0

GLS 0
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and simpler evaluation of outcomes in relation to other 

component objectives.

Simulation parameters

Optimum mate selections were allocated for 100 matings, 

with progeny index ($M) as the key objective. No sire 

could be mated more than 50 times. A target compro-

mise between genetic gain (as measured by the progeny 

index for $M) and inbreeding (as measured by parental 

coancestry) was set to 25 degrees in MateSel (see [39] for 

explanation). This target compromise is shown with the 

green line on Fig. 1. 

This graph shows the balance between Progeny Index 

(Y axis), and Parental Coancestry (X axis). The black 

curved frontier shows the range of possible outcomes 

of optimal contributions (number of matings allocated 

to each candidate). The blue circle illustrates a solution 

for which a set of matings has been identified and which 

achieve the maximum rate of genetic change in progeny 

index given the constraint on parental coancestry set by 

the target compromise of 25 degrees (green line), where 

0 degree  corresponds to the maximum progeny index 

response and 90 degrees to minimum parental coances-

try. The red trail shows the pathway that the evolutionary 

algorithm has made during convergence. Increasing the 

rate of genetic gain further would require to decrease the 

target compromise, thereby allowing selection of fewer 

and/or more related animals, thus accelerating the short-

term genetic progress at the expense of long-term genetic 

variation.

Then, mate selection runs were performed with 

increasing weightings (0, 0.001, 0.01, 0.1, 1, 10, and 100) 

to both LethalA and LethalG mating strategies separately 

to decrease the predicted mortality in the long-term and 

short-term, respectively. In other words, we are saying 

how little (e.g. 0.001) or how much (e.g. 100) empha-

sis is placed on avoiding the use of carriers or recessive 

homozygous “dead” calves that show up within our calf 

crop. A cost of $200 was assigned to the occurrence of 

a homozygous, lethal “aa” genotype (embryonic mortal-

ity) [55, 56]. Profit per mating ($P) was calculated as $M 

(Index)—(LethalG × $200). In addition, the average sire 

index value ($MB) was calculated at each weighting. This 

value shows changes in the use of sires for the 100 mat-

ings, as well as the average sire GLS for each weighting.

Percentage of herd genotyped

To model different percentages of herd genotyped, vari-

ous values (0 = not genotyped and 1 = genotyped) were 

added to the dataset that started with a random assort-

ment of 10% of the population (both sires and dams), 

which was initially denoted as genotyped. Those indi-

viduals then remained genotyped as the percentage of 

the herd genotyped increased, adding a random selec-

tion of the individuals (both sires and dams) that were 

genotyped for each 10% increase of the herd being geno-

typed. In all cases, ungenotyped animals had genotyped 

probabilities calculated by using Geneprob (version 3.3) 

[57], and these probabilities were used to help make 

mate selection decisions. A value of $30 was selected 

as the cost of genetic testing based on the current costs 

of beef cattle genetic tests ($29–$40) in the US market 

[58, 59]. Mate selections were then performed using the 

optimal weightings that maximized $P, under prevailing 

constraints, for each mating strategy in each of the three 

scenarios that had different numbers of loci and LOF 

allele frequencies (Table 2). Each scenario was replicated 

100 times, each replicate with a different random sam-

pling of true genotypes, for each percentage of the herd 

genotyped.

Results
Baseline parameters in the absence of herd genotyping

Figure  2 shows the average progeny index ($M) values 

versus the occurrence of affected calves per mating for 

the three scenarios with decreasing weightings (100, 10, 

1, 0.1, 0.01, 0.001, 0) against LethalA or LethalG, and the 

profit maximizing weighting for each scenario and breed-

ing strategy. Breeding strategy 1 (selection against carrier 

parents) to avoid embryonic lethality had little impact 

on average progeny index values and on the occurrence 

of homozygous affected calves when seven essential loci 

with LOF alleles were simulated since very few calves 

Fig. 1 An example frontier response surface involving progeny index 

and parental coancestry. Reproduced from [39] with permission
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were lost in this scenario. However, in scenarios with 50 

or more simulated loci, the occurrence of homozygous 

affected calves increased, and high weightings of LethalA 

in scenarios B and C resulted in a very large drop in aver-

age progeny index values. It should be noted that appro-

priate weightings under strategy 2 (selection against the 

occurrence of homozygous affected calves) can result in 

a considerable reduction of the occurrence of affected 

calves with very little compromise in average genetic 

gain.

First, we used MateSel to optimally select and allo-

cate pairs for 100 matings without consideration of LOF 

alleles within the population for one generation. This is 

referenced as the “0% genotyping”, or base, run. The $P at 

0% genotyping was $113.17, $89.67, and $84.14 for sce-

narios A, B, and C, respectively (Table 4).

At this base run, there was a loss of 0.7, 12.45, and 

15.22 calves per 100 matings (Table 5), which equated to 

total herd losses of $140, $2490.43, and $3043.75 for sce-

narios A, B, and C, respectively, assuming an opportunity 

cost of $200 per embryo mortality.

These base prices show the impact that LOF alleles 

have on total profit for producers in the absence of herd 

genotyping in the three different scenarios. Per mating, 

this represents a loss of $1.40, $24.90, and $30.44 in $P 

for A, B, and C scenarios, respectively, relative to the 

theoretical maximum $P of $114.57, if there were no LOF 

alleles. Furthermore, $MB was $141.03 prior to consid-

eration of lethal conditions, and the average GLS of the 

selected sires at this base level was 0.049, 0.287, and 0.333 

for A, B and C scenarios, respectively (Table 6).

Scenario A

The impact of embryonic lethality on total profit was 

minor when only seven essential loci with LOF alleles 

were simulated. Therefore, there was little impact of the 

alternative mating strategies on this scenario as the loss 

per mating was only $1.40 in the absence of any selec-

tion or genotyping information. Breeding strategy 1 had 

a small impact on genetic gain in this scenario. A weight-

ing of 1 on LethalA gave the highest $P, i.e. $113.87, as 

it maximized genetic progress while reducing the num-

ber of affected calves. The group of selected sires had a 

slightly lower $MB value of $140.61 than the base run, 

and a GLS of 0.005, as sires with fewer lethal alleles were 

selected compared to those in the base run (Table 6). No 

improvement from genotyping part of the herd was seen 

for breeding strategy 1 until at least 70% of the herd was 

genotyped, and the resulting improvement was only an 

increase of $P by $0.70/mating (Table 7).
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Any percentage of herd genotyped at $30/test 

decreased net profit (Fig. 3), and the breakeven genotyp-

ing cost never rose above $1/test for breeding strategy 1 

in this scenario (Fig. 4).

With breeding strategy 2, the goal of maximizing $M 

and having no affected calves was achieved at the 0.001 

weighting on LethalG (Fig. 2), which also maximized $P 

at the theoretical maximum $114.57 (Table 4). The group 

of selected sires at this weighting did not change rela-

tive to that of the base run; rather, mate allocation was 

used to avoid the occurrence of homozygous affected 

calves. Overall, breeding strategy 2 had a slight profit 

advantage ($114.57) compared to breeding strategy 1 

($113.87). Only 10% of the herd needed to be genotyped 

when using breeding strategy 2 to avoid all affected calves 

(Table 5), and the resulting improvement was a $140 sav-

ings (Table 8).

The value returned from testing never approached 

$30/test, so genotyping any percentage of the herd at 

this cost resulted in decreased net profit (Fig.  3). The 

breakeven value of genotyping 10% of the herd was $14. 

Table 4 $P values for different percentages of herd genotyped in three  scenariosa given two selection  strategiesb

a Scenario A (7 loci with high-frequency LOF alleles), scenario B (76 loci with low-frequency LOF alleles), and scenario C (50 with high- and low-frequency loci)

b Selection against carrier parents (strategy 1) and selection and mate allocation to avoid homozygous offspring (strategy 2)

Level of genotyping % Herd 
genotyping

$P

Strategy 1 Strategy 2

A B C A B C

Base 0 $113.17 $89.67 $84.14 $113.17 $ 89.67 $84.14

Low 10 $113.17 $96.35 $87.91 $114.57 $ 98.24 $100.82

20 $113.17 $99.71 $98.43 $114.57 $ 99.61 $102.57

30 $113.17 $102.40 $97.54 $114.57 $101.62 $102.45

Intermediate 40 $113.17 $104.15 $99.01 $114.57 $103.19 $104.52

50 $113.17 $104.47 $98.58 $114.57 $104.33 $106.33

60 $113.17 $105.42 $99.02 $114.57 $105.39 $106.33

High 70 $113.87 $106.45 $98.27 $114.57 $106.39 $106.21

80 $113.87 $106.55 $99.18 $114.57 $107.50 $107.59

90 $113.87 $107.22 $99.06 $114.57 $108.12 $110.07

100 $113.87 $107.35 $99.48 $114.57 $108.79 $110.31

Table 5 Predicted number of  homozygous offspring (aa) with  standard errors (SE) for  different percentages of  herd 

genotyped in three  scenariosa given two selection  strategiesb

a Scenario A (7 loci with high-frequency LOF alleles), scenario B (76 loci with low-frequency LOF alleles), and scenario C (50 with high- and low-frequency loci)

b Selection against carrier parents (strategy 1) and selection and mate allocation to avoid homozygous offspring (strategy 2)

Level of genotyping % Herd genotyping Predicted number of homozygous individuals per 100 matings (aa)

A B C

Base 0 0.70 (0.000) 12.45 (0.000) 15.22 (0.000)

Strategyb 1 2 1 2 1 2

Low 10 0.70 (0.003) 0 (0.000) 9.11 (0.003) 8.17 (0.003) 12.42 (0.003) 6.77 (0.003)

20 0.70 (0.003) 0 (0.000) 7.43 (0.003) 7.48 (0.002) 6.06 (0.003) 5.97 (0.003)

30 0.70 (0.003) 0 (0.000) 6.08 (0.003) 6.47 (0.003) 6.05 (0.003) 5.92 (0.003)

Intermediate 40 0.70 (0.003) 0 (0.000) 5.21 (0.003) 5.69 (0.003) 4.80 (0.003) 4.87 (0.002)

50 0.70 (0.003) 0 (0.000) 5.05 (0.003) 5.12 (0.002) 4.75 (0.003) 3.87 (0.003)

60 0.70 (0.003) 0 (0.000) 4.58 (0.003) 4.59 (0.002) 4.7 5(0.003) 3.87 (0.003)

High 70 0.35 (0.003) 0 (0.000) 4.06 (0.003) 4.09 (0.002) 4.75 (0.003) 3.84 (0.003)

80 0.35 (0.003) 0 (0.000) 4.01 (0.002) 3.53 (0.002) 4.35 (0.003) 3.23 (0.003)

90 0.35 (0.002) 0 (0.000) 3.68 (0.003) 3.23 (0.002) 4.35 (0.002) 1.89 (0.001)

100 0.35 (0.003) 0 (0.000) 3.61 (0.003) 2.89 (0.002) 4.25 (0.003) 1.83 (0.002)
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As the percentage of the herd genotyped increased, the 

value of genotyping decreased from $14 down to $1.40/

test in the case of 100% of the herd genotyped. Collec-

tively, these data suggest that if there are few embryonic 

losses occurring in the herd, as observed in scenario 

A, the value of genotyping to manage lethal recessive 

conditions is correspondingly very low, ranging from 

$0 to $14 (Fig. 4).

Scenario B

This scenario modeled 76 essential loci with LOF 

alleles at low frequencies. In this case, the base scenario 

resulted in 12.45 lethal genotypes per 100 matings, 

Table 6 Average sire index value ($MB) and  genetic load scores (GLS) for  different percentages of  herd genotyped 

in three  scenariosa given two selection  strategiesb

In italic characters = the profit maximizing weighting for a given scenario and breeding strategy

a Scenario A (7 loci with high-frequency LOF alleles), scenario B (76 loci with low-frequency LOF alleles), and scenario C (50 with high- and low-frequency loci)

b Selection against carrier parents (strategy 1) and selection and mate allocation to avoid homozygous offspring (strategy 2)

Scenarioa Strategyb Weightings against selection strategies

0 0.001 0.01 0.1 1 10 100

A 1 $MB 141.03 141.03 141.03 140.98 140.61 141.03 141.03

GLS 0.049 0.027 0.027 0.024 0.005 0 0

2 $MB 141.03 141.03 141.03 141.03 141.03 141.03 141.03

GLS 0.049 0.049 0.049 0.049 0.049 0.049 0.049

B 1 $MB 141.03 141.03 140.97 140.75 130.57 86.74 86.50

GLS 0.287 0.287 0.281 0.265 0.157 0 0

2 $MB 141.03 141.03 141.03 141.03 132.21 118.97 115.34

GLS 0.287 0.284 0.284 0.259 0.177 0.131 0.113

C 1 $MB 141.03 141.03 141.03 140.80 133.75 84.90 84.90

GLS 0.333 0.333 0.332 0.298 0.167 0.012 0.012

2 $MB 141.03 141.03 140.93 138.81 131.60 116.11 110.06

GLS 0.333 0.333 0.333 0.257 0.163 0.100 0.080

Table 7 Costs of  embryonic  lethalitya and  savings from  genotyping ($30/test) when  selecting to  avoid heterozygous 

parents (strategy 1) for three  scenariosb

In italic characters = percentage of herd genotyped that maximized net profit for that scenario

a Per 100 matings

b Scenario A (7 loci with high-frequency LOF alleles), scenario B (76 loci with low-frequency LOF alleles), and scenario C (50 with high- and low-frequency loci)

(), numbers in parentheses indicate negative values

Level of genotyping % Herd 
genotyping

Dollars saved with reduction in occurrence of homozygous individuals (aa)

Before genotyping costs After genotyping costs

Ab B C A B C

Base 0 $(140.00) $(2490.43) $(3043.75) $(140.00) $(2490.43) $(3043.75)

Low 10 $0.00 $669.18 $560.00 $(440.00) $369.18 $260.00

20 $0.00 $1004.18 $1831.30 $(740.00) $404.18 $1231.25

30 $0.00 $1273.56 $1833.80 $(1040.00) $373.56 $933.75

Intermediate 40 $0.00 $1448.56 $2083.80 $(1340.00) $248.56 $883.75

50 $0.00 $1480.43 $2093.80 $(1640.00) $(19.57) $593.75

60 $0.00 $1575.43 $2093.80 $(1940.00) $(224.57) $293.75

High 70 $70.00 $1677.93 $2093.80 $(2030.00) $(422.07) $(6.25)

80 $70.00 $1688.56 $2173.80 $(2330.00) $(711.45) $(226.25)

90 $70.00 $1755.43 $2173.80 $(2630.00) $(944.57) $(526.25)

100 $70.00 $1767.93 $2193.80 $(2930.00) $(1232.07) $(806.25)
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which decreased $P by an average of $24.90 per mating 

in the absence of any selection or genotyping informa-

tion (Table  4). A 0.1 weighting on LethalA for breeding 

strategy 1 maximized $P at $107.35 (Table  4), showing 

the best balance of maximizing $M while reducing the 

occurrence of affected calves. At this weighting, the $MB 

value of the group of selected sires was $140.75 and the 

average sire GLS was 0.265 (Table  6). Higher LethalA 

weightings reduced the GLS to 0 but were accompanied 

by a dramatic decrease in $MB of the selected sires, and 

an accompanying decrease in the average progeny index 

(Fig. 2).

Using this optimal LethalA weighting, low per-

centages of herd genotyped (10 to 30%) increased $P 

by $6.69  to  $12.73 (Table  4), because a reduction in 

homozygous offspring was achieved (Table  5), resulting 

in savings of $669.18–$1273.56 before genotyping costs 

(Table 7). Using a $30/test value, net profit was optimized 

at 20% of the herd genotyped (Fig.  3). Beyond that, the 

marginal benefit of the test information was outweighed 
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by the additional cost of genotyping and dropped below 

$30 when 50% of the herd was genotyped. Breakeven 

genotyping costs decreased as more of the herd was gen-

otyped, i.e. it ranged from $66.92 at 10% down to $17.68 

at 100% of the herd genotyped (Table 9, Fig. 4).

Profit per mating ($P) for breeding strategy 2 was 

again maximized ($108.79) when the lowest weight-

ing (0.001) was placed on LethalG, but it was still $5.78 

below the theoretical maximum since some embryonic 

mortality still occurred. At this weighting, $MB value 

of the group of selected sires was unchanged from that 

of the base run, but the average sire GLS decreased 

slightly to 0.284 (Table 6). The net savings in reduced 

embryonic lethality (Table 8), combined with the costs 

associated with genotyping 10% of the herd, resulted 

in the highest net profit (Fig.  3). Net profit for this 

breeding strategy was actually slightly lower than that 

for breeding strategy 1 for percentages of the herd 

Table 8 Costs of  embryonic  lethalitya and  savings from  genotyping ($30/test) when  selecting and  allocating mates 

to avoid homozygous offspring (strategy 2) for three  scenariosb

In italic characters = percentage of herd genotyped that maximized net profit for that scenario

a Per 100 matings

b Scenario A (7 loci with high-frequency LOF alleles), scenario B (76 loci with low-frequency LOF alleles), and scenario C (50 with high- and low-frequency loci)

(), numbers in parentheses indicate negative values

Level of genotyping % Herd 
genotyping

Dollars saved with reduction in occurrence of homozygous individuals (aa)

Before genotyping costs After genotyping costs

Ab B C A B C

Base 0 $(140.00) $(2490.43) $(3043.75) $(140.00) $(2490.43) $(3043.75)

Low 10 $140.00 $857.06 $1689.50 $(160.00) $557.06 $1389.50

20 $140.00 $994.06 $1850.00 $(460.00) $394.06 $1250.00

30 $140.00 $1195.80 $1860.00 $(760.00) $295.78 $960.00

Intermediate 40 $140.00 $1352.10 $2070.50 $(1060.00) $152.13 $870.50

50 $140.00 $1466.60 $2268.90 $(1360.00) $(33.40) $768.88

60 $140.00 $1572.50 $2268.90 $(1660.00) $(227.48) $468.88

High 70 $140.00 $1672.60 $2275.00 $(1960.00) $(427.39) $175.00

80 $140.00 $1783.60 $2396.90 $(2260.00) $(616.43) $(3.13)

90 $140.00 $1845.20 $2665.80 $(2560.00) $(854.81) $(34.25)

100 $140.00 $1913.00 $2677.30 $(2860.00) $(1086.97) $(322.75)

Table 9 Genotyping breakeven values for  different percentages of  herd genotyped in  three  scenariosa given  two 

selection  strategiesb

a Scenario A (7 loci with high-frequency LOF alleles), scenario B (76 loci with low-frequency LOF alleles), and scenario C (50 with high- and low-frequency loci)

b Selection against carrier parents (strategy 1) and selection and mate allocation to avoid homozygous offspring (strategy 2)

Level of genotyping % Herd  
genotyping

Breakeven values

Strategy 1 Strategy 2

A B C A B C

Low 10 $0.00 $66.92 $56.00 $14.00 $85.71 $168.95

20 $0.00 $50.21 $91.56 $7.00 $49.70 $92.50

30 $0.00 $42.45 $61.13 $4.67 $39.86 $62.00

Intermediate 40 $0.00 $36.21 $52.09 $3.50 $33.80 $51.76

50 $0.00 $29.61 $41.88 $2.80 $29.33 $45.38

60 $0.00 $26.26 $34.90 $2.33 $26.21 $37.81

High 70 $1.00 $23.97 $29.91 $2.00 $23.89 $32.50

80 $0.88 $21.11 $27.17 $1.75 $22.29 $29.96

90 $0.78 $19.50 $24.15 $1.56 $20.50 $29.62

100 $0.70 $17.68 $21.94 $1.40 $19.13 $26.77
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genotyped ranging from 20 to 70% (Table  4, Fig.  3). 

Breakeven genotyping costs for breeding strategy 2 

in this scenario ranged from $85.71 (10%) to $19.13 

(100%) (Table 9, Fig. 4).

Scenario C

This scenario modeled 50 essential loci with a ran-

dom assortment of low and high LOF allele frequen-

cies. In this case, the base run resulted in 15.22 lethal 

genotypes per 100 matings i.e. the highest value, which 

decreased $P by an average of $30.43 per mating. As 

such, the total opportunity cost of embryonic mortality 

per 100 matings was $3043.75. For breeding strategy 

1, a weighting of 1 on LethalA maximized profit value 

($99.48). The group of selected sires at this weighting 

had average $MB and GLS values of $133.75 and 0.167, 

as compared to $141.03 and 0.333 at the base run, 

respectively (Table 6). The profit impact of genotyping 

was greatest for this scenario (Fig. 3). Low percentages 

of the herd genotyped, i.e. 10 to 30%, increased $P by 

$3.77 at 10% and $13.40 at 30% of the herd genotyped 

(Table  4). With a reduction in the number of embry-

onic mortalities from 12.42 to 6.05 (Table  5), dollar 

savings before genotyping costs for low percentages 

of the herd genotyped (10–30%) ranged from $560.00 

to $1833.80 (Table  7). Net profit was maximized at 

20% of the herd genotyped with a value of $1231.25 

(Table  7). Breakeven costs for genetic testing ranged 

from $91.56 at 20% to $21.94 at 100% of the herd geno-

typed (Table 9, Fig. 4).

A slight weighting of 0.1 on LethalG in breeding 

strategy 2 maximized $P at $110.31, which is $10.83 

better than the $P resulting from breeding strategy 

1 (Table  4). The group of selected sires had $MB and 

GLS values of $138.81 and 0.257, respectively (Table 6). 

The net savings in reduced embryonic lethality com-

bined with the costs associated with genotyping 10% of 

the herd resulted in the highest net profit from geno-

typing (Table 8). When 40% of the herd was genotyped 

at $30/test, net profit for breeding strategy 2 was less 

than that associated with breeding strategy 1. For all 

other percentages of herd genotyped, selection to 

avoid homozygous offspring was more profitable than 

selection against carrier parents (Fig.  3). Breakeven 

genotyping costs were highest for breeding strategy 2 

and scenario C, ranging from $168.95 (10%) to $26.77 

(100% of the herd genotyped) (Table 9, Fig. 4). In this 

scenario, genotyping using a cost of $30/test was gen-

erally profitable at low to intermediate percentages of 

herd genotyped due to the relatively high number of 

embryonic losses that occurred in the absence of geno-

typic information.

Discussion
Traditionally, calculations of a selection index do not 

incorporate the effect of specific alleles that result in 

embryonic or fetal mortality, since most selection indi-

ces assume additive relationships between genotypes, 

and trait values have a linear relationship with profit-

ability [60]. The management of recessive lethal con-

ditions became an important factor in cattle breeding 

in the 1950s because of dwarfism occurring in some 

breeds [61], and more recently because of several 

additional genetic defects that have occurred in popu-

lar beef seedstock pedigrees [62]. For many of these 

defects, DNA tests have been developed to identify 

individuals that carry the causal recessive lethal allele 

[62].

Almost a decade ago, Charlier et al. [63] suggested that 

using high-density SNP panels to accelerate the iden-

tification of certain mutations that cause defects within 

livestock populations would allow for immediate man-

agement within breeding practices. One of the impor-

tant considerations in managing recessive alleles is the 

frequency of the recessive allele in the population. A 

number of different alleles that affect fertility have been 

identified in both beef and dairy cattle. Cole et al. [8] and 

Georges et al. [5] reviewed the recent studies on recessive 

haplotypes and recessive variants identified by whole-

genome sequencing (reverse genetic screening) in cattle 

(Table 1).

In dairy cattle, four loci associated with embryo mor-

tality, and three strong candidate causal mutations, were 

identified in Holstein, Montbéliarde, and Normande 

breeds [24]. A study of 337 Holstein–Friesian cows found 

three possible recessive lethal alleles in selectin genes 

that are required for embryo implantation and placental 

development [64]. However, more than 400 candidate 

LOF alleles were identified by whole-genome sequencing 

in a study of 6300 Belgian beef and 35,000 New Zealand 

dairy cattle. Testing 200 candidate offspring from carrier 

sire by carrier dam matings identified nine mutations that 

resulted in significant depletion of homozygotes, provid-

ing evidence that these alleles were true LOF variants [7]. 

Hoff et  al. [6] identified seven loci with haplotypes that 

were not found in the homozygous state in Angus beef 

cattle, which suggests that these loci are possible candi-

dates for LOF alleles. Recently, Jenko et al. [37] reported 

three haplotypes that carry putatively recessive lethal 

alleles in Aberdeen Angus, Charolais, and Simmental at 

population frequencies of 15.2, 14.4, and 8.8%, respec-

tively. These studies suggest that LOF alleles, which 

impact fertility, are present in many cattle populations 

and are likely to be identified on an ongoing basis. As the 

number of identified mutations increases, animals not 

carrying LOF alleles will become increasingly rare [5].
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In the absence of an estimate of the actual number of 

loci that are currently affected by LOF alleles, the value 

and optimum number of animals to genotype within 

a herd is difficult to predict. In this study, two breeding 

strategies were evaluated using scenarios in which the 

number of essential loci ranged from 7 to 76, and the 

mean LOF minor allele frequencies ranged from 0.0112 

to 0.0847 (Table 2), which are representative of the values 

found in the literature (Table  1). With a full knowledge 

of the carrier status of each individual, the most profit-

able short-term breeding strategy was always strategy 2, 

i.e. simultaneous selection and mate allocation to avoid 

homozygous affected calves (aa) (which avoids carrier 

matings) compared to breeding strategy 1, i.e. indis-

criminate selection against carrier parents (Aa) within a 

population. Mate allocation allowed for the matching of 

genetically superior carrier individuals, provided they 

had LOF alleles at different essential loci, and optimized 

the use of those individuals. Strategy 2 generally requires 

ongoing efforts to maintain benefits in subsequent gen-

erations, whereas the long-term benefits of strategy 1 

will be cumulative over time and thus were not clearly 

reflected in this single generation simulation.

Other authors have explored how to manage recessive 

LOF alleles. Cole [38] modeled constraining inbreed-

ing based on genomics [65] and added in the model an 

economic penalty for Mendelian disorders, which ranged 

from $20 to $200 for hypothetical recessive loci. This 

approach reduced LOF allele frequencies and was espe-

cially useful for low-frequency LOF with small economic 

value. This simulation did not allow for the manage-

ment of parental coancestry as was modeled in our study 

using MateSel. The need for MateSel to access pedigree 

and index information on all candidates complicates the 

ease-of-implementation and as posited by Cole, “some-

times it is better to have an imperfect mate allocation 

tool, than no tool at all”. Currently, most beef producers 

are culling carriers and this is likely to become infeasible 

as more LOF mutations are discovered. As more genomic 

information becomes available due to increased rates of 

genotyping, it is likely that software to maximize the use 

of this information for optimal mate selection and alloca-

tion will become increasingly valuable for breed associa-

tions, and their members.

In this study, we modeled just a single round of mating 

in order to reflect the real-life situation of tactical deci-

sion-making. However, we managed long-term inbreed-

ing/diversity by setting a limit on parental coancestry as 

is commonly done in practice. Moreover, our LethalA 

metric is essentially an additive criterion that aims at gen-

erations beyond the progeny generation. Further studies 

using multiple generations would be useful to uncover 

the long-term impact on genetic gain and embryonic 

losses of the mate selection and allocation strategies that 

were examined in this study over many generations.

Genotyping information enabled the management of 

LOF alleles. However, the breakeven value derived from 

genotyping depended highly on the scenario and mat-

ing strategy modeled. In scenario A, with only seven 

LOF alleles, the breakeven value of genotyping was never 

more than $1 with breeding strategy 1 and $2 with breed-

ing strategy 2. In contrast, in scenario C, with 50 LOF 

alleles of variable frequencies, it could reach a breake-

ven value as high as $168.95/test when using simultane-

ous mating and selection to avoid homozygous affected 

calves (aa) and genotyping only 10% of the herd. Clearly, 

the breakeven value of genotyping information increases 

in proportion to the number of embryonic losses that are 

anticipated in the absence of genotyping information. 

In the future, it is likely that the identification of reces-

sive conditions will be part of routine genotyping, and 

so there will be no separate genotyping costs for LOF 

alleles. The availability of genome-wide data for genomic 

selection may allow for the imputation of LOF alleles at 

essentially no additional cost, but with an accuracy lower 

than 100%. The use of genotyping for multiple purposes, 

including the tantalizing prospect of genomic mate selec-

tion to concentrate the most favorable complementary 

alleles into offspring [5], will likely make it cost-effective 

for considering and managing all known LOF alleles, 

irrespective of frequency, in mate selection and alloca-

tion decisions.

Genotyping a larger percentage of the herd provided 

more information to decrease embryonic mortali-

ties compared to genotyping smaller percentages of the 

herd, although this depended on the number of loci 

and allele frequencies. Within each scenario and breed-

ing strategy, $P was maximized when 70 to 100% of the 

herd was genotyped; however, there was little additional 

value generated by increased levels of genotyping to off-

set the additional costs. Breakeven genotyping costs typi-

cally decreased as the percentage of the herd genotyped 

increased in the different scenarios. The exception to this 

was for scenario C for which the marginal value of geno-

typing increased as the percentage of the herd genotyped 

increased from 10 to 20% when using breeding strategy 

1 due to the added value derived from that additional 

information to avoid the use of carrier parents (Fig.  4). 

In all other cases, the marginal value of additional dollars 

saved by increasing the proportion of the herd genotyped 

decreased; therefore, the breakeven genotyping costs 

decreased as the percentage of herd genotyped increased.

If scenario A approximates the true frequencies, as was 

suggested by studies reporting seven to nine lethal LOF 

mutations [6, 7], then the actual value of genotypic infor-

mation to manage recessive lethal conditions may be low, 
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at least in the short term. However, with just seven LOF 

loci, there may be some prospect to eliminate the LOF 

alleles, and therefore some benefit to long-term man-

agement. In the other two simulations with more than 

50 loci with LOF alleles, genotyping a small percentage 

of the herd improved net profit. Figure 4 that illustrates 

the breakeven costs of genetic testing is perhaps the most 

illustrative of the complexities of the value of a genetic 

test, since it shows the impact that the percentage of 

herd genotyped, breeding strategy, and different numbers 

of essential loci and LOF frequencies can have on the 

value of genotyping information. These values reveal the 

importance of the underlying scenario in developing esti-

mates of the economic value of genotyping information 

for managing recessive lethal conditions.

Kinghorn [41] described genotyping strategies that 

used genotyping probabilities from segregation analysis 

to help choose which individuals and loci to genotype. It 

has been reported that genotyping sires, then dams, and 

then non-parents, added performance to a population 

with a low allele frequency. Undoubtedly, these are more 

strategic approaches than those modeled in our study, 

and additional tools, such as Geneprob [57], can be used 

to estimate the probability that an animal is a carrier, as 

was done in our study. The choice of which individuals to 

genotype should likely be based on the influence of each 

individual in the breeding program (e.g., bulls > cows), 

and/or its estimated breeding value. Selection of influ-

ential individuals for genotyping should be done in such 

a way that it contributes useful information to the whole 

population, e.g. by determining the carrier status of key 

influential sires [41].

In the Australian Angus population, DNA test results 

and pedigree information were used to calculate the 

probability that a non-tested animal was a carrier of the 

arthrogryposis multiplex (AM) syndrome with the soft-

ware program Geneprob [57, 66]. These results were ana-

lyzed and are publicly available on the Australian Angus 

Association’s website. Along with this program, the asso-

ciation designed educational programs to help members 

understand how to identify and manage recessive lethal 

alleles. By implementing these practices, producers 

decreased their use of AM sires, thus decreasing the car-

rier individuals within the Australian Angus population 

[67]. This was similar to our breeding strategy 1 of select-

ing against carrier parents. Although genotyping animals 

decreased the use of carrier sires, it may not have been 

an optimum approach given the results of the current 

study. Managing genetic defects is ultimately a trade-off 

between avoiding affected individuals in the short-term 

and eliminating LOF alleles in the long run [38].

Although this example shows that the reduction of 

recessive lethal alleles is possible, complete elimination of 

these alleles may be difficult [68]; thus, continued long-

term management is necessary. Allen et al. [69] modeled 

the impact of a sire that carries a recessive lethal genetic 

condition. Random mating herds that use an occasional 

carrier sire had a low occurrence of homozygous affected 

calves (less than 1%). However, within a self-replacing 

herd, where carrier females may stay in the herd for 

around 20  years, consistent management is required to 

avoid recessive lethal conditions [69].

In our study, a value of $200 was used as the cost of 

a homozygous lethal progeny, and the economic fac-

tors influencing this value will vary. Factors such as the 

number of animals within the herd, whether the herd is 

self-replacing, and the degree of risk that producers are 

willing to accept should also be taken into consideration 

[70]. A limit of our study is that only a single herd and 

a single generation were modeled, thus it is not possible 

to draw any conclusions about the long-term dynamics of 

LOF in larger populations more generally. Interestingly, 

in a simple simulation study that assigned a small ($20–

$40) or large ($200–$400) economic value to a locus with 

a recessive LOF allele had little impact on decreasing 

the frequency of the deleterious allele over time [38]. In 

that example, increasing the economic cost of recessive 

LOF alleles only was not sufficient to accelerate the rate 

at which undesirable alleles were eliminated from the 

population.

Mate selection to avoid affected progeny may help LOF 

alleles to survive in the population, if their frequency is 

sufficiently high such that random mating would other-

wise have resulted in significant selection against them. 

At lower LOF allele frequencies, mate selection to avoid 

affected progeny may reduce the frequency of LOF alleles 

across many loci in the population, since individuals that 

carry no LOF alleles, few LOF alleles, and/or LOF alleles 

that are at a lower frequency in the population, will be 

easier to match with mates to lower the probability of 

progeny mortality. However, it seems prudent, in prac-

tice, to include some weighting to avoid the selection of 

carriers, as well as weighting to reduce the prevalence 

of affected progeny. The appropriate balance between 

short- and long-term management will also depend on 

the period under consideration, since it will take a long 

time to eliminate LOF alleles from the population if car-

riers are allowed to qualify as parents because they will 

continue to generate heterozygous carrier offspring.

As sequencing projects identify more essential loci and 

LOF alleles, breed associations will need to develop poli-

cies on the management of lethal recessive alleles. When 

considering the amount of emphasis to place on lethal 

recessive genetic conditions, decisions on the appropri-

ate balance of short- or long-term management of LOF 

alleles should be made first. If short-term management 
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is prioritized, essentially by decreasing the occurrence 

of affected calves (aa), the optimal solutions from the 

scenarios presented here suggest that a slight emphasis 

is sufficient for improved mate allocation to avoid LOF 

carrier matings at the same locus. However, if long-term 

management of LOF alleles is also considered as impor-

tant, there would be value in decreasing the number of 

carrier animals within the population, and some value 

would need to be assigned to avoiding carrier parents to 

achieve this objective. While short-term profit might be 

maximized by strategy 2, some weighting should be given 

to long-term elimination of defects from the population 

using some weighting on strategy 1.

Future research will likely elucidate a more accu-

rate representation of the approximate number of loci 

affected by LOF mutations and the frequencies at which 

they occur within cattle populations. Once this becomes 

clearer, optimal mating and genotyping strategies to max-

imize overall producer profit can be modeled, although 

it will be necessary to consider the appropriate balance 

between avoidance of carrier matings (i.e., short-term 

producer benefit) and eliminating defects (i.e., long-term 

industry benefit), which will likely vary depending on the 

stakeholder. It is likely that the management of a suite of 

recessive lethal conditions will require the use of mate 

allocation programs such as MateSel to incorporate LOF 

information into mate selection decisions.

Conclusions
The most profitable short-term breeding strategy given 

a perfect knowledge on LOF genotypes was simultane-

ous selection and mate allocation to avoid the potential 

for producing homozygous affected offspring compared 

to indiscriminate selection against carrier parents in the 

simulations modeled in our study. Before accounting 

for genotyping costs, $P increased within each simula-

tion and breeding strategy as the percentage of the herd 

genotyped increased. However, genotyping 100% of the 

herd did not result in the maximum net profit when 

accounting for genotyping costs. Genotyping some per-

centage of the herd tended to show the greatest net profit 

increase in scenarios where a large number (≥ 50) of loci 

were associated with LOF alleles. Genotyping informa-

tion does enable better management of lethal reces-

sive alleles; however, the value of that information must 

be weighed carefully against the associated genotyping 

costs. As more LOF alleles are identified, it is likely that 

some genotyping information combined with mate selec-

tion software will be required to correctly manage this 

information and optimize mate selection and allocation 

to simultaneously increase genetic gain, control inbreed-

ing, minimize recessive lethal matings, and maximize net 

profit from breeding decisions.
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